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Abstract. The Conway–Maxwell-Multinomial distribution is studied in this
paper. Its properties are demonstrated, including sufficient statistics and con-
ditions for the propriety of posterior distributions derived from it. An appli-
cation is given using data from Mendel’s ground-breaking genetic studies.

1 The Conway–Maxwell-Multinomial distribution

The Conway–Maxwell-Multinomial (COMM) Distribution has probability mass
function (for fixed m)
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where

ppp = (p1, . . . , pr), pi > 0,

r∑
i=1

pi = 1,

kkk = (k1, . . . , kr), ki ≥ 0,

r∑
i=1

ki = m, ki’s integers,

(
m

kkk

)
= m!

k1!k2! · · ·kr !
and D is the set of vectors of integers jjj satisfying ji ≥ 0 and

∑r
i=1 ji = m.

This distribution is a generalization of other distributions as follows:

r = 2, ν = 1 binomial,

r > 2, ν = 1 multinomial,

r = 2, ν �= 1 Conway–Maxwell Binomial.
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Figure 1

Compared to the multinomial distribution, the novelty is in the parameter ν. As il-
lustrated in Figure 1 (for the special case m = 3, p = (1/3,1/3,1/3), when ν > 1,
the center of the distribution is upweighted relative to the multinomial distribution,
indicating negative association among the underlying multivariate indicator func-
tions. Conversely, when ν < 1, the tails of the distribution are upweighted relative
to the multinomial distribution, indicating positive association.

The remainder of this paper is organized as follows: Section 2 gives an example
of the use of the COMM distribution to a small part of the controversial Mendel
data. Since the question there is whether Mendel’s data are “too good to be true,”
that is, whether they fit the multinomial hypothesis too well, it seems ideal as
an example. Section 3 gives several of the properties of the COMM distribution,
results that are generalizations of the principal findings of Kadane (2016) for the
Conway–Maxwell Binomial distributions. The proofs are in the Appendix.

2 An example: Mendel’s data and Fisher’s analysis

Gregor Mendel, an Augustinian monk published (1866) results of his experiments
on garden peas, and proposed the model of genetics since known as Mendelian
genetics. Fisher (1936), following Weldon (1902), did an analysis suggesting that
Mendel’s data were “too good to be true,” that is, that they fit a binomial or multi-
nomial distribution too well. This finding has led to intense speculation about how
that might have occurred. However, since Mendel’s papers were destroyed after his
death, it is unlikely that additional evidence on this matter will now be discovered.
Some recent work on the general matter can be found in Franklin et al. (2008) and
Pires and Branco (2010).

Since Fisher is such a dominant figure in both statistics and genetics, it might
be useful to give a fast gloss of his argument. Fisher uses chi-square measures of
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goodness of fit for Mendel’s data, treating them as independent across different
experiments. By adding the chi-squares and the degrees of freedom, he finds an
extra-ordinary degree of coincidence between Mendel’s theory and his data. The
chi-square analysis of Fisher (started by E. Pearson about 1900) was (and still is)
used as the basis of a test of significance. If the chi-square is too large, the null hy-
pothesis is rejected. According to Fisher (1959), if the null hypothesis is rejected,
“The force with which such a conclusion is supported is that of the simple disjunc-
tion: Either an exceptionally rare chance has occurred, or the theory of random
distribution is not true” (p. 39). Fisher’s theory does not permit one to say which
of the two possibilities is the case, nor to give a probability for it. Furthermore, if
significance is not achieved, nothing can be concluded. In order for the probability
distribution that forms the basis of a chi-square test to be valid, the hypothesis to
be tested must be declared before the data are examined.

Viewed in this light, there are several gaps between Fisher’s calculations and his
conclusion. Fisher is rejecting the multinomial null hypothesis if the chi-square
is too small, which would be legitimate if the hypothesis test were declared be-
fore Weldon pointed the way, or if Fisher routinely used a two-tailed chi-square
test. Neither is the case. And one still has Fisher’s disjunction to contend with.
Nonetheless, Fisher is a superb data-analyst, and we should not be interpreted as
challenging his conclusion.

Our intent here is not to enter into these controversial waters, but simply to
show the kind of contribution that the COMM distribution might make in this set-
ting. As explained above, when ν = 1 the usual multinomial distribution results.
When ν < 1, the tails of the distribution are upweighted relative to the center.
Conversely, when ν > 1 the center of the distribution is upweighted relative to the
tails. Because ν is a continuous parameter (−∞ ≤ ν ≤ ∞), the COMM distribu-
tion gracefully handles both positive and negative association.

In the case of the Mendel data, the notion that Mendel’s data are “too good to
be true” is translated into the hypothesis that ν > 1. To illustrate how this works,
we took a simple trinomial piece of Mendel’s data, namely the first line of Fisher’s
Table 1 (1936). The data are 36, 60 and 28 for plants in a Bifactoral experiment,
where the expected proportions are (1/4,1/2,1/4). Along with the COMM like-
lihood, we must declare a prior. In this case it makes sense to have an opinionated
prior on (p1, p2 and p3), namely that we are sure the correct values are, respec-
tively, (1/4,1/2,1/4), as predicted by Mendelian genetics. For a prior on ν, we’ll
take ν to have a unit normal distribution centered at 1. In this way, the prior on ν

does not influence the analysis toward or away from the space ν > 1.
The posterior distribution is displayed in Figure 2. Approximately 80% of the

probability is above ν = 1, confirming that, in this small piece of Mendel’s data,
the data are likely to be more negatively associated than they would be were the
distribution trinomial. As this example shows, a Bayesian analysis with a COMM
likelihood can deliver the probability that Mendel’s data are more negatively asso-
ciated than would be expected under the trinomial hypothesis. Again, this should
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Figure 2

not be taken as a full analysis of Mendel’s data, and says nothing about how the
data came to be the way they are. A fuller analysis of the Mendel data would
address the complete dataset.

3 Properties of the Conway–Maxwell Multinomial distribution

To begin, we should explain how the names Conway and Maxwell came to be
associated with this distribution. They wrote a short paper (Conway and Maxwell
(1962)) in which they discuss a generalization of the Poisson distribution having
pmf proportional to

λx/(x!)ν,
where x = 0,1,2, . . . , and λ and ν are parameters. When ν = 1, the usual Poisson
distribution results. This distribution turned out to be useful to model count data
because it allows for heavier or lighter tails than the Poisson model (Boatwright,
Borle and Kadane (2003), Borle et al. (2005)). Because Conway and Maxwell
proposed it first, it became known as the Conway–Maxwell–Poisson distribution
(Shmueli et al. (2004)).

It is a simple calculation to show that if X1 has a Poisson distribution with pa-
rameter λ1, and is independent of X2, a Poisson random variable with parameter
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λ2, then the distribution of X1 conditional on the event X1 + X2 = m is Binomial
with parameter p = λ1/(λ1 + λ2) and n. It is only a slightly more complicated
calculation to show the multivariate generalization: If X1,X2, . . . ,Xr are inde-
pendent Poisson random variables with means λ1, λ2, . . . , λν , then the distribution
of (X1,X2, . . . ,Xr) conditional on the event that

∑r
i=1 Xi = m is multinomial

with parameter vector p = (λ1, λ2, . . . , λr)/
∑r

i=1 λi and m.
Shmueli et al. (2004) generalizes the relationship between the Poisson and bi-

nomial distributions to the Conway–Maxwell–Poisson as follows: Suppose X1
has a Conway–Maxwell–Poisson (CMP) distribution with parameters (λ1, ν), and
X2 is independently distributed CMP (λ2, ν). Then X1 conditional on the event
X1 + X2 = m has a Conway–Maxwell Binomial distribution with parameters
p = λ1/(λ1 + λ2), ν and m. It is reasonable to hope, then, that the conditional dis-
tribution of r independent Conway–Maxwell–Poisson distributions with respec-
tive parameters λ1, . . . , λr and ν, would have a Conway–Maxwell Multinomial
distribution. That this is the case is the content of Proposition 1:

Proposition 1. Suppose X1, . . . ,Xr are independently distributed with probabil-
ity mass function Conway–Maxwell Poisson Xi ∼ CMP(λi, ν):

P {Xi = si | λi, ν} = λ
si
i

(si !)νZ(λi, ν)
,

where Z(λi, ν) = ∑∞
j=0

λ
j
i
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Then XXX | ∑r

i=1 Xi = m has a COMM distribution with parameters pi = λi/λ
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which is the probability mass function of the COMM distribution with parameters
p =λλλ/λ and ν. �

Proposition 1 implies that there is a constructive way to generate Conway–
Maxwell-Multinomial distributions for ν > 0. However, the case for unrestricted
ν is not so obvious. The next proposition shows a constructive way of generating
(not-necessarily independent) multivariate discrete random variables that have an
arbitrary sum.

Proposition 2. Let XXX1, . . . ,XXXn be r-dimensional indicator random variables, i.e.,
each is an r-vector of 0’s and 1’s. Let P {SSS = kkk} = pkkk ≥ 0, where

∑
kkk∈D pkkk = 1.

Then there exists a unique distribution on XXX1,XXX2, . . . ,XXXm such that XXX1,XXX2, . . . ,

XXXm are order m exchangeable and
∑m

i=1 XXXi has the same distribution as does S.

Proof. For each kkk ∈ D, there are
(m
kkk

)
different arrangements of 1’s and 0’s such

that each vector component i has ki 1’s and (m − ki) 0’s. Let each such arrange-
ment have probability pkkk/

(m
kkk

)
. Then P(

∑r
i=1 XXXi = kkk) = pkkk and the XXXi’s are ex-

changeable of order m. To show uniqueness, if the sum of the probabilities of the
sequences with ki 1’s in the ith vector component for each i were not pkkk , the
sum constraint would not be met. If they did not have equal probability, order m

exchangeability would be violated. �

It is also useful to display the COMM distribution as a member of the expo-
nential family, and in particular to show its sufficient statistics. This is done in
Proposition 3.

Proposition 3. The COMM distribution has the following sufficient statistics:

S0 =
n∑

j=1

log[kij ! · · ·krj !],

Si =
n∑

j=1

kij , i = 1, . . . , r − 1,

where kij is the ith component of the j th sample. The COMM distribution is a
member of the exponential family.

Proof.
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∝ exp

(
r−1∑
i=1

log(pi/pr)
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n∑
j=1

log

(
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i=1

kij !
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= e
∑r−1

i=1 log(pi/pr )Si−νS0 .

This shows the sufficient statistics, and also shows that COMM is a member of the
exponential family. �

Because the COMM distribution is in the exponential family, it has a conjugate
distribution. However, when that distribution is proper is not so obvious, and is the
content of Theorem 1 below.

Let ψ = (log(p1/pr), . . . , log(pr−1/pr)) and t (k) = − log(
∏r

i=1 ki !), then the
COMM probability mass function can be re-expressed as

P(X = k|ψ, ν) = eψ ·(k1,k2,...,kr−1)+νt (k)−M(θ),

where, θ = (ψ, ν), and M(θ) = log(
∑

j∈D eψ ·(j1,j2,...,jr−1)+νt (j)).
Consider a conjugate family of the form

π(θ |a, b, c)∝ eψ ·a+bν−cM(θ), (1)

where a = (a1, a2, . . . , ar−1).
Then the updating of the hyper parameters using the sufficient statistics can be

accomplished using

a′
i = ai + Si, i = 1, . . . , r − 1,

b′ = b − S0,

c′ = c + n.

Let ar be a pseudo hyperparameter such that ar
c

= m − ∑r−1
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c
, then the con-

jugate prior π can be written in a symmetric form with respect to (p, ν).
The Jacobian matrix of transformation is J = ∂θ

∂ρ , ρ = (p1,p2, . . . , pr−1, ν),
with determinant |J | = (
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Note that when ν �= 1 the conjugate prior of this form depends on m, which can
be regarded as the total number of trials. When ν = 1, the COMM reduces to
the multinomial distribution with conjugate prior the Dirichlet distribution, which
does not depend on m.

Theorem 1. The conjugate prior of COMM distribution in (2) is proper if and
only if

(i) c > 0,

(ii) ai > 0, i = 1,2, . . . , r,

r∑
i=1

ai

c
= m,

(iii) − log(m!) <
b

c
< −

r∑
i=1

[(
ai

c
−

⌊
ai

c

⌋)
log

⌈
ai

c

⌉
+ log

⌊
ai

c

⌋
!
]
.

The proof of Theorem 1 is in the Appendix.
Sometimes conjugate prior distributions are not the most convenient. For ex-

ample, the snippet of Mendel data is treated with a prior that is not conjugate.
Theorem 2 shows that a finite moment generating function suffices.

Theorem 2. Let g(ψψψ,ν) be a probability distribution that has a finite moment
generating function. Then the prior proportional to

exp
(
ψψψ · a + νb − cM(ψψψ,ν)

)
g(ψψψ,ν)

is proper for all a, b, and c.

The proof of Theorem 2 is in the Appendix.
The generating functions are straightforward, and worth recording as well:
Let t = (t1, . . . , tr ). Then the probability generating function is

E
(
tx) = ∑

j∈D

tjpj

(
m

j

)ν/
G(p, ν)

= G(tp, ν)/G(p, ν).

Similarly, the moment generating and characteristic functions are, respectively,

G
(
etp, ν

)
/G(p, ν)

and

G
(
eitp, ν

)
/G(p, ν).
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4 Conclusion

The results of Kadane (2016) extend to the multivariate case (except his Theo-
rem 2). The hard work is in extending Theorem 1 to the multivariate case. The
Conway–Maxwell Multinomial distribution can be part of a statistician’s toolkit.

Appendix

Diaconis and Ylvisaker (1979) showed that for exponential family {P(θ) :
dP (θ) = exθ−M(θ) dμ(x), θ ∈ 	,x ∈R

d} where μ a is σ -finite measure on B(Rd)

and 	 = {θ : M(θ) < ∞}, its conjugate prior family {πn0,x0(θ) : dπn0,x0(θ) =
en0x0−n0M(θ) dθ} has the following property: if 	 = R

d

πn0,x0(	) < ∞ ⇔ x0 ∈X , n0 > 0,

where X is the interior of the convex hull of μ’s support. For our problem, X is
the interior of the convex hull of Ã = {(k1, k2, . . . kr−1, t (k) : k ∈ D}. In order to
take advantage of the simplicity of symmetric forms, we first add the dimension kr

and consider A = {(k, t (k)) : k ∈ D} in the lemmas to follow, and then relate A to
Ã in the proof of Theorem 1.

Here are some notations: L = {(z, h) : ∑r
i=1 zi = m} is a subspace of Rr+1 and

thus we have A ⊆ Conv(A) ⊆ L. Let H denote the interior of the convex hull of
A under the subspace topology, then its closure H̄ = Conv(A). Let � = {x ∈ N

r :
m − r + 1 ≤ ∑r

i=1 xi ≤ m − 1}. If x ∈ �, then the following set Cx generated by
x is not empty,

Cx =
{
k : kj = xj or xj + 1,

r∑
j=1

kj = m

}
.

It is clear that |Cx | ≥ (r
1

) = r and Cx ⊆ D.
The geometric intuition behind our proofs is that we first divide the “surface” of

the convex hull into pieces of facets, then study the hyperplanes that contain these
facets. The general steps of proof are:

1. Show that {Conv(Cx) : x ∈ �} exhausts Conv(D)

2. Show that for every z ∈ Conv(Cx), (z, h) ∈ H̄ if and only if a(z) ≤ h ≤
bx(z). The graphs of a(z) and bx(z) are, respectively, the bottom facet and a dom-
inant facet indexed by x.

3. Relate that above characterization of H̄ to the necessary and sufficient con-
ditions for the priors to be proper.

Lemma 1. {Conv(Cx) : x ∈ �} exhausts Conv(D), that is,
⋃

x∈� Conv(Cx) =
Conv(D).
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Proof. Suffices to show that Conv(D) ⊆ ⋃
x∈� Conv(Cx). If z ∈ Conv(D), then∑r

i=1 zi = m. We need to find x ∈ � such that z ∈ Conv(Cx).

(1)
∑r

j=1zj� ≤ m − 1.
Let x = (z1�, . . . , zr�), then x ∈ � as m − 1 ≥ ∑r

j=1zj� >
∑r

j=1(zj − 1) =
m − r . We will show that Conv(Cx) = {z|xj ≤ zj ≤ xj + 1,

∑r
j=1 zj = m} := Rx .

For all z1,z2 ∈ Rx and λ ∈ [0,1], we have λz1 + (1 − λ)z2 ∈ Rx , therefore, Rx

is a convex set. Cx ⊆ Rx ⇒ Conv(Cx) ⊆ Rx .
Next, we prove that elements in Rx \ Cx can not be vertices of Rx . Assume z̃ ∈

Rx \Cx and is a vertex of Rx . Without loss of generality, let z̃1, z̃2 be such that z̃1 ∈
(x1, x1 +1), z̃2 ∈ (x2, x2 +1). For ε > 0 sufficiently small, both z+

ε = (z̃1 +ε, z̃2 −
ε, . . . , z̃r ) and z−

ε = (z̃1 − ε, z̃2 + ε, . . . , z̃r ) are elements of Rx . Consequently,
z̃ = 1

2(z+
ε + z−

ε ), which contradicts with the assumption that z̃ is a vertex of Rx .
Hence, Rx ⊆ Conv(Cx).

As a result, z ∈ Rx = Conv(Cx).
(2)

∑r
j=1zj� = m.

We know
∑r

j=1 zj = m, so z1, z2, . . . , zr must be integers. As m ≥ 1, there exists
zi ≥ 1 for some i. Let x = (z1, . . . , zi−1, zi − 1, zi+1, . . . , zr) ∈ �, then z ∈ Cx ⊆
Conv(Cx). �

The following proposition is a step towards the proof of Lemma 1.

Proposition 4. For every x ∈ � and z ∈ D,

t (z) ≤ bx(z) = t (x) −
r∑

i=1

(zi − xi) log(xi + 1).

Equality holds if and only if z ∈ Cx .

Proof. Let g(x) = − log(�(x + 1)), then − log(xi + 1) = g(xi + 1) − g(xi),

1 ≤ i ≤ r . Also, t (x) = − log(
∏r

i=1 �(xi + 1)) = −∑r
i=1 log(�(xi + 1)) =∑r

i=1 g(xi). Note that g is strictly concave, so ∀x ∈ �,z ∈ D and i ∈ 1, . . . , r

(zi − xi)
(
g(xi + 1) − g(xi)

) ≥ g(zi) − g(xi).

Equality holds if and only if zi = xi or xi + 1. Therefore,

r∑
i=1

(
g(xi) + (zi − xi)

(
g(xi + 1) − g(xi)

)) ≥
r∑

i=1

g(zi).

Consequently,

t (x) +
r∑

i=1

(zi − xi)
(
g(xi + 1) − g(xi)

) ≥ t (z).
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Equality holds if and only if

⎧⎪⎪⎨
⎪⎪⎩

zi = xi or zi + 1, i = 1,2, . . . , r,

r∑
i=1

zi = m
⇔ z ∈ Cx .

�

Lemma 2. For every z ∈ Conv(Cx), (z, h) ∈ H̄ if and only if − log(m!) ≤ h ≤
bx(z).

Proof. Assume (q1, t (q1)), . . . , (q |A|, t (q |A|)) are the elements in A.

(i) ∀k ∈ D, we have
(m
k

) ≥ 1. Hence, t (k) = log
(m
k

) − log(m!) ≥ − log(m!).
If (z, h) ∈ H̄ = Conv(A), then there exists αj ≥ 0,

∑|A|
j=1 αj = 1 such that

(z, h) = ∑|A|
j=1 αj (qj , t (qj )). We have h = ∑|A|

j=1 αj t (qj ) ≥ − log(m!)∑|A|
j=1 αj =

− log(m!). Again, by Proposition 4 and linearity of bx(z), we get bx(z) =
bx(

∑|A|
j=1 αjqj ) = ∑|A|

j=1 αjbx(qj ) ≥ ∑|A|
j=1 αj t (qj ) = h.

(ii) Here we show the “only if” part of the proof. Suffices to show that B =
{(z, h) : z ∈ Conv(D),h = − log(m!)} ⊆ H̄ and Sx = {(z, h) : z ∈ Conv(Cx), h =
bx(z)} ⊆ H̄ . Let ei denote the unit vector with a 1 in the ith coordinate and
0 elsewhere. Now consider mei ∈ D,1 ≤ i ≤ r . Note that t (mei ) = − log(m!)
and Conv(mei : 1 ≤ i ≤ r) = Conv(D), thus we have B ⊆ H̄ . From Proposi-
tion 4, we know for every z ∈ Cx, t (z) = bx(z). Again, z can be written as∑

j λjkj , where kj ∈ Cx , λj ≥ 0 and
∑

j λj = 1. Hence, bx(z) = bx(
∑

j λjkj ) =∑
j λjbx(kj ) = ∑

j λj t (kj ), which implies Sx ⊆ Conv((kj , t (kj )) : kj ∈ Cx) ⊆
H̄ . �

Using these results, we now resume the proof of Theorem 1.

Proof of Theorem 1. Because there are only finite number of elements in D, the
parameter space 	 = {θ |M(θ) < ∞} = R

r . Let H̃ denote the interior of the convex
hull of Ã. The conjugate prior is proper, according to Diaconis and Ylivisacker’s
theorem, if and only if

(i) c > 0, (ii)
(

a1

c
,
a2

c
, . . . ,

ar−1

c
,
b

c

)
∈ H̃ . (A.1)

The following mapping T between Ã and A is bijective,

T : Ã → A,

q̃ i = (
k
(i)
1 , . . . , k

(i)
r−1, t

(
k(i))) �→ qi = (

k(i), t
(
k(i))).
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We can therefore convert the problem to a symmetric one by adding one more
dimension. As T is bijective, we have |Ã| = |A| := K .

(τ1, τ2, . . . , τr) ∈ Conv(Ã)

⇔ ∃α1, α2, . . . , αK ≥ 0,

K∑
j=1

αj = 1

s.t. (τ1, τ2, . . . , τr) =
K∑

j=1

αj q̃j

⇔ ∃α1, α2, . . . , αK ≥ 0,

K∑
j=1

αj = 1

s.t.

(
τ1, τ2, . . . , τr−1,m −

r−1∑
j=1

τj , τr

)
=

K∑
j=1

αjqj

⇔
(
τ1, τ2, . . . , τr−1,m −

r−1∑
j=1

τj , τr

)
∈ Conv(A).

Hence,

(τ1, τ2, . . . , τr) ∈ H̃

⇔ ∃ε̃ > 0, s.t. Bε̃(τ1, τ2, . . . , τr) ⊆ Conv(Ã)

⇔ ∃ε > 0, s.t. L ∩ Bε

(
τ1, . . . , τr−1,m −

r−1∑
j=1

τj , τr

)
⊆ Conv(A)

⇔
(
τ1, . . . , τr−1,m −

r−1∑
j=1

τj , τr

)
∈ H,

where Bε̃(τ1, τ2, . . . , τr) is an open r dimensional sphere centered at (τ1, τ2, . . . ,

τr) with radius ε̃ and Bε(τ1, . . . , τr−1,m − ∑r−1
j=1 τj , τr) is an open r + 1 dimen-

sional sphere centered at (τ1, . . . , τr−1,m−∑r−1
j=1 τj , τr) with radius ε. As a result,

(
a1

c
,
a2

c
, . . . ,

ar−1

c
,
b

c

)
∈ H̃ ⇔

(
a1

c
,
a2

c
, . . . ,

ar

c
,
b

c

)
∈ H. (A.2)

Let F(z) = ∑r
i=1[(zi − zi�) log�zi� + logzi�!]. We claim that

H̄ =
{
(z, h) : − log(m!) ≤ h ≤ F(z), zj ≥ 0,

r∑
j=1

zj = m

}
.
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To show H̄ ⊆ RHS, assume (z, h) ∈ H̄ = Conv(A), then z ∈ Conv(D) = {z :∑r
j=1 zj = m,zj ≥ 0}. According to Lemma 1, there exists x ∈ � such that z ∈

Conv(Cx). Apply Lemma 2, we get − log(m!) ≤ h ≤ bx(z). Now, choose x as sug-
gested by the proof of Lemma 1. If

∑r
j=1zj� ≤ m − 1, let x = (z1�, . . . , zr�),

then we have bx(z) = F(z). Otherwise,
∑r

j=1zj� = m, we have z ∈ Cx for every
possible choice of x, so bx(z) = t (z) = F(z) holds.

Conversely, we show that RHS ⊆ H̄ . If
∑r

j=1 zj = m and zj ≥ 0 for 1 ≤ j ≤ r ,
then z ∈ Conv(D) which implies z ∈ Conv(Cx) for some x by Lemma 1. We have
seen that F(z) = bx(z). Again, use Lemma 2, we get (z, h) ∈ H̄ .

Consequently,

H =
{
(z, h)

∣∣∣ − log(m!) < h < F(z), zj > 0,

r∑
j=1

zj = m

}
. (A.3)

Now, let z = (a1
c
, . . . , ar

c
), we have

F

(
a1

c
,
a2

c
, . . . ,

ar

c

)
= −

r∑
i=1

[(
ai

c
−

⌊
ai

c

⌋)
log

⌈
ai

c

⌉
+ log

⌊
ai

c

⌋
!
]
. (A.4)

By combining equation (A.1), (A.2), (A.3) and (A.4), we get Theorem 1. �

Proof of Theorem 2. Let hj (θθθ) =ψψψ · (j1,j2, . . . ,j r−1)+ νt (j), which is linear
in θθθ . Let Rj = {θθθ | sgn(c)hj (θθθ) is minimized over jεD}.

The Rj ’s are exhaustive and measurable. Let D∗ = {j |Rj (θθθ) �= ∅}. D∗ is not
empty.

Choose j∗εD∗. For θθθεRj∗ ,

sgn(c)
∑
jεD

exp
(
hj (θθθ)

) ≥ sgn(c)|D| exp
(
hj∗(θθθ)

)
,

so

sgn(c)M(θθθ) ≥ sgn(c)Khj∗(θθθ),

where K = log(|D|) > 0.
Hence,

∫
Rj∗ exp(ψψψ ·a+νb−cM(θθθ))g(θθθ) dθθθ ≤ ∫

exp(ψψψ ·a+νb−cKhj∗(θθθ)) ×
g(θθθ) dθθθ < ∞ because ψψψ · a + νb − cKhj∗(θθθ) is linear in θθθ and g has a finite
moment generating function. It follows that

∫
exp(ψψψ · a + νb − cM(θθθ))g(θθθ) dθθθ ≤∑

j∗εD∗
∫
Rj∗ exp(ψψψ · a + νb − cM(θθθ))g(θθθ) dθθθ < ∞. �
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