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Abstract: We derive expressions for sums of first, second, third and fourth powers of Fibonacci
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1 Introduction

The Fibonacci numbers Fn and Lucas numbers Ln satisfy the relations Fn = Fn−1 + Fn−2 and
Ln = Ln−1 + Ln−2, respectively, with initial conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1.
Their Binet forms equal

Fn =
αn − βn

α− β
, Ln = αn + βn, n ≥ 0, (1.1)

where α and β are roots of the quadratic equation x2 − x− 1 = 0.
The evaluation of sums of powers of these sequences is a challenging issue. Two pretty

examples are
n∑

k=1

F 2
k = FnFn+1,

∗Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do not
necessarily reflect the views of LBBW.
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and the cubic formulas derived by Clary and Hemenway [3]
n∑

k=1

F 3
2k =

{
1
4
F 2
nL

2
n+1Fn−1Ln+2 if n is even

1
4
L2
nF

2
n+1Ln−1Fn+2 if n is odd

and
n∑

k=1

F 3
4k =

1

8
F 2
2nF

2
2n+2(L4n+2 + 6).

These sums (alternating and/or non-alternating forms) are also studied by Melham [6], Kilic
et al. [5] and in two recently published articles by Adegoke [1, 2]. The results obtained, as
beautiful as they are, still leave some gaps, which we attempt to fill in this note. Building on a
new bottom-up approach, we derive closed-form expressions for sums of first, second, third and
fourth powers of Fibonacci and Lucas numbers. We consider both non-alternating and alternating
variants.

2 The key identity

Our results are based on the following telescoping identities:

Theorem 2.1. Let f(k) be a real sequence and m,n and j be positive integers. Then
n∑

k=1

[
f(m(k + j))− f(m(k − j))

]
=

n+j∑
k=n+1−j

f(mk)−
j∑

k=1−j

f(mk), (2.1)

and
n∑

k=1

(−1)k−1
[
f(m(k+ j))−f(m(k− j))

]
=

n+j∑
k=n+1−j

(−1)k+j−1f(mk)−
j∑

k=1−j

(−1)k+j−1f(mk).

(2.2)
Especially, for j = 1

n∑
k=1

[
f(m(k + 1))− f(m(k − 1))

]
= f(m(n+ 1)) + f(mn)− f(m)− f(0), (2.3)

and
n∑

k=1

(−1)k−1
[
f(m(k+1))−f(m(k−1))

]
= (−1)n+1f(m(n+1))+(−1)nf(mn)+f(m)−f(0).

(2.4)

Proof. We have
n∑

k=1

[
f(m(k + j))− f(m(k − j))

]
=

n+j∑
k=1+j

f(mk)−
n−j∑

k=1−j

f(mk)

=

n+j∑
k=1−j

f(mk)−
j∑

k=1−j

f(mk)−
[ n+j∑
k=1−j

f(mk)−
n+j∑

k=n−j+1

f(mk)
]

This proves the first identity. The second one is proved similarly.
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3 Applications to Fibonacci and Lucas sums

3.1 First-order sums

Proposition 3.1. Let m and n be any positive integers. Then

n∑
k=1

F2mk =
1

F2m

[
F 2
m(n+1) + F 2

mn

]
− Fm

Lm

, (3.1)

and
n∑

k=1

(−1)kF2mk =
(−1)n

F2m

[
F 2
m(n+1) − F 2

mn

]
− Fm

Lm

. (3.2)

Proof. We start with the following identity, that can be found in [4]: For all k and m

F2kF2m = F 2
k+m − F 2

k−m. (3.3)

Replacing k by km gives

F2mkF2m = F 2
m(k+1) − F 2

m(k−1). (3.4)

Set f(k) = F 2
k in Equation (2.3) to get

n∑
k=1

F2mk =
1

F2m

[
F 2
m(n+1) + F 2

mn − F 2
m

]
. (3.5)

The result follows from the the relation Lm = F2m/Fm.
The alternating sum is obtained in the same manner from Equation (2.4).

An alternative evaluation of the sum in (3.1) is obtained in the recently published preprint [2]
by Adegoke (Lemma 2.2):

n∑
k=1

F2mk =


FmnFm(n+1)/Fm if m is even
FmnLm(n+1)/Lm if m is odd and n is even
LmnFm(n+1)/Lm if m is odd and n is odd.

(3.6)

Concerning the evaluation of the alternating version the author could not find a reference in the
literature. A result of similar nature is stated in [5] (Corollary 1), where among others a formula
for
∑n

k=1(−1)kF(2m+1)k is derived.
The corresponding identities for Lucas numbers are given in the next Proposition:

Proposition 3.2. Let m and n be any positive integers. Then

n∑
k=1

L2mk =
1

F2m

[
F2m(n+1) + F2mn

]
− 1, (3.7)

and
n∑

k=1

(−1)kL2mk =
(−1)n

F2m

[
F2m(n+1) − F2mn

]
− 1. (3.8)
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Proof. Set f(k) = F2k+2m in Equation (2.3) and use

FvLu = Fu+v − (−1)vFu−v (3.9)

with v = 2m and u = 2m(k + 1) to get

F2mL2m(k+1) = F2m(k+2) − F2mk. (3.10)

This gives

F2m

n∑
k=1

L2m(k+1) = F2m(n+2) + F2m(n+1) − F4m − F2m. (3.11)

Since
n∑

k=1

L2m(k+1) =
n+1∑
k=1

L2mk − L2m,

the first part follows after replacing n+ 1 by n and using the relation Lm = F2m/Fm.
The alternating sum is obtained in the same manner from Equation (2.4).

The identities presented in Proposition 3.2 offer a way for a concise treatment of the first-
order Lucas sums. However, they can be modified to obtain more familiar versions known from
previous studies: If m is even, then we can use

LvFu = Fu+v + (−1)vFu−v (3.12)

with v = m and u = 2mn+m to get

LmFm(2n+1) = F2m(n+1) + F2mn. (3.13)

This results in
n∑

k=1

L2mk =
Fm(2n+1)

Fm

− 1 =
FmnLm(n+1)

Fm

. (3.14)

These formulas appear in Adegoke [1, Equation (2.4)] and Melham [6, Equation (5.3)]. If m
is odd, we can use the similar identity

FvLu = Fu+v − (−1)vFu−v (3.15)

with v = m and u = 2mn+m to get

FmLm(2n+1) = F2m(n+1) + F2mn. (3.16)

This gives
n∑

k=1

L2mk =
Lm(2n+1)

Lm

− 1, (3.17)

which appears in Adegoke [1, Equation (2.9)]. Melham [6, Equation (2.12)] states the relation as

n∑
k=1

L2mk =

{
5FmnFm(n+1)/Lm if m is odd and n is even
LmnLm(n+1)/Lm if m is odd and n is odd.

(3.18)
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The alternating sum identity (3.8) appears in the article of Kilic et al. [5]. Adegoke [1] and
Melham [6] state the identity in different versions: If m is odd, then

n∑
k=1

(−1)kL2mk = (−1)n
FmnLm(n+1)

Fm

, (3.19)

(Adegoke [1, Equation (2.5)] and Melham [6, Equation (5.1)]) and if m is even, then

n∑
k=1

(−1)kL2mk = (−1)n
Lm(2n+1)

Lm

− 1. (3.20)

3.2 Second-order sums

Proposition 3.3. Let m and n be any positive integers.
If m is even, then

n∑
k=1

F 2
mk =

1

5F2m

[
F2m(n+1) + F2mn

]
− 1 + 2n

5
. (3.21)

If m is odd, then
n∑

k=1

F 2
mk =

1

5F2m

[
F2m(n+1) + F2mn

]
+

(−1)n+1

5
. (3.22)

Also, if m is odd, then

n∑
k=1

(−1)kF 2
mk =

(−1)n

5F2m

[
F2m(n+1) − F2mn

]
− 1 + 2n

5
, (3.23)

and if m is even, then

n∑
k=1

(−1)kF 2
mk =

(−1)n

5F2m

[
F2m(n+1) − F2mn

]
+

(−1)n+1

5
. (3.24)

Proof. Replacing m by mk in the relation

5F 2
m = L2m + (−1)m+12, (3.25)

and summing from k = 1 to n gives

5
n∑

k=1

F 2
mk =

n∑
k=1

L2mk − 2
n∑

k=1

(−1)mk, (3.26)

and

5
n∑

k=1

(−1)kF 2
mk =

n∑
k=1

(−1)kL2mk − 2
n∑

k=1

(−1)(m+1)k. (3.27)

Now, both expressions follow essentially from Proposition 3.2 and the observation that

n∑
k=1

(−1)mk =

n if m is even

(−1 + (−1)n)/2 if m is odd.
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Proposition 3.4. Let m and n be any positive integers.
If m is even, then

n∑
k=1

L2
mk =

1

F2m

[
F2m(n+1) + F2mn

]
− 1 + 2n. (3.28)

If m is odd, then
n∑

k=1

L2
mk =

1

F2m

[
F2m(n+1) + F2mn

]
− 2 + (−1)n. (3.29)

Also, if m is odd, then

n∑
k=1

(−1)kL2
mk =

(−1)n

F2m

[
F2m(n+1) − F2mn

]
− 1 + 2n, (3.30)

and finally, if m is even, then

n∑
k=1

(−1)kL2
mk =

(−1)n

F2m

[
F2m(n+1) − F2mn

]
− 2 + (−1)n. (3.31)

Proof. Replacing m by mk in the relation

L2
m = 5F 2

m + (−1)m4, (3.32)

and summing from k = 1 to n gives

n∑
k=1

L2
mk = 5

n∑
k=1

F 2
mk + 4

n∑
k=1

(−1)mk, (3.33)

and
n∑

k=1

(−1)kL2
mk = 5

n∑
k=1

(−1)kF 2
mk + 4

n∑
k=1

(−1)(m+1)k, (3.34)

The statements follow from Proposition 3.3.

The first four special cases of the quadratic sums are

n∑
k=1

F 2
k =

1

5

[
F2n+2 + F2n + (−1)n+1

]
, (3.35)

n∑
k=1

(−1)kF 2
k =

(−1)n

5

[
F2n+2 − F2n

]
− 1 + 2n

5
, (3.36)

n∑
k=1

L2
k = F2n+2 + F2n − 2 + (−1)n, (3.37)

and
n∑

k=1

(−1)kL2
k = (−1)n

[
F2n+2 − F2n

]
− 1 + 2n. (3.38)
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3.3 Third-order sums

Proposition 3.5. Let m and n be any positive integers. Then

n∑
k=1

F 3
2mk =

1

5

[ 1

F6m

[
F 2
3m(n+1) + F 2

3mn

]
− F3m

L3m

]
− 3

5

[ 1

F2m

[
F 2
m(n+1) + F 2

mn

]
− Fm

Lm

]
. (3.39)

Similarly,

n∑
k=1

(−1)kF 3
2mk =

(−1)n

5F6m

[
F 2
3m(n+1)−F 2

3mn

]
− 3

5

(−1)n

F2m

[
F 2
m(n+1)−F 2

mn

]
− F3m

5L3m

+
3Fm

5Lm

. (3.40)

Proof. Replacing m by 2mk in the relation

5F 3
m = F3m − 3(−1)mFm, (3.41)

and summing from k = 1 to n gives

5
n∑

k=1

F 3
2mk =

n∑
k=1

F6mk − 3
n∑

k=1

F2mk, (3.42)

and

5
n∑

k=1

(−1)kF 3
2mk =

n∑
k=1

(−1)kF6mk − 3
n∑

k=1

(−1)kF2mk. (3.43)

Now, both results follow immediately from Proposition 3.1.

Proposition 3.6. Let m and n be any positive integers. Then

n∑
k=1

L3
2mk =

1

F6m

[
F6m(n+1) + F6mn

]
+

3

F2m

[
F2m(n+1) + F2mn

]
− 4. (3.44)

Similarly,

n∑
k=1

(−1)kL3
2mk =

(−1)n

F6m

[
F6m(n+1) − F6mn

]
+

3(−1)n

F2m

[
F2m(n+1) − F2mn

]
− 4. (3.45)

Proof. The proof follows from the identity

L3
m = L3m + 3(−1)mLm, (3.46)

and Proposition 3.2.

Our results for the non-alternating cubic sums for Fn and/or Ln must be seen as variants of
the remarkable product evaluations of Adegoke [2] and Clary and Hemenway [3]. In contrast, the
evaluations of the alternating counterparts seem to be new. The author could not find a reference
for these sums.

Form = 1 we get the following identities as explicit examples of the results from this section:

n∑
k=1

F 3
2k =

1

40

[
F 2
3n+3 + F 2

3n

]
− 3

5

[
F 2
n+1 + F 2

n

]
+

1

2
, (3.47)
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n∑
k=1

(−1)kF 3
2k =

(−1)n

40

[
F 2
3n+3 − F 2

3n

]
− 3(−1)n

5

[
F 2
n+1 − F 2

n

]
+

1

2
, (3.48)

n∑
k=1

L3
2k =

1

8

[
F6n+6 + F6n

]
+ 3
[
F2n+2 + F2n

]
− 4, (3.49)

and
n∑

k=1

(−1)kL3
2k =

(−1)n

8

[
F6n+6 − F6n

]
+ 3(−1)n

[
F2n+2 − F2n

]
− 4. (3.50)

3.4 Fourth-order sums

The results of this section represent alternative expressions to the product identities of Melham
[6] and Adegoke [1]. Instead of choosing a compact form, we write them as separate sums.

Proposition 3.7. Let m and n be any positive integers. Then

25
n∑

k=1

F 4
mk =

F4m

[
F4m(n+1) + F4mn

]
− 4

F2m

[
F2m(n+1) + F2mn

]
+ 3 + 6n if m is even

1
F4m

[
F4m(n+1) + F4mn

]
− 4(−1)n

F2m

[
F2m(n+1) − F2mn

]
+ 3 + 6n if m is odd.

(3.51)
Also, if m is even, then

25
n∑

k=1

(−1)kF 4
mk =

 1
F4m

[
F4m(n+1) − F4mn

]
− 4

F2m

[
F2m(n+1) − F2mn

]
+ 3 if n is even

−1
F4m

[
F4m(n+1) − F4mn

]
+ 4

F2m

[
F2m(n+1) − F2mn

]
− 3 if n is odd.

(3.52)
Finally, if m is odd, then

25
n∑

k=1

(−1)kF 4
mk =

 1
F4m

[
F4m(n+1) − F4mn

]
− 4

F2m

[
F2m(n+1) + F2mn

]
+ 3 if n is even

−1
F4m

[
F4m(n+1) − F4mn

]
− 4

F2m

[
F2m(n+1) + F2mn

]
− 3 if n is odd.

(3.53)

Proof. Squaring the identity
5F 2

m = L2m − (−1)m2, (3.54)

replacing m by mk and summing from k = 1 to n gives

25
n∑

k=1

F 4
mk =


∑n

k=1 L
2
2mk − 4

∑n
k=1 L2mk + 4n if m is even

∑n
k=1 L

2
2mk − 4

∑n
k=1(−1)kL2mk + 4n if m is odd.

(3.55)

The first formula follows from Propositions 3.4 and 3.2.
To establish the alternating versions, we first observe that

25
n∑

k=1

(−1)kF 4
mk =


∑n

k=1(−1)kL2
2mk − 4

∑n
k=1 L2mk + 4

∑n
k=1(−1)k if m is odd∑n

k=1(−1)kL2
2mk − 4

∑n
k=1(−1)kL2mk + 4

∑n
k=1(−1)k if m is even.

(3.56)
The last sums equal 0 or −1 depending on the parity of n. This leads to four different (m,n)-

combinations. The final results follow again from Propositions 3.4 and 3.2.
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Proposition 3.8. Let m and n be any positive integers. Then

n∑
k=1

L4
mk =

 1
F4m

[
F4m(n+1) + F4mn

]
+ 4

F2m

[
F2m(n+1) + F2mn

]
− 5 + 6n if m is even

1
F4m

[
F4m(n+1) + F4mn

]
+ 4(−1)n

F2m

[
F2m(n+1) − F2mn

]
− 5 + 6n if m is odd.

(3.57)
Also, if m is even, then

n∑
k=1

(−1)kL4
mk =

 1
F4m

[
F4m(n+1) − F4mn

]
+ 4

F2m

[
F2m(n+1) − F2mn

]
− 5 if n is even

−1
F4m

[
F4m(n+1) − F4mn

]
− 4

F2m

[
F2m(n+1) − F2mn

]
− 11 if n is odd.

(3.58)
Finally, if m is odd, then

n∑
k=1

(−1)kL4
mk =

 1
F4m

[
F4m(n+1) − F4mn

]
+ 4

F2m

[
F2m(n+1) + F2mn

]
− 5 if n is even

−1
F4m

[
F4m(n+1) − F4mn

]
+ 4

F2m

[
F2m(n+1) + F2mn

]
− 11 if n is odd.

(3.59)

Proof. Squaring the identity
L2
m = L2m + (−1)m2, (3.60)

replacing m by mk and summing from k = 1 to n gives

n∑
k=1

L4
mk =


∑n

k=1 L
2
2mk + 4

∑n
k=1 L2mk + 4n if m is even

∑n
k=1 L

2
2mk + 4

∑n
k=1(−1)kL2mk + 4n if m is odd.

(3.61)

and

n∑
k=1

(−1)kL4
mk =


∑n

k=1(−1)kL2
2mk + 4

∑n
k=1 L2mk + 4

∑n
k=1(−1)k if m is odd

∑n
k=1(−1)kL2

2mk + 4
∑n

k=1(−1)kL2mk + 4
∑n

k=1(−1)k if m is even.
(3.62)

The identities follow again from Propositions 3.4 and 3.2.

We conclude with four explicit examples:

25
n∑

k=1

F 4
k =

1

3

[
F4n+4 + F4n

]
− 4(−1)n

[
F2n+2 − F2n

]
+ 3 + 6n, (3.63)

25
n∑

k=1

(−1)kF 4
k =

{
1
3

[
F4n+4 − F4n

]
− 4
[
F2n+2 + F2n

]
+ 3 if n is even

−1
3

[
F4n+4 − F4n

]
− 4
[
F2n+2 + F2n

]
− 3 if n is odd,

(3.64)

n∑
k=1

L4
k =

1

3

[
F4n+4 + F4n

]
+ 4(−1)n

[
F2n+2 − F2n

]
− 5 + 6n, (3.65)

and
n∑

k=1

(−1)kL4
k =

{
1
3

[
F4n+4 − F4n

]
+ 4
[
F2n+2 + F2n

]
− 5 if n is even

−1
3

[
F4n+4 − F4n

]
+ 4
[
F2n+2 + F2n

]
− 11 if n is odd.

(3.66)
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