
Sums of Powers of Integers 

A. F. Beardon 

1. INTRODUCTION. Our starting point is the well-known identity 

13 + 23 + +n3 = (1 + 2 + +n)2. (1.1) 

Sums of the form 

cJk(n) = lk + 2k + *k +nk 

have been studied for hundreds of years and even now there is still a steady stream 
of notes published on the subject, many of which can be found by browsing 
through back issues of the Monthly and the Mathematical Gazette. Most of these 
articles are concerned with generalizing (1.1), now written as 

3 = 1 S 

either by expressing a power of cr1 as a linear combination of powers of other cri, 
for example, 

1 3 1 5 5 
(J13 = 4ff3 + 4CsS 1 = 16cr5 + 8cr7 + 16cr9, (1.2) 

or with identities involving (Jk and binomial coefficients, for example, 

2(n) = 2( 3 ) + ( 2 ) 5(n) = (n 2 1) + 30(n 4 2) + 120(n 6 3) 

or with showing that cr3m = col2t is the only identity of the form 
CJil . . . CJir il is 

For some of the history of the subject, and for a selection of these articles, we 
mention [1], [3], [5], [7], [9], [11], [12], [13] and [16], and especially [6], [8] and [10]. 

Here, we shall take a quite different approach and generalise (1.1) to the extent 
that we describe all polynomial relations that exist between any two of the 'Ji As (1.1) 
simply asserts that the points ((Jl(n) (J3(n)) n = 1,2,. . ., lie on the parabola 
y = x2, we are led naturally to (elementary) methods of algebraic geometry. The 
set of points (x, y) satisfying T(x, y) = 0, where T is a polynomial in two real 
variables, is a plane algebraic curve so that, writing 

Xej = J((ni(n), cnj(n)): n = 1, 2, . . . }, (1.3) 

the problem is to find all plane algebraic curves that contain the set lLij. 
It is well known that 

n(n + 1) n(n + 1)(2n + 1) n2(n + 1)2 
'71= 2 (J2= 6 S CZ3= 4 , 

and (by eliminating n from these) it is easy to find a polynomial relation between 
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crl and cr2, and between cr2 and cr3; these relations are 

T(crl, cr2) = 0, T(x, y) = 8x3 + x2 _ 9y2 (1.4) 

and 

T(cr2, cr3) = 0, T(x,y) = 81x4 - 18x2y +y2 _ 64y3 (1.5) 

respectively. Other, less obvious, relations are 

T( cr3, cr^) = 0, T(x, y) = 16x3 - x2 - 6.x>} _ 9y2 (1.6) 

and 

T(cr2, cr4) = 0, T(x, y) = 972xS _ 7x3 - 9Ox2y _ 375Ay2 _ 500y3. (1.7) 

The technique of eliminating a parameter enables us to prove much more than 
this, and we show 

(1) for each pair of integers i and j with 1 < i < j, there is a unique irreducible 
polynomial Tij in two variables, with integer coefficients, such that Tij(cri, crj) = 0. 
By considering rings and ideals of polynomials, we can also show 

(2) Tij is the primitive relation between cri and Crj in the sense that all other 
relations between these are trivial consequences of this one, and 

(3) there is a (finite) algorithm for constructing any particular Tij. 
We remark in passing that we shall also see that there is no such result for 
polynomial relations among three or more of the (Jk 

To illustrate the results just described, consider the sums cr1 and Cr3, and 
suppose that T is a real polynomial in two variables such that, for each 
n, T(ff1(n), 3(n)) = O. As the polynomial T(t, t2) vanishes when t = n(n + 1)/2, 
n = 1, 2, . . ., it is identically zero and so T(x, y) vanishes on the parabola y = x2. 
One can show that this forces T to have a factor y - x2, whence any relation 
T(CJ1, CJ3) = O iS a trivial consequence of the primitive relation cr3 = CJ12. 

This paper is written to be available to as wide a readership as possible. Some 
historical references are given (our earliest source dates back to 1615), but no 
attempt has been made to identify the original sources. 

2. THE COEFFICIENTS OF (Jk It is a fundamental fact that cok(n) is a polyno- 
mial in n of degree k + 1 and it is worthwhile to review Pascal's elementary proof 
of this (given in 1654). It is simply that 

(n + l)k+l-1 = E [(m + lik+l _ mk+l] 
m=l 

= E E ( )mr 

m=l r=O 

, ( k + 1 ) (n) 

from which it follows (by induction) that cok(n) is a polynomial in n of degree 
k + 1. This means that we can now legitimately consider (Jk(Z) as a polynomial in a 
complex variable z and we shall soon see that (Jk(°) = ° 

The Bernoulli numbers B,l, n 2 O, first appeared in the posthumous work Ars 
Conjectandi by Jakob Bernoulli in 1713, although they were known by Faulhaber 
much earlier than. this (see [6] and Chapter 10 in [8]). They were introduced in 
order to provide an explicit formula for the coefficients of the polynomial (Jks and 
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are defined inductively by the recurrence relation 

J-o ( J ) (2 1) 

([14], p. 229); we then have 

k + 1 J_0 ( J ) j (2.2) 

([14], p. 234). 
A calculation using (2.1) shows that 

1 1 1 
Bo= 1, B1 = -2 B2= 6 B3=O, B4=-30, Bs=° 

(in fact, B3 = Bs = B7 = *S = O), so that, if k 2 3, then 

lk + 2k + *-@ +(n _ lik = n _ n + kn + o(nk 3) 

where here, O(nt) denotes a polynomial of degree at most t. Adding nk to both 
sides, we obtain 

nk + 1 nk knk - 1 

k + 1 2 + 12 + °(nk 3); (2.3) 

note that there is no term in nk 2 (a consequence of B3 = 0); this will be used later. 
Of course, (2.2) shows that, for any complex number z, 

(Jk(Z) k + 1 E ( y )Bj(z + 1) 

which, with (2.1), yields 

(Jk (°) = ° * (2 .4) 

As an application of this, suppose that T(cri, Crj) = O is any polynomial relation 
between cri and cr;. Then, from (2.4), 

O = Tt cri(0), crj(0)) = T(0, 0); 

thus the constant term in T is zero. Also, by putting n = 1, we see that the sum of 
the coefficients of T is zero (this is a useful check on our arithmetic). 

3. FAULHABER POLYNOMLiLS. It is well known that cok(n) is a polynomial in 
n of degree k + 1, but it is less well known that, when k is odd, (Jk iS a polynomial 
in cr1 of degree 2(k + 1). The simplest case of this is CJ3 = CJ12, and the next two 
cases are 

Crs = cr1 (4cr1-1)/3, CJ7 = CJ12(6CJl2-4cr1 + 1)/3 (3.1) 

(proofs of these are given below). As these two formulae suggest, when k is odd, 
col2 divides Sk. If k is even, then cok(n) is of odd degree in n and so cannot be a 
polynomial in cr1; however, in this case, CJ2 divides (Jks and the quotient is a 
polynomial in cr1. These results were known to Faulhaber and have been rediscov- 
ered many times since; even so, for the sake of completeness we give a formal 
statement and proof. 
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Theorem3.1. (i) Fork= 3,5,... there existsa polynomialFk, of degree 2(k + 1) 
and with a double zero at the origin, such that (Jk = Fk(col ). 

(ii) For k = 2, 4, . . . there exists a polynomial Fk, of degree 2(k - 2), such that 
¢k 2 Fk( 1 ) 

Proof: This is easy. Following the idea in Pascal's proof (namely, telescoping sums), 
we have 

, ( m(m + 1) )k ( (m - 1)m )k 

E E ( k ) ( m )k [ k-r ] 

2k r O(r) k+r(n)[1 - (-1) ] (3.2) 

Now (3.2) holds for all k, but assume now that k is odd. Then the only terms in 
this sum that make a non-zero contribution are those with r even, and this show 
that colk is a linear combination of cr1, cr3,..., 2k-1 As Cr3 = col2, this provides 
the basis of a proof of (i) by induction; we omit the details. 

We can prove (ii) in a similar way, so suppose now that k is even, and note that 

m-l ( 2 ) ( 2 ) 

E , (r)( 2 ) m [(2m + 1) - (2m - 1)(-1) ] 

2k E (r)(2(k+r+1(n)[l + ( 1) ] 

+ ¢k+r [1 + ( 1) ] ) (3.3) 
In the sum on the right, only the terms crq, with q even, survive, so that 
(2n + l)col(n)k is a linear combination Of 2 cr4,..., 2k. Again, this provides the 
basis of a proof of (ii) by induction. 

Notice that taking k to be 3, and then 5, in (3.2), we obtain the two identities in 
(1.2). Next, eliminating Cr3 from (1.1) and (1.2), we obtain the first identity in (3.1). 
Finally, taking k = 4 in (3.2) gives 

1 1 
cr14 = 2 so5 + 2 so7 

and eliminating Cr5 from this and the first identity in (3.1), we obtain the second 
identity in (3.1). 

The first few of the polynomials Fk in Theorem 3.1 are 

F3(t) = t2, 

F4(t) = (6t-1)/5, 

F5(t) = t2(4t-1)/3 

F6(t) = (12t2-6t + 1)/7 

F7(t) = t2(6t2-4t + 1)/3. 
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The formulae for F3, F5 and F7 are restatements of (1.1) and (3.1); the formulae 
for F4 and F6 are obtained by putting k = 2 and k = 3 in (3.3). Theorem 3.1 was 
known to Faulhaber in 1615, and it is suggested in [6] that the polynomials F 
(strictly, a mild variant of these) are called the Faulhaber polynomials. For more 
details, see [6], [7] and [8] but, briefly, these ideas date back to Johann Faulhaber 
(1631). Later contributions were made by Fermat (1636), Pascal (1654), Bernoulli 
(1713), Euler (1755) and Jacobi (1834). 

Because of the polynomial relation (1.4) between cr1 and cr22, Theorem 3.1 has 
the following corollary. 

Corollary 3.2. (i) If k is odd, (Jk is a polynomial in Cn1; 
(ii) if k is euen, CJk2 is a polynomial in Cn1. 

The apparent lack of symmetry between the cases k odd and k even can be 
overcome by the substitution y = x + 1/2. Then 

y2_ 1/4 y(y2_ 1/4) 
sol(X)= 2 cr2(x)= 

and, more generally, we see from Theorem 3.1 that 

(1) if k is odd then cok(x) is an even function of x + 1/2; 
(2) if k is even then cok(x) is an odd function of x + 1/2. 

Although we will have no use for the following formulae, we end this section by 
recording that the Fk can be defined by generating functions (see [9]): 

cosh[(x/2)21 + 8t] -cosh(x/2) °° x2r+ 
2 sinh( x/2) = E F2r+ 1 ( t ) (2r + 1) ! 

and 

sinh[(x/2)ll + 8t] 1 1 °° x2r 

221+8tsinh(x/2) 2 + 3 E tF2r(t)(2r)! E 

4. THE EXISTENCE OF RELATIONS. Some algebraic curves are given paramet- 
rically by, say, x =f(t) and y = g(t), where f and g are polynomials, and the 
technique of eliminating t to obtain the polynomial relation between x and y is 
sometimes referred to as the theory of elimination (see, for example, [2] pp. 
179-181 and [4], Chapter 3). As each cok(n) is a polynomial in n, we can apply this 
theory to obtain a polynomial relation between any two of the cri. Indeed, this was 
the way we produced the relations (1.4) and (1.5) between cr1 and CJ2, and 
between CJ2 and CJ3. The relation (1.6) between CJ3 and CJ5 can be obtained by 
eliminating not n but cr1. According to Theorem 3.1 and the explicit expressions 
for the Fk, we have 

CJ5 4cr1-1 

CJ3 3 

whence 

16CJ3 = (4CZ1)2 = ( 3 5 3 ) 

which yields (1.6). Likewise, the relation (1.7) can be found directly by eliminating 
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col from the identities 

(J4 { 6cr1-1 2 Cr12(8CZ1 + 1) 

(J2 t 5 , Cr2= 9 

To obtain a general result, we need a general theory and it is this that we now 
describe. Suppose that the two polynomials 

f(x) = aOxZl + *Z +a,l_lx + a,l, g(x) = boXm + *m +bm_lx + bm 
have a common zero, say xO. Then each of the equations 

f(x) = vg^(x) = *r = xm-1f(x) = O = g(x) = xg(x) = *m = x g(x) 
is of the form p(x) = O, where p is a polynomial of degree (at most) m + n - 1, 
and, as each of these equations is satisfied when x = xO, the determinant of the 
coefficients must vanish. This (m + n) X (m + n) determinant is the resultant 
R(f,g) of f and g and, explicitly, 

aO *S *S a, 
* . 

* Z 

* 

R(fSg)= bo *S *S b ' 
* . 

bo *S * S bm 

where the omitted elements are zero, and the diagonal of R(f,g) contains m 
occurrences of aO and n of bm. For more details, see, for example, [2], [4] and [15], 
pp. 83-88. For emphasis, we repeat that the existence of a common zero of f and 
g implies that Rf f, g) = O. 

Let us now illustrate this use of the resultant by verifying the relation (1.4) 
between cr1 and (J2 As 

2(71(n) = n2 + n, 6(72(n) = n(n + 1)(2n + 1) = 2n3 + 3n2 + n, 
the polynomials 

f(t) = t2 + t-2cn1(n), g(t) = 2t3 + 3t2 + t-6cr2(n) 

have a common zero, namely, t = n. We deduce that, for each n, 

1 1 -2col(n) 0 0 

O 1 1 -2col(n) 0 

O O 1 1 -2crl(n) =0 

2 3 1 - 6cr2( n) O 
0 2 3 1 - 6cr2(n) 

and this simplifies to give (1.4). 
A similar argument holds for any pair cri and CJj so there is at least one 

non-trivial polynomial P with P(cri, Crj) = O. Pascal's argument shows that the 
coefficients of n in the polynomial (Jk are rational numbers; hence, after clearing 
denominators, we may assume that the coefficients of P are integers. Even more is 
true, for this argument shows that P is of degree j + 1 in cri and i + 1 in CJj, and 
(by considering the expansion of the determinant) we even see that the term 
involving crij+l is independent of CJj, and likewise with i and j interchanged; for 
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example, the determinant above is of the form 

lo 2l(-2°"l)3 +@@@ + O I I (-6C2)2 

We have now proved the following result. 

Proposition 4.1. Given integers i and j with 1 < i < j, there is a polynomial P(x, y), 
with integer coefficients and zero constant term, and of degree j + 1 in x and i + 1 in y 
with the leading terms in x and y having constant coefficients, such that P(ai, cj) = O. 

This is not the end of the story, however. If we use this method in the case i = 3 
and j = 5, we obtain a polynomial P(x, y), of degree 6 in 3 and 4 in cr5, such 
that P(ff3, 5) = O. It is tiresome (but instructive) to find this polynomial P 
explicitly, but in any event it is more complicated than the known relation (1.6) 
between 3 and cr5 of lower degree. Clearly, the resultant obtained by eliminating 
n from the expressions cr3(n) and 5(n) gives rise to a 10 x 10 determinant. If, on 
the other hand, we write 3 and cr5 as polynomials in cr1, and then eliminate cr1, 
we obtain a 5 x 5 determinant which, after simplification, yields (1.6). The same 
reasoning applies to any pair cri and aj, where i and j are both odd integers, so 
that, in this case, it is better to eliminate cr1 rather than n. 

Now suppose that i and j are both even. We can write cri2 and aj2 as 
polynomials in cr1 and then use the resultant to obtain a relation between cri2 and 
aj2 expressed as an (i + j + 2) x (i + j + 2) determinant which will be of degree 
2(j + 1) in cri and 2(i + 1) in cr;. If, on the other hand, we eliminate n between 
the ewressions for cri and Crj in terms of n, we obtain a determinant of the same 
size but with entries involving cri and aj (instead of cri2 and aj2). To illustrate 
this., observe that, using (2.2), 

2n3 + 3n2 + n 6nS + 15n4 + 10n3-n 
a2 = 6 S cr4 = 

whereas, using F4 and (1.4), 

2 8 Cr13 + (r12 2 ( 8 Cr13 + (r12 ) ( 6 'J1-1 ) 2 

In the case when i and j are both even, then, it is clearly better to eliminate the 
variable n rather than cr1. We leave the reader to consider the case when i and j 
have opposite parity. 

*. 

5. LUROTH'S THEOREM AND THE RESULTANT. Consider again the case 
when i and j are odd integers. We can either use the resultant to eliminate n 
and so obtain a relation R(ai, cj) = O between vi and cj, or we can express both 
as a function of cr1 and then use the resultant to eliminate cr1 and so obtain a 
second relation R*(ai, cj) = O between vi and cj. In this section we shall describe 
the precise relationship between the two relations R(ai, aj) and R*(cri, Crj). The 
material in this section is related to Luroth's Theorem ([15], pp. 198-200). The 
interested reader can consult [15] for a precise statement of this, but it is not 
necessary for it suffices to give the geometric interpretation described in [15]. 
Suppose that an algebraic curve is parametrised by x = f(t) and y = g(t), where f 
and g are polynomials. If each point of the curve corresponds to, say, d values of 
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t, then Luroth's Theorem guarantees that there is a polynomial + of degree d, and 
polynomials t1 and g1, such that 

x = f(t) = fif +(t)), y = g(t) = gl( (t)(t)); (5.1) 

it follows that we can take s = +(t) as a new variable and parametrise the curve by 
the polynomials x = t1(s), y = g1(s) of lower degree. In these circumstances, 
we can find the equation of the algebraic curve either by eliminating t, or by 
eliminating s. The two equations (arising from the resultants) are denoted 
by R(f, g) and R(t1, g1), respectively, and the relation between these is given in 
the following result. 

Theorem 5.1. In the above notation, R(f, g) = cR(fi, gl)d for some constant c. 

In our earlier discussion, we have expressed vi both as a polynomial in n and as 
a polynomial in cr1, and the above discussion applies with d = 2 and 

st)(t) = ¢l(t) = t(t + 1)/2. 

We deduce that if i and j are odd integers, the resultant obtained by elimina- 
ting n is simply a scalar multiple of the square of the resultant obtained by 
eliminating crlb 

The proof of Theorem 5.1. We shall work with complex numbers (so that all 
polynomials factorise into linear factors). Suppose first that f and g are any 
complex polynomials, say 

f(z) =a(z -Z1) *b(Z zZl) g(Z) = b(z - w1) (z - wm). 

As each coefficient of f is the product of a with a symmetric function of the roots 
z;, and similarly for g, the resultant R(f, g) is of the form amb'lP(zl,. . ., zslS 
w1, . . ., wm) for some polynomial P. Thinking of the roots zi and Wj as variables, 
we note that if zi - wj = O, then f and g have a common root and so R(f, g) = O. 
Continuing this line of argument (the details can be found in [15], p. 86), we find 
that 

R(f, g)-amb'l [l (Zi-wj). 
i , J 

We shall now apply these ideas to prove Theorem 5.1. 

Let f, g, t1, g1 and + now be the polynomials in (5.1) and suppose that these 
have degrees nd, md, n, m and d, respectively. We denote the zeros of t1 by 
cx1, . . ., clS and the solutions of +(z) = ogj by xlj, . . ., Xdj; then the zeros of f are 
precisely the numbers xij, where i-1,.. . ,d and j = 1,.. .,n. Likewise, we 
denote the zeros of gl by BlSSl3mS and the solutions of +(z)=,l35 by 
YlsS . . . S Yds; then the zeros of g are the numbers Yrs. Finally, we use A1, A2, A3, A4 
to denote constants (which we do not bother to evaluate). 

According to the first paragraph in the proof, 

R(tSg) =A1 11 (xej-Yrs) R(fi gl) =X2rl((j-p5). 
i,j,r,s i,s 

However, we also have 

+(z)-/35 = A3(z-Yls) *Z (Z-Yds) = A3 rl (Z-Yrs) 
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so that, for each i, 1 < i < d, 

aj-8s = +(Xij) -,85 = A3 rI (xij-Yrs) j 

This holds for each i so, taking the product of both sides over i = 1, . . ., d, we 
obtain 

(cY; - /3s) =A3Il(xii Yrs) 
i, r 

from which the result follows immediately. 

6. IDEALS OF POLYNOMIALS. In this section we characterise, for a given pair i 
and j satisfying 1 < i < j, the totality of polynomials T with integer coefficients for 
which T(cri, cr;) = 0. To achieve this we borrow an idea from algebraic geometry 
and study the family of polynomials that vanish on a given set; for more details, we 
recommend [4]. We denote the integers by Z, and the class (or ring) of polynomials 
with integer coefficients and in the two variables x and y by Z[x, y]. The key fact 
that we need about Z[x, y] is that it is a unique factorisation domain; this means 
that any polynomial in Z[x,y] may be factored into a product of irreducible 
polynomials, and that up to order and factors of -1, this factorisation is unique 
(see [2], pp. 172-176). 

Our declared aim is to study the family 

r = {T E Z[x, y]: T(i, ¢j)-0}, (6.1) 

which we prefer to write as 

r - {T E Z[x, y]: T - 0 on Sij}, 

where Eij is given in (1.3) as the set of points {(cri(n), crj(n)) E R2: n = 1, 2, . . . }. 
For the moment, let E be any non-empty subset of 2, and define 

>(E)-{T E Z[x, y]: T = 0 on E}. 
The set 5(E) is known in ring theory as an ideal, for it is closed under addition 
and the product T1T2 is in >(E) whenever one of the Ti is. We want to investigate 
circumstances under which >(E) consists of all polynomial multiples of a single 
polynomial To(x, y) (then >(E) is said to be the principal ideal generated by To) 
In general, this will not be so; it is not when, for example, E is the intersection of 
the two co-ordinate axes. However, we do have the following result. 

Lsemma 6.1. Let f and g be non-constant polynomials with rational coefficients in one 
real variable, and let E = {(f(n), g(n)): n = 1, 2, . . . }. Then >(E) is generated by a 
non-trivial irreducible polynomial in Z[x, y]. 

Proof: We have already seen that there is a polynomial P in two variables such 
that for all integers n, P(f(n), g(n)) = O. This P can be obtained from the 
resultant of f and g (as in the proof of Proposition 4.1) so that if f and g have 
rational coefficients P may be taken to have integer coefficients. We claim that we 
may also assume that P is irreducible, for suppose that P = P1 . . . Pl, where the P 
are the irreducible factors of P. Then there must be (at least) one factor Pj such 
that the polynomial Pj(f(n), g(n)) vanishes for infinitely many integer values of n. 
It follows that the polynomial Pj(f(x),g(x)) has infinitely many zeros and so 
vanishes for all x, and hence for all integers n. In conclusion, there is a irreducible 
polynomial P in Z[x, y] such that P(f, g) - O. 
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We shall now show that P divides any polynomial T in Z[x,y] for which 
T(f, g) = O. First, we express P and T as polynomials in y (whose coefficients are 
polynomials in x) and we then compute the resultant of P and T by eliminating 
the variable y. The resultant is a polynomial R(x), and it is known that there are 
polynomials A and B in Z[x, y] such that 

A(x, y)P(x, y) + B(x, y)T(x, y) = R(x), 
where (as polynomials in y) deg(B) < deg(P) and deg(A) < deg(T) (see [2], 
Proposition 4.2.4, p. 179, and p. 192). As P(f(n), g(n)) and T(f(n), g(n)) vanish 
for each integer n, we see that R(n) = O for each integer n. It follows that R is 
the zero polynomial, and hence P(x,y) divides B(x,y)T(x,y). As P is irre- 
ducible, it divides B or T, and as deg(B) < deg(P), it cannot divide B. It follows 
that P divides T, and that >(E) is the principal ideal generated by P. 

The discussion to date yields our main result which follows. 

Theorem 6.2. Let i and j be integers with 1 < i < j. Then there is a non-constant 
irreducible polynomial Tij in Z[x, y] such that Tij(ai, ¢j) = O. Further, Tij divides P 
for any P in Z[x, y] for which P(ai, ¢j) = O. 

Of course, this result says that any polynomial relation between cri and cr; is a 
trivial consequence of the relation Tij(cri, cr;) = O; for example, Tl3(x, y) = y _ x2 
and so if P(crl, Cr3) = O, then P contains a factor y - x2 and so the relation holds 
because of the existence of this factor. If P is any non-constant irreducible 
polynomial in Z[x, y], and if P(cri, cr;) = O, then P = +Tij and this observation 
enable us to identiibr Tij in certain cases. For example, to show that 

T23(X, y) = 81X4-18x2y + y2-64y3, T35(X, y) = 16X3-X2-6ty _ 9y2 

we have, because of (1.5) and (1.6), only to prove that these polynomials are 
irreducible over Z and this can easily be done by assuming the contrary and 
reaching a contradiction. Finally, Faulhaber's observations mean that, for odd k, 
Tlk(X, y) iS an integer multiple of y - Fk(x), whereas for even k, Tlk(X, y) is an 
integer multiple of y2 _ x2(8x + l)Fk(x)2. 

Using the resultant we can eliminate n from cri(n) and crj(n) (in a finite number 
of steps) and obtain an explicit polynomial P in Z[x, y] for which P(cri, cr;) = O. 
This P must contain Tij as a factor, and since the factorisation of P (over Z) can 
also be carried out in a finite number of steps (see [15], p. 77), it follows that each 
Tij is computable in a finite number of steps. There are, of course, other ways of 
finding the Tij, for example, by using the Groebner basis method described in [4]. 
In the (few) examples I have tried with i and j odd, the polynomial relation 
between cri and cr; obtained by eliminating cr1 is irreducible over Z, and hence is 
Tij. I have been unable to prove that this is true for all odd i and j, but if it were to 
be true, it would provide a beautiful relationship between the ideal of polynomials 
annihilating (cri, cr;) and Faulhaber's contribution 350 years ago. 

7. SEPARABILITY. There is one feature of the relations between the cri that we 
have not yet commented on. We say that the relation Tij(cri, cr;) = O, where 
1 < i < j, is separable if it can be expressed in the form 

P( Cri) = Q( Crj), (7.1) 

where P and Q are polynomials in one variable. Faulhaber's results show that 
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every Tij with i= 1 is separable, and all the examples we have of Tij with 
2 < i < j are not separable. This suggests that Tij is separable if and only if i = 1 
and we shall now show that this is so. This means, of course, that the only cases in 
which Tij is separable are those found by Faulhaber in the seventeenth century. 

Theorem 7.1. The relation Tij(ai, ¢j) = O is separable if and only if i = 1. 

Proof: We assume that (7.1) holds with 2 < i < j and we seek a contradiction. We 
write 

P(x) = AJcr + O(xr-l ) S Q(x) = BXS + O(XS-1 ) (7.2) 
where AB + 0, and, by comparing degrees of the two polynomials in (7.1), we have 

(i + 1)r = (j + 1)s = N, (7.3) 

say. Observe that as j > 3, we have N 2 4. 
Now Q(ff;) is a polynomial of degree N in the variable n and, as 

(j+ 1)(s - 1) =N- (1 +j) <N- 4, 
we have, from (2.3) and (7.2), 

- < nj+l ni jnj-l \ -s 

j + 1 + 2 + 12 + °(ni-3) + O(nN 4) 

! nj+l ni jnj-l \ S 

ij+1 2 + 12 +O(nN-4) 

because (j + 1)(s - 1) + (j - 3) = N-4. The same holds for P(cri); thus 

I ni+l ni ini-l t ni+l ni jnj-l \ s 

t i + 1 2 12 < j + 1 2 12 , ( ) 

Using (7.3), and equating the coefficients of xN, we obtain 

A B 
r = s S 

and this leads to 

(ni+1 + ( 2 ) + ( 12) ) 

( j+1 (j + 1)nj j(y + 1)nj_l ) N-4 

Working now to an error term of order nN-3, and using (7.3), this simplifies to 

24n + 12Nn 1 + 2iNnN 2 + 3N( N- i - 1) nN-2 

= 24nN + 12NnN 1 + 2 jNnN 2 + 3N( N-j- l ) nN 2 . 

As this implies that i = j (contrary to our assumption) Theorem 7.1 is proved. 

8. CONCLUDING REMARKS. The reader may have noticed that much of the 
above discussion does not depend on the particular nature of the polynomials 
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crk(n) as sums of powers of integers. Indeed, if 

f(X) = aO + alx + ** +aZZx, g(x) = bo + b1x + *1 +bmxm, 

are any real polynomials, then the polynomials 

F(t) = [aO - f(y)] + alt + *v +aztt'l, G(t) = [bo - g(y)] + blt + *** +bm 

have a common zero, namely t = y, and so R(F, G) = O. This means, of course, 
that there is some polynomial T(x, y) such that T(f, g) = O. 

It is amusing to apply these ideas to the Tchebychev polynomials T,l, which are 
defined by 

T,l(cos 0) = cos(n0). 

As 

T,(Tm(cos 0)) = cos(mn0) = Tm(T,I(cos 0)), 

we see that T,a(Tm(t)) = Tm(T,I(t)) for all t; thus the polynomial relation connecting 
Tm and 1;1 is 

T(Tm, T,l ) = O, T(x, y) = Tel(x)-Tm(y) @ 

In this case, then, all of the primitive relations are separable. 
As a final example, consider the Legendre polynomials +Z1 defined by 0(x) = 1 

and 

+t(x)= 27' ! d ,,([l-x2] ). 

Now 
3x2 _ 1 sx3-3x 

+2(X)= 2 ' +3(X)= 2 ' 

so that 403(X)2 is polynomial in x2 and x2 = (2+2(x) + 1)/3. This leads directly 
to the relation 

T(¢>2, ¢>3) = 0, T(x,y) = 50x3-15x2-12x + 4-27y2, 

a result that can also be obtained by using the resultant. 
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