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Sums of S-units in the solution sets of generalized Pell equations
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Abstract. In this paper, we give various finiteness results concerning solu-
tions of generalized Pell equations representable as sums of S-units with
a fixed number of terms. In case of one term, our result is effective, while
in case of more terms, we are able to bound the number of solutions.
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1. Introduction. There are many papers about equations of the form

Un = z1 + · · · + zk, (1)

where (Un)∞
n=0 is a linear recurrence sequence, and z1, . . . , zk are integers with

prime factors coming from a fixed finite set of primes. Here we only refer to
the recent papers Guzman-Sanchez and Luca [8], Bertók et al. [1], Bérczes et
al. [2], and the (many) references there, where several and various finiteness
results have been proved. We mention that there are also many results in the
literature where other related problems are discussed. For example, Bravo et al.
[4] considered a problem connected to sums of terms of a recurrence sequence
yielding perfect powers (also see the references there).

In this paper, we consider the problem of representability of solutions of
generalized Pell equations as a fixed term sum of integers with prime factors
coming from some finite set of primes. As we shall see, this problem is closely
related to Eq. (1). In fact, the problem is more general: it turns out that we
need to find sums of the form z1 + · · · + zk in unions of recurrence sequences,
rather than in only one fixed sequence. We note that there are some closely
related results in the literature. We mention only two recent papers Luca and

Research supported in part by the NKFIH Grants 115479, 128088, and 130909, and
the Projects EFOP-3.6.1-16-2016-00022 and EFOP-3.6.2-16-2017-00015 co-financed by the
European Union and the European Social Fund.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-020-01480-1&domain=pdf


280 L. Hajdu and P. Sebestyén Arch. Math.

Togbé [11] and Ddamulira and Luca [5] about the x-coordinates of certain
Pell-equations which are (generalized) Fibonacci numbers, and the references
therein, and a very fresh one by Erazo et al. [6] on linear combinations of prime
powers in the x-coordinates of solutions of Pell equations.

2. New results. Before formulating our theorem, we need to introduce some
new notation.

The equation

x2 − dy2 = t (2)

is called a generalized Pell equation, where d, t ∈ Z, d > 1 is square-free, and t
is a non-zero integer. (Note that the name Pell equation usually refers to the
cases t = ±1,±4, while for the other values of t, (2) is a norm form equation
in Q(

√
d).) Write X and Y for the sets of solutions of Eq. (2) in x ∈ Z and

y ∈ Z, respectively.
Let p1, . . . , p� be distinct primes and put S = {p1, . . . , p�}. Then a rational

number z is an S-unit if z can be written as

z = ±pb1
1 · · · pb�

�

with some b1, . . . , b� ∈ Z. Write US for the set of S-units.
Further, for γ ∈ Q, write h(γ) for the maximum of the absolute values of

the numerator and the denominator of γ. Finally, for a non-zero integer m, let
ω(m) denote the number of distinct prime divisors of |m|.

Now we can give our results about sums of S-units in the solution sets
of generalized Pell equations. In the particular case of ’one-term’ sums, our
theorem is effective, that is, we are able to bound all the parameters involved.
In the general case, we can bound only the number of solutions.

Theorem 2.1. Use the above notation, and let k ≥ 1. Then there are at most
c1 tuples (z1, . . . , zk) ∈ Uk

S such that

zi1 + · · · + zij
�= 0 (3)

for any 0 < j ≤ k and 1 ≤ i1 < · · · < ij ≤ k, and

z1 + · · · + zk ∈ X ∪ Y, (4)

where c1 is an effectively computable constant depending only on ω(t), k, and
�. Further, if k = 1, then we also have

h(z1) < c2,

where c2 is an effectively computable constant depending only on d, t, and S.

Remark. Schinzel [13] proved that the greatest prime divisor of f(x), where
f is a quadratic polynomial with integer coefficients having distinct roots,
effectively tends to infinity as |x| → ∞. From this, the case k = 1 of the
above theorem easily follows. However, to keep the presentation coherent, we
shall give a general proof of Theorem 2.1, ultimately based upon the theory of
S-unit equations.
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We also note that the condition (3) is not only natural, but it is necessary,
as well. Indeed, if for some z1, . . . , zk, we have (4), but (3) does not hold for
some 0 < j ≤ k and 1 ≤ i1 < · · · < ij ≤ k, then the sums

z1 + · · · + zk + (z0 − 1)(zi1 + · · · + zij
) (z0 ∈ US)

would yield infinitely many solutions for the inclusion (4).

3. The proof of Theorem 2.1. To prove our theorem, we need several lemmas.
The first one describes the solutions of Eq. (2) in the particular, but very
important case t = 1.

Lemma 3.1. Let u0 and v0 be the smallest positive solutions (in x and y, respec-
tively) of the equation

x2 − dy2 = 1. (5)

Then all positive integer solutions u, v of (5) are given by

u +
√

dv =
(
u0 +

√
dv0

)m

(m ≥ 1).

Proof. The statement is [12, Theorem 7.26, p. 354]. �

Before formulating our further lemmas, we need to introduce some notation
concerning recurrence sequences. Let A,B be integers with B �= 0, and let
U0, U1 be integers such that at least one of them is non-zero. Then the sequence
U = (Un)n≥0 satisfying the relation

Un = AUn−1 + BUn−2 (n ≥ 2) (6)

is called a binary linear recurrence sequence. We shall also use the notation
U = U(A,B,U0, U1) for the sequence. The characteristic polynomial of U is
defined by

f(x) := x2 − Ax − B.

Write α and β for the roots of f(x). The sequence U is called degenerate if
α/β is a root of unity; otherwise it is called non-degenerate. It is well-known
that if U is non-degenerate, then we have

Un =
(U1 − U0β)αn − (U1 − U0α)βn

α − β
(n ≥ 0). (7)

Our second lemma shows that the sets of the coordinates of the solutions
of Eq. (2) are unions of finitely many non-degenerate binary linear recurrence
sequences. We note that this assertion is long and well-known qualitatively.
However, we do not know any source where this statement is explicitly for-
mulated (let alone the paper of Liptai [10] which is in Hungarian). In fact,
we shall only need the case concerning solutions with gcd(x, y) = 1. However,
we find the general case of possible independent interest. For a non-negative
integer m, write τ(m) for the number of divisors of |m|.
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Lemma 3.2. Let u0 be as in Lemma 3.1. If Eq. (2) has a solution, then all its
solutions are given by

(x, y) =
(
G(i)

n ,H(i)
n

)
(i = 1, . . . , I)

with some binary recurrence sequences

G(i) = G(i)(2u0,−1, G
(i)
0 , G

(i)
1 ), H(i) = H(i)(2u0,−1,H

(i)
0 ,H

(i)
1 ).

Here I and G
(i)
0 , G

(i)
1 ,H

(i)
0 ,H

(i)
1 (i = 1, . . . , I) are some positive integers with

I < c3 and

|G(i)
j |, |H(i)

j | < c4 (0 ≤ j ≤ 1, 1 ≤ i ≤ I), (8)

where c3 is an effectively computable constant depending only on τ(t), while c4
is an effectively computable constant depending only on d and t. Further, for
the solutions (x, y) of (2) with gcd(x, y) = 1, the same conclusion holds with
I < c5 and (8), where c5 is an effectively computable constant depending only
on ω(t).

Proof. Obviously, we may restrict to positive integer solutions of (2). So let
(p, q) be a positive solution of (2). Then the norm N(p+

√
dq) of the algebraic

integer p +
√

dq is t in the field Q(
√

d). By [9, Lemma 5], we know that there
are only finitely many pairwise non-associate algebraic integers U + V

√
d in

Q(
√

d) of norm t, and their number I can be bounded in terms of τ(t); further,
under the assumption gcd(p, q) = 1, even in terms of ω(t). It is well-known
(see, e.g., [14, Chapter A]) that we may assume here that

max(|U |, |V |) < c6,

where c6 is an effectively computable constant depending only on d, t. Thus
there exist algebraic integers Ui +

√
dVi with N(Ui +

√
dVi) = t and

max(|Ui|, |Vi|) < c6 (i = 1, . . . , I) such that

p +
√

dq = ν(Ui +
√

dVi)

for some 1 ≤ i ≤ I, where ν is a unit in Q(
√

d). We immediately get that
N(ν) = 1. Thus Lemma 3.1 yields that

ν = ±(u0 +
√

dv0)z (z ∈ Z).

For simplicity, we assume that ν = (u0 +
√

dv0)m with some m ≥ 0 since all
the other cases are similar (or can be excluded by our assumption that p and
q are positive). Then we have

p +
√

dq = (Ui +
√

dVi)(u0 +
√

dv0)m,

whence also

p −
√

dq = (Ui −
√

dVi)(u0 −
√

dv0)m.

Putting

α := u0 +
√

dv0, β := u0 −
√

dv0,
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from these assertions, we obtain

p =
Ui +

√
dVi

2
αm +

Ui − √
dVi

2
βm

and

q =
Ui +

√
dVi

2
√

d
αm − Ui − √

dVi

2
√

d
βm.

Hence, as α, β are roots of the polynomial x2 − 2u0x + 1 (also in view of
(7)), we get that p and q are elements of the recurrence sequences G =
G(A,B,G

(i)
0 , G

(i)
1 ) and H = H(A,B,H

(i)
0 ,H

(i)
1 ), respectively, with

A = 2u0, B = −1,

and

(G(i)
0 , G

(i)
1 ) = (Ui, u0Ui + dv0Vi), (H(i)

0 ,H
(i)
1 ) = (Vi, v0Ui + 2u0Vi).

Finally, note that it is obvious that the terms of these recurrence sequences
are solutions of (2). Hence our claim follows. �

We shall also need a recent finiteness result of Bérczes et al. [2] concerning
the number of terms of recurrence sequences representable as k-term sums of
S-units.

Lemma 3.3. Let Un be a non-degenerate binary linear recurrence sequence as
in (6), and suppose that the characteristic polynomial of Un has irrational
roots. Then for any fixed k ≥ 1, Eq. (1) is solvable in z1, . . . , zk ∈ US at most
for finitely many n. Further, the number of indices n for which (1) is solvable
for this fixed k, can be bounded by an effectively computable constant depending
only on � and k.

Proof. The statement is a simple consequence of [2, Theorem 1] and its proof.
Note that the statement in [2] concerns only the case where z1, . . . , zk ∈ US∩Z,
however, from the proof it is clear that this more general formulation is also
valid. �

Our last lemma is a deep result concerning the finiteness of the solutions
of S-unit equations. For its formulation, we need to introduce some further
notation.

Let K be an algebraic number field, and let S = {P1, . . . , P�} be a finite
set of prime ideals of K. Write US for the S-units in K, that is, for the set of
those α ∈ K for which the principal fractional ideal (α) can be represented as

(α) = P b1
1 · · · P b�

� (b1, . . . , b� ∈ Z).

By the (naive) height h(γ) of an element γ ∈ K we mean the maximum of the
absolute values of the coefficients of the defining primitive polynomial of γ in
Z[x]. Note that for γ ∈ Q, h(γ) is just the maximum of the absolute values of
the numerator and denominator of γ.
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Lemma 3.4. Use the above notation, and let a1, . . . , ak be non-zero elements
of K. Then the equation

a1x1 + · · · + akxk = 1 (9)

has at most c7 solutions (x1, . . . , xk) ∈ Uk
S for which the left hand side of

(9) has no vanishing subsums. Here c7 is an effectively computable constant
depending only on k, �, and degK.

Further, if k = 2, then we also have max(h(x1), h(x2)) < c8, where c8 is
an effectively computable constant depending only on a1, a2,K,S.

Proof. The statement follows from [7, Theorem 6.1.3, p. 132] and [7, Corollary
4.1.5, p. 65]. For the history of the equation and for related results, see [7]. �

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let z1, . . . , zk ∈ US satisfy (4) and (3). Assume first
that

z1 + · · · + zk ∈ X.

Let (p, q) be a solution of (2) such that

z1 + · · · + zk = p,

and write z = gcd(p, q). Observe that z | t. By Lemma 3.2, we have that

z1 + · · · + zk = zG(i)
n (10)

with some i ∈ {1, . . . , I} and n ≥ 0, where I is bounded in terms of ω(t)
and G

(i)
n is a term of a non-degenerate binary recurrence sequence G(i) =

G(i)(2u0,−1, G
(i)
0 , G

(i)
1 ). Note that as v0 > 0 (in Lemma 3.1), we have u0 > 1.

Thus the roots α and β of the characteristic polynomial

f(x) = x2 − 2u0 + 1

are (real) irrational numbers. (Observe that here f(x), hence α and β are
independent of i.) We can rewrite (10) as

z−1z1 + · · · + z−1zk = G(i)
n ,

and observe that here wj := z−1zj (j = 1, . . . , k) is an S∗-unit, where

S∗ = S ∪ {p prime : p | t}.

Thus by Lemma 3.3, we see that the number of possible indices n in (10) is
bounded by a constant c9 depending only on �, ω(t), and k. Further, by (3),
G

(i)
n �= 0 in (10). Thus setting aj = 1/G

(i)
n for j = 1, . . . , k, Eq. (10) can be

rewritten as

a1w1 + · · · + akwk = 1.

Hence in view of (3), and as the number of the above type equations appearing
is at most c9, our statement concerning the number of solutions to (4) follows
by Lemma 3.4. Further, in the particular case k = 1, Eq. (10) reduces to

w1 = G(i)
n , (11)
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which in view of Lemma 3.2 and (7) can be rewritten as

ai
αn

w1
+ bi

βn

w1
= 1

with some ai, bi depending only on d, t, where

α = u0 +
√

dv0, β = u0 −
√

dv0.

Let

S =
⋃

p∈S∗
{P : P is a prime ideal in Q(

√
d), P |(p)}.

As α and β are roots of the polynomial x2−2u0x+1, they are units in Q(
√

d),
so α, β ∈ US . Thus by Lemma 3.4, we obtain that for some (γ1, γ2) ∈ US ×US
with max(h(γ1), h(γ2)) < c10, where c10 is a constant depending only on d, t,
and S, we have

αn

w1
= γ1,

βn

w1
= γ2.

By multiplying these expressions, in view of αβ = 1, we obtain

w2
1 =

1
γ1γ2

,

whence we can bound h(z1) in terms of d, t, and S. Hence in this case, our
claim follows also for k = 1.

Let now

z1 + · · · + zk ∈ Y.

In this case, a similar argument applies, using the sequences H(i) in place of
the sequences G(i). Thus we omit the details, and the proof of the theorem is
complete. �

Remark. In case of t ∈ {±1,±4}, one can easily check that the sequences G(i)

and H(i) are Lucas-sequences of the first and second kind, respectively. Hence
in this case, for k = 1, in (11) (or in the equation w1 = H

(i)
n when z1 ∈ Y ), one

can get a very good bound for n, using the famous result of Bilu, Hanrot, and
Voutier [3] concerning the existence of primitive prime divisors of the terms of
such sequences.
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