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SUMS OF SQUARES OF REGULAR FUNCTIONS
ON REAL ALGEBRAIC VARIETIES

CLAUS SCHEIDERER

Dedicated to Manfred Knebusch on the occasion of his 60th birthday

Abstract. Let V be an affine algebraic variety over R (or any other real
closed field R). We ask when it is true that every positive semidefinite (psd)
polynomial function on V is a sum of squares (sos). We show that for dimV ≥
3 the answer is always negative if V has a real point. Also, if V is a smooth
non-rational curve all of whose points at infinity are real, the answer is again
negative. The same holds if V is a smooth surface with only real divisors

at infinity. The “compact” case is harder. We completely settle the case of
smooth curves of genus ≤ 1: If such a curve has a complex point at infinity,
then every psd function is sos, provided the field R is archimedean. If R is not
archimedean, there are counter-examples of genus 1.

Introduction

The basic problem addressed in this paper goes back to Minkowski and Hilbert.
Consider homogeneous polynomials (alias forms) f(x1, . . . , xn) with real coeffi-
cients which are positive semidefinite (psd , for short), in the sense that they take
only non-negative values on Rn. The question of whether every such f can be
written as a sum of squares (sos , for short) of forms seems to have originated with
Minkowski. In the oral defense of his doctoral dissertation, held in Königsberg
(Prussia) on July 30th, 1885, one of the two theses he proposed was: “Es ist
nicht wahrscheinlich, daß eine jede positive Form sich als eine Summe von Formen-
quadraten darstellen läßt.” ([23], p. 202) Hilbert happened to be one of the two
officially appointed “opponents” in the disputation. At the end of the discussion he
remarked that Minkowski’s arguments had convinced him that there should exist
ternary psd forms which are not sos. Working these ideas out, Hilbert proved in
1888 that for any n ≥ 3 and any even d ≥ 4 there exists a psd n-ary form of degree
d which is not sos, the only exception being the case (n, d) = (3, 4) [15]. Hilbert
later acknowledged that Minkowski’s proposition had been the original motivation
for him to study the question of representing psd forms as sums of squares. (See
[18] for this and for the detail mentioned before.)

Having proved this negative result, Hilbert turned to the question of whether
each psd form might be the quotient of two sums of squares of forms. He was able
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to prove this for ternary forms [16], but couldn’t decide the general case. As is
well known, he included the question as number 17 in his famous list of unsolved
problems [17]. This problem was later solved by E. Artin in the affirmative [1].

For the purpose of this paper, it is preferable to use a non-homogeneous setting.
Thus, the original question of Minkowski and Hilbert asked whether there are psd
polynomials over R which are not sums of squares of polynomials. There is an ex-
tensive literature on various aspects of this question and of Hilbert’s 17th problem;
see, e.g., the surveys by Gondard [12], Reznick [27], Powers [26] and Delzell [11], as
well as references given there. But although the same question makes perfect sense
for finitely generated R-algebras other than polynomial rings, or even for arbitrary
rings (see below), there have been surprisingly few authors dealing with such nat-
ural generalizations. (See however the paper [7], in which Choi, Lam, Reznick and
Rosenberg study certain integral domains A with quotient field K and ask when
A ∩ ΣK2 = ΣA2 holds, where ΣA2 denotes the set of sums of squares in A.)

There is a quantitative counterpart to this problem which has found more at-
tention, namely the question of how many squares are needed in sums of squares
representations. Here we will not touch on this aspect at all. For a guide to what
has been done one may consult [5], [25] and references given there.

Thus, our principal goal will be the study of the following question: Let V be
an affine variety over R and consider regular functions f on V which are psd, i.e.,
take non-negative values on the set V (R) of real points of V . When is it true that
every such f is a sum of squares of regular functions; in short, when do we have
“psd = sos on V ”?

It will be convenient to place our question in a more general context. If A is any
(commutative) ring, let A+ denote the set of psd elements of A, i.e., those a ∈ A
which are non-negative in every point of SperA, the real spectrum of A. (See the
notations section at the end of this introduction for further explanation.) When
is it true that A+ = ΣA2? For V an affine R-variety and A = R[V ], this is our
original question.

For connected varieties of dimension ≥ 3 we can give a complete answer: If k
is a field and A is a finitely generated connected k-algebra with SperA 6= ∅ and
dimA ≥ 3, then there always exists a psd element in A which is not sos, Theorem
6.2. (If SperA is empty, then every element of A is a sum of squares, at least if
char(k) 6= 2.) Essentially, the reason is of local nature; it is the fact that A+ 6= ΣA2

for every regular local domain A of dimension ≥ 3 whose residue field is formally
real (Proposition 1.2).

We also study other regular local domains A (always with a formally real quotient
field). If dim(A) ≥ 4 and the residue field is non-real, we have again A+ 6= ΣA2,
at least for A of geometric origin (Proposition 1.5). As for lower dimensions, it is
well known that psd = sos for dim(A) ≤ 1. The case dim(A) = 2, however, seems
much harder to understand. We can show psd = sos only under quite restrictive
conditions, but on the other hand we do not know of any counter-example.

Coming back to affine R-varieties, we are left with curves and surfaces. We
restrict ourselves to the smooth case here. The above discussion shows that we do
not know any local obstructions to psd = sos, so we have to find other ways of
reasoning.

The main part of the paper is concerned with curves Y (smooth affine with
Y (R) 6= ∅). Since it is well known that psd = sos if Y is rational, we assume that
Y has genus g ≥ 1. For the purpose of this introduction, let us assume that Y has
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only one (scheme-theoretic) point at infinity, call it ∞. Both the arguments and
the results turn out to be basically different depending on whether the point ∞ is
complex or real, or equivalently, whether Y (R) is compact or not.

In the non-compact case (Sect. 3), there always exist psd functions f which are
not sos, even with f > 0 on Y (R) (Theorem 3.2). We actually prove stronger
statements, which say that in a suitable sense there are many such functions (The-
orems 3.4 and 3.5). On the other hand (Sect. 4), we don’t know of any example
of a psd, non-sos function f if Y (R) is compact! As a consequence of a theorem of
Schmüdgen, it is known that every strictly positive f ∈ R[Y ] is a sum of squares.
But it is not clear whether this fact can be used for settling the general psd case.
We obtain partial results which allow a reduction from general psd f to more spe-
cial cases. Essentially, we are trying to reduce to cases where most or all zeros of
f are real. For elliptic curves these methods combine nicely to give a general proof
that every psd function is a sum of squares (Theorem 4.10). After many fruitless
attempts at finding a counterexample, this result came as quite a surprise to the
author.

It is natural to study all these questions not only for varieties over R, but also
over other real closed base fields R. Most results mentioned so far extend to this
more general case (although for Theorem 3.5 we only get a weakened version). But
this is definitely not true for curves with Y (R) “compact” (if R 6= R, one has to
understand compactness in the semi-algebraic sense). Rather we show that if R is
non-archimedean, then among elliptic curves Y overR with Y (R) semi-algebraically
compact, there are examples for both psd = sos and psd 6= sos (Theorem 4.11).

Finally, consider the case of (smooth affine) surfaces V over R. We try to prove
that psd 6= sos here by restricting the problem to suitable curves on V . This is
suggested by an extension theorem for psd functions (Theorem 5.6), which says that
a psd regular function on a smooth curve can always be extended to a psd regular
function on any ambient smooth variety. Combined with the results on curves, this
gives the existence of psd, non-sos functions on V as soon as we find suitable curves
on V (6.4). However there are many surfaces left for which this technique does not
help at all, in particular all surfaces for which V (R) is semi-algebraically compact.
It seems not an easy task to decide in a single such case whether psd = sos holds
or not!

It should be pointed out that the study of varieties more general than affine
space, e.g., curves, can be fruitful for the understanding of psd polynomials as well;
see Remarks 6.7 and 6.8.

The results and techniques of this papers have applications to the study of pre-
orders (see 3.3 for a short introduction to this concept). Preorders play a role in
real algebraic geometry which is in some sense similar to the role of ideals in or-
dinary algebraic geometry. There is an interest in the understanding of preorders
in particular from the computational point of view. However, preorders are much
harder to study than ideals since they tend not to be finitely generated. We present
some examples which show how our techniques allow a systematic approach to such
questions. In particular, we show that, given a closed semi-algebraic set S, the pre-
order consisting of all polynomial functions psd on S is infinitely generated if S
is 1-dimensional and “sufficiently non-compact” (Theorem 3.5), or if dimS ≥ 3
(Theorem 6.1). It seems clear that more can (and should) be done here.

Another main result should be mentioned. Although it is not directly related to
the central question of this paper, it turns out to be extremely useful and has some
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independent interest: If X is a connected smooth projective curve over a real closed
field R, with X(R) 6= ∅, then every divisor on X is linearly equivalent to a divisor
whose support consists only of real points (Theorem 2.7 and its corollaries). So this
is a moving lemma which permits one to move the support of a divisor entirely into
the real locus. The proof is easy for R = R, but seems less obvious if the field R is
not archimedean. We reduce this case to the archimedean case using properties of
the real spectrum.
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General notations. Let A be a ring (we always assume that 1
2 ∈ A). By SperA

we denote the real spectrum of A, i.e., the topological space consisting of all pairs
α = (p, ω) with p ∈ SpecA and ω an ordering of the residue field Quot(A/p) of p
[9], [3], [19]. The prime ideal p is called the support of α, written p = supp(α). A
prime ideal is called real if it supports an element of SperA. Recall that for f ∈ A
the notation “f(α) ≥ 0” indicates that the residue class f mod p is non-negative
under ω. We put

A+ = {f ∈ A : f(α) ≥ 0 for every α ∈ SperA};
this is the set of positive semidefinite (psd) elements in A. On the other hand,
ΣA2 denotes the set of sums of squares (alias sos elements) in A. By Stengle’s
Nichtnegativstellensatz (e.g. [19], p. 143), A+ is the set of all f ∈ A which satisfy
an identity fs = f2n + t with s, t ∈ ΣA2 and n ≥ 0. Our main concern is
the question whether the inclusion ΣA2 ⊂ A+ is an equality, for various rings of
geometric nature. If SperA = ∅, then −1 ∈ ΣA2, and thus ΣA2 = A = A+ ([19]
III §2).

The concept of preordering of a ring is explained in Sect. 3.3 below. The real
spectrum is functorial: A ring homomorphism ϕ : A→ B induces a continuous map
ϕ∗ : SperB → SperA. The map ϕ∗ is characterized by the fact that, for a ∈ A and
β ∈ SperB, the sign of a at ϕ∗(β) is the sign of ϕ(a) at β. Note that ϕ(A+) ⊂ B+.

The following fact is well known, but for lack of a handy reference we include its
proof:

0.1. Lemma. If A is a regular noetherian domain, then the set of α in SperA
with supp(α) = (0) is dense in SperA.

Proof. Given α, β ∈ SperA, write α � β iff β ∈ {α}. Assume that A is local,
and let β ∈ SperA with supp(β) = m, the maximal ideal. We show by induction
on dimA that there is α ∈ SperA with supp(α) = (0) and α � β. Let x be a
regular parameter of A, and let p = (x). Since A/p is regular, we find by induction
γ ∈ SperA with supp(γ) = p and γ � β. Since Ap is a discrete valuation ring,
there is α with supp(α) = (0) and α � γ, by the Baer-Krull theorem ([19] II §7).
So α � β.
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As a consequence, we have A+ = A ∩ ΣK2, where K is the quotient field of A.
Let k be a field. By a k-variety we mean a reduced separated scheme V of finite

type over Spec k. If V is a k-variety and E ⊃ k is an extension, then V (E) is the
set of E-valued points of V . If V is irreducible, then k(V ) is the function field of
V ; if V is affine, then k[V ] denotes the ring of regular functions on V .

Let K be a field and v a (Krull) valuation on K. If α ∈ SperK, then α and
v are said to be compatible if v(a) > 0 implies (1 + a)(α) > 0 for every a ∈ K∗.
A well known useful fact is the following: If v has a formally real residue field,
then v(a2

1 + · · · + a2
n) = 2 mini v(ai) for any a1, . . . , an ∈ K. We will very often

apply this, and occasionally also need the following generalization (whose proof is
obvious):

0.2. Lemma. Let v be a valuation of a field K, and let a1, . . . , an ∈ K∗. Suppose
that K has an ordering which is compatible with v and with respect to which all the
ai have the same sign. Then v(a1 + · · ·+ an) = mini v(ai).

1. Regular local rings

Let A be a regular local ring ([21], §14) with maximal ideal m, quotient field K
and residue field κ = A/m, and assume char(κ) 6= 2. We try to understand when
A+ = A ∩ ΣK2 is equal to ΣA2. We will always assume that K is formally real,
since otherwise every element of A is sos (Lemma 0.1).

If dimA = 0, then A = K is a field, and the fact that K+ = ΣK2 is classical
and due to E. Artin. If dimA = 1, then A is a discrete valuation ring. Again it is
known that A+ = ΣA2, even for arbitrary valuation rings A. In this generality it
was probably first proved (independently) by Kneser and by Colliot-Thélène; see
[7], p. 250 for Kneser’s proof.

We will first consider the case dimA ≥ 3. Here one expects that A+ 6= ΣA2, and
indeed we will prove this in many cases. We start with some general considerations.
Let Gr(A) =

⊕
n≥0 Grn(A) be the graded ring associated to A, where Grn(A) =

mn/mn+1. Let µ be the discrete valuation onK coming from the exceptional divisor
in the blowing-up of SpecA at the closed point; so µ(f) = sup{n ≥ 0: f ∈ mn}
is the multiplicity of f ∈ A. Given 0 6= f ∈ A with n := µ(f), define the leading
form `(f) ∈ Grn(A) of f to be `(f) := f mod mn+1 (note `(f) 6= 0). If we fix a
regular system of parameters x1, . . . , xd for A and write ξi = `(xi), then Gr(A) is
the polynomial ring κ[ξ1, . . . , ξd] with the standard grading, and `(f) is a non-zero
form of degree n in κ[ξ1, . . . , ξd].

1.1. Lemma. Assume that the residue field κ is formally real. If 0 6= f ∈ A is a
sum of r squares in A, then µ(f) is even, say µ(f) = 2s, and `(f) ∈ Gr2s(A) is a
sum of r squares of elements in Grs(A).

Proof. Assume f =
∑
i f

2
i , and let s = mini µ(fi). The residue field of the valuation

µ is a purely transcendental extension of κ (of dimension dim(A) − 1), and in
particular, it is formally real. Therefore µ(f) = 2s (Lemma 0.2). In addition it
follows that `(f) is the sum of the `(fj)2 for those indices j for which µ(fj) = s.

It is well known that for d ≥ 3 there are homogeneous polynomials h(t1, . . . , td)
with integer coefficients, which are psd but not sums of squares in R[t1, . . . , td],
for some (equivalently: any) real closed field R. For example, one may take the
homogeneous Motzkin polynomial h = t21t

2
2 (t21 + t22 − 3t23) + t63 [24]. We conclude:
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1.2. Proposition. Let A be a regular local ring with dimA ≥ 3 for which κ = A/m
is formally real. Then there is an element f ∈ A+ which is not a sum of squares in
the completion Â of A (and, a fortiori, is not sos in A itself).

Proof. Let x1, . . . , xd be a regular system of parameters for A, where d = dimA.
Choose a form h ∈ Z[t1, . . . , td] which is psd but not sos in R[t1, . . . , td], and put
f := h(x1, . . . , xd). Then `(f) = h(ξ1, . . . , ξd) where ξi := `(xi), so `(f) is not a
sum of squares in Gr(A). Therefore f is not sos (Lemma 1.1), not even in Â. On
the other hand, f ∈ A+, since f is the image of the psd element h under the ring
homomorphism ti 7→ xi from Z[t1, . . . , td] to A.

1.3. Corollary. Let A be a noetherian ring. Suppose that there is a real prime
ideal p in A such that Ap is regular of dimension ≥ 3. Then A+ 6= ΣA2.

Proof. By Proposition 1.2 we find f ∈ A which is psd in Ap but is not a sum of
squares in this ring. Let I =

⋂
α supp(α), the intersection over the α ∈ SperA with

f(α) < 0. Then I 6⊂ p. Pick any s ∈ I r p. Then s2f is psd in A, but is not sos in
A since it is not sos in Ap.

1.4. Remarks.
1. Proposition 1.2 was proved before in the special case where A is the local-

ization of R[x, y, z] at the maximal ideal (x, y, z); see [7], Prop. 3.5. The proof
given above follows the same idea. The result accounts for the existence of what
has been called the “bad points” of a psd polynomial f ∈ R[x1, . . . , xn]: These are
those points in Rn where every denominator h in a sums of squares representation
h2f =

∑
i f

2
i (by polynomials fi, h) vanishes. Clearly, P ∈ Rn is a bad point for f

if and only if f is not a sum of squares in the local ring at P . See also [6], Thm.
4.3, where the existence of bad points was probably noticed for the first time in the
published literature. Delzell’s thesis and a recent abstract ([10], especially the intro-
duction and pp. 57-62) discusses this question further and contains some historical
remarks. There one also finds examples (p. 60) of psd elements f ∈ R[x, y, z](x,y,z)
which are not sos although their leading forms are.

2. If dimA = 3 and the residue field κ is not formally real (but K = Quot(A)
is), I do not know in general whether A+ 6= ΣA2 still holds. This is indeed so for
dimA ≥ 4, at least if A is essentially of finite type over a field:

1.5. Proposition. Let k be a field and A be a regular local k-algebra which is a
localization of a finitely generated k-algebra. If dimA ≥ 4 and the quotient field
of A is formally real, then there exists a psd element in A which is not a sum of
squares.

The proof relies on the following geometric fact:

1.6. Lemma. Let V be a smooth irreducible quasi-projective k-variety of dimen-
sion ≥ 2 whose function field k(V ) is formally real. If P is a closed point of V , there
exists a smooth prime divisor H on V passing through P , such that the function
field k(H) of H is formally real.

Proof of the proposition. There are a field extension F of k, a regular F -algebra B
of finite type and a maximal ideal q of B such that A ∼= Bq. Therefore we can
assume A = OV,P where V is a smooth irreducible k-variety, dim V ≥ 4, and P is
a closed point of V . By a repeated application of Lemma 1.6, we find a curve C on
V with formally real function field which passes through P . The local ring OV,C
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(of V at the generic point of C) is regular of dimension ≥ 3 and has formally real
residue field k(C). Therefore this ring contains psd, non-sos elements (1.2). Since
OV,C is a localization of OV,P , the latter ring must also contain such elements.

Proof of the lemma. By enlarging k we can assume that V ⊗k k is irreducible. Let
ξ be an ordering of k which extends to k(V ), and let kξ denote the corresponding
real closure of k. It suffices to prove the lemma for the (smooth and irreducible)
kξ-variety Vkξ

:= V ⊗k kξ and a lift of P to a closed point of Vkξ
.

So we can and will assume that the field k is real closed. Let V ↪→ Pnk be a
locally closed embedding. Let H be the linear system of hyperplanes in Pnk which
pass through P , and let B be the base locus of the system H. If P is a real point,
then B = {P}; if P is a complex point, then B is the unique line defined over k
which contains P . In the latter case we can assume that B is not contained in
V , by changing the embedding V ↪→ Pnk suitably. Now for generic L ∈ H, the
intersection L ∩ V is smooth (and non-empty): Away from B ∩ V this is Bertini’s
theorem, while on B∩V it is clear since B∩V is finite. Noting that V (k) is Zariski
dense in V , take any such (generic) L for which (L ∩ V )(k) 6= ∅, and let H be a
connected component of L∩ V with H(k) 6= ∅. The function field k(H) is formally
real (Artin-Lang), so H does what we want.

1.7. Remark. Finally, we add a few comments on the case of dimension two,
which seems to be the hardest. Given a two-dimensional regular local ring A, is
it true that every psd element in A is a sum of squares? Here are a few cases in
which this holds by elementary reasons. Let k be a field, chark 6= 2. In each of the
following cases we have A+ = ΣA2:

a) A = OV,P , where C is a smooth curve over k, V = C ×k A1
k and P is a closed

point of V such that the residue field k
(
prC(P )

)
is formally real (here prC is

the projection V → C);
b) A = k[x1, . . . , xn]p where p is a prime ideal of height two with formally real

residue field k(p);
c) A = k[x, y]m, where m is a maximal ideal of k[x, y] with [k(m) : k] ≤ 2 (and

k(m) not necessarily formally real);
For the proof we use the following lemma, which is a corollary to a classical theorem
of Artin:

1.8. Lemma. Let B be a discrete valuation ring with a formally real residue field.
Then every psd element in B[t] is a sum of squares.

Proof. Let π ∈ B be a uniformizer, and let L be the quotient field of B. Let
f ∈ B[t] be psd. Then f is a sum of squares in L(t), and therefore also in L[t] [1].
So there are f1, . . . , fr ∈ L[t] such that f =

∑
i f

2
i , and hence also g1, . . . , gr ∈ B[t]

and n ≥ 0 with π2nf = g2
1 + · · · + g2

r . If n ≥ 1, then reduction of this identity
modulo π shows that π divides each gi. Inductively it follows that πn divides each
gi.

In particular, A+ = ΣA2 holds for every ring A which is a localization of B[t].
This accounts for a) above, and also for c) since after an affine change of coordinates
one can assume x ∈ m, using [k(m) : k] ≤ 2. By a result of Lindel ([20], Lemma 1),
the ring in b) is isomorphic to K[u, v]m for K = k(x1, . . . , xn−2) and a suitable
maximal ideal m of K[u, v]; so b) is a special case of a).
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1.9. Remarks.
1. If R is real closed and f ∈ R[x1, . . . , xn] is psd, then b) above implies that

the set of bad points (1.4.1) of f in Rn has dimension ≤ n − 3. This was already
proved in [10], Prop. 5.1 by an argument similar to ours.

2. In any local (or even semi-local) ring A, neither necessarily regular nor noe-
therian, the psd units are sums of squares: A+ ∩ A∗ ⊂ ΣA2. See [2], p. 153, for
example. (We assumed 1

2 ∈ A, as always.)
3. It is easy to find singular one-dimensional (complete) local domains A for

which A+ 6= ΣA2. Indeed, if A is any local ring whose residue field is formally
real, the elements of m r m2 can never be sos. But if A is singular, there may be
such elements which are psd, e.g., the element x in A = R[[x, y]]/(x3 − y2) or in
A = R[[x, y]]/(x2 + y2).

2. Preliminaries on real curves

Let R be a real closed field, and write C = R(
√−1) for its algebraic closure.

Let X be an irreducible smooth projective curve over R. We will always assume
X(R) 6= ∅. We denote by g the genus and by J the Jacobian of X . Moreover
K = R(X), the function field of X . By XC we denote the base extension of X
to C, and we write KC = K(i) for the function field of XC , where i =

√−1.
We use the following conventions about divisors. We considerX as a scheme over

SpecR. The group Div(X) of divisors on X is the free abelian group on the closed
points of X . If D =

∑
P nP . P is a divisor, then the support of D, supp(D), is the

set of all points P with nP 6= 0. A closed point P is said to be real (resp. complex )
if its residue field is R (resp. C). The discrete valuation on K associated with P
is written vP ; we always assume vP to be normalized, i.e., the value group is Z. If
f ∈ K∗, then div(f) =

∑
P vP (f) . P is the (principal) divisor of f . The quotient

of Div(X) by the subgroup of principal divisors is the Picard group Pic(X). If D
is a divisor, then the class of D in Pic(X) is written [D]. Two divisors D, D′ are
linearly equivalent, denoted D ∼ D′, if [D] = [D′].

Occasionally, we will also have to consider divisors on the complexification XC .
Therefore, we sometimes use notations like divX(f) or divXC (f), if there is any
danger of confusion.

The degree of a closed point P is the degree of its residue field over R. This
definition extends to a homomorphism deg : Pic(X) → Z whose kernel is written
Pic0(X).

The set X(R) decomposes into finitely many connected components (in the semi-
algebraic sense; if R = R, this coincides with the usual topological notion). We will
also call them ovals . Let always s denote their number. We have 1 ≤ s ≤ g + 1,
the first inequality by assumption, the second by Harnack’s theorem. A rational
function f ∈ K∗ is said to be locally semidefinite, or lsd for short, if the restriction
of f to every oval is (positive or negative) semidefinite. Note that f is lsd if and
only if vP (f) is even for every real point P on X .

Let G = Gal(C/R); we indicate the action of complex conjugation on points,
divisors, functions etc. by a bar. If A is an abelian variety defined over R, then
A(R)0 denotes the connected component of the identity in the semi-algebraic group
A(R). This subgroup coincides with the image of the norm map a 7→ a + ā from
A(C) to A(R), and also with 2A(R) (compare [8]). We write H1(R,A) for the
Galois cohomology group H1

(
G, A(C)

)
.
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The exact sequence 0 → J(C) → Pic(XC)
deg→ Z → 0 of G-modules splits since

X(R) 6= ∅. Therefore it gives an isomorphism

H1(R, J) ∼→ H1
(
G, Pic(XC)

)
.(1)

On the other hand, the Hochschild-Serre spectral sequence of étale cohomology,

Eij2 = Hi
(
G, Hj

ét(XC ,Gm)
)

=⇒ H i+j
ét (X,Gm),

shows that the inclusion Pic0(X) ⊂ J(R) is an equality, and it gives an exact
sequence

0 → Br(R) → Br(X) → H1
(
G, Pic(XC)

) → 0,(2)

where Br is the Brauer group. (See [28], p. 222, for example.) Recall that Br(X) can
be described as the subgroup of Br(K) consisting of all classes which are unramified
at every real point P ∈ X(R).

One can make (2) explicit as follows. If f ∈ K∗ is an lsd function, then the
quaternion algebra (−1, f) over K is unramified on X , hence lies in Br(X). Con-
versely, every element α ∈ Br(X) can be written α = (−1, f) with such f (Witt
[32]). Fix α = (−1, f), and choose a divisor D on XC with divXC (f) = D+D. The
class [D] ∈ Pic0(XC) = J(C) of D is anti-invariant under the Galois involution,
and hence defines an element in H1

(
G, J(C)

)
= H1(R, J).

2.1. Lemma. The map which sends α = (−1, f) to the class of [D] in H1(R, J)
is a well-defined surjective homomorphism ψ : Br(X) → H1(R, J), whose kernel is
generated by (−1,−1).

Modulo the isomorphism (1), this map ψ coincides with the map in (2), but we
won’t prove this fact since it will not be used.

Proof. Fix α = (−1, f) ∈ Br(X). If Θ ∈ Div(XC) satisfies Θ + Θ = 0, then one
can write Θ = Θ1 − Θ1, so the class of Θ in H1(R, J) is zero. Thus ψ(α) does
not depend on the choice of D. Second, ψ(α) is independent of the choice of f : If
(−1, f) = (−1, f ′), then f ′ = f (h2

1 + h2
2) with h1, h2 ∈ K, and therefore

divXC (f ′) = D′ +D′ with D′ = D + divXC (h1 + ih2) ∼ D.

Thus it is clear that ψ is a well-defined homomorphism. From its construction one
sees easily that ψ is surjective. On the other hand, assume that α = (−1, f) lies in
the kernel of ψ. Writing divXC (f) = D+D, there exist Θ ∈ Div(XC) and h ∈ K∗

C

with D = Θ−Θ+divXC (h). This gives divXC (f) = divXC (hh), i.e., f = c . hh with
0 6= c ∈ R. Since clearly hh is a sum of two squares in K, we have α = (−1, c).

2.2. Remark. Let α = (−1, f) ∈ Br(X), with f ∈ K∗ lsd. The sign distribution
of f , considered as an element of {±1}s, depends only on α, so we can denote it
by sgn(α). A classical theorem of Witt [32] states that α 7→ sgn(α) is an isomor-
phism Br(X) ∼→ {±1}s. The last lemma gives us therefore an explicit isomorphism
H1(R, J) ∼→ {±1}s/ ± 1, where the right-hand group denotes {±1}s modulo mul-
tiplication by −1.

Now let H := {fK∗2 : divX(f) ∈ 2 Div(X)}, a subgroup of K∗/K∗2. The map
σ : fK∗2 7→ [

1
2 divX(f)

]
is a homomorphism from H to the 2-torsion subgroup

2 Pic(X) = 2J(R) of the Picard group. It is obviously surjective, and its kernel
is generated by the square class of −1. On the other hand, we have an obvious
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homomorphism φ : H → Br(X), given by fK∗2 7→ (−1, f). These maps fit into a
commutative diagram with exact lines

0 −−−−→ {±1} −−−−→ H
σ−−−−→ 2J(R) −−−−→ 0∥∥∥ φ

y φ̄

y
0 −−−−→ Br(R) −−−−→ Br(X)

ψ−−−−→ H1(R, J) −−−−→ 0.

(3)

One checks immediately that φ̄ is the natural map of Galois cohomology.

2.3. Lemma.
a) φ is surjective.
b) The restriction of φ̄ to 2J(R)0 is surjective.
c) L := ker(φ̄) has order 2g, and L0 := L ∩ J(R)0 has order 2g−s+1.
d) L meets every connected component of J(R).

Proof. b) is a general fact: If A is any abelian variety over R, then the natural map
2A(R)0 → H1(R,A) is surjective. Indeed, if a ∈ A(C) satisfies a + ā = 0, choose
b ∈ A(C) with 2b = a; then a′ := a− b+ b̄ represents the same class in H1(R,A)
as a, and a′ = b+ b̄ lies in A(R)0, hence in 2A(R)0.

This proves b). In particular, φ̄ is surjective, which implies a). On the other
hand, the groups 2J(R), 2J(R)0 and J(R)/J(R)0 have orders 2g+s−1, 2g and 2s−1,
respectively (the first, resp. the third, essentially by a theorem of Weichold, reproved
later by Geyer; compare [28], p. 221 and [8], Appendix). Therefore c) and d) follow
from b), together with Remark 2.2.

2.4. Example. X is said to be an M -curve if s = g + 1, i.e., if the number of
connected components is the maximal one allowed by Harnack’s theorem. By the
last lemma, if X is an M -curve, then φ restricts to an isomorphism from 2J(R)0
onto {±1}g+1/± 1.

2.5. Remark. Write H+ for the kernel of φ : H → Br(X). So H+ consists of all
square classes fK∗2 ∈ K∗/K∗2 for which f is psd and div(f) is divisible by 2. By
(3), σ induces an isomorphism σ : H+

∼→ L = ker(φ̄), and therefore H+
∼= {±1}g.

This last fact was also proved in [29], 4.4, using a different method.

2.6. Lemma. Let D =
∑

P nP . P be a divisor on X of degree zero. The class [D]
in J(R) lies in the connected component J(R)0 if and only if for every oval O of
X(R) the sum D(O) :=

∑
P∈O nP is even.

Proof. The map which sends D to the s-tuple
(
D(O) mod 2

)
O
∈ (Z/2)s is a ho-

momorphism from Div(X) to (Z/2)s, which induces an isomorphism Pic(X)/2 ∼→
(Z/2)s (Witt, cf. [28], p. 221, for example). So the second condition in the lemma
is equivalent to [D] ∈ 2 Pic(X), i.e., to [D] ∈ 2J(R) = J(R)0.

For references on the following see, e.g., [22], §3. Let n ≥ 1, and let X(n)

denote the n-fold symmetric power of X , i.e., the quotient of the n-fold direct
product Xn = X × · · · ×X over R by the natural action of the symmetric group
on the n factors. This is a smooth proper R-variety. A C-rational point on X(n)

is an unordered n-tuple of C-rational points on X , or, in other words, an effective
divisor on XC of degree n. Fix a rational point P0 ∈ X(R). There is a well-defined
morphism ϕ(n) : X(n) → J of R-varieties whose effect on C-rational points is that
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it sends the divisor D to the divisor class [D − nP0]. It is known that, for n = g,
the morphism ϕ(g) is birational ([22], §5).

The following theorem is the main result of this section. It will be very useful in
the sequel:

2.7. Theorem. Let P0 ∈ X(R) be a fixed real point. There is an integer n ≥ 1 such
that for any α ∈ J(R) there are n points P1, . . . , Pn ∈ X(R) with α =

∑
i[Pi−P0].

Here are a few corollaries. Recall that we always assume X(R) 6= ∅.
2.8. Corollary. Fix a complex closed point Q in X. Then there is an integer n ≥ 1
such that, given any even integer 2m ≥ n and any α ∈ J(R), there are 2m points
P1, . . . , P2m ∈ X(R) such that α is the class of the divisor

∑
i Pi −mQ.

Proof. Choose a real point P0 on X , and let n be as in Theorem 2.7. Given 2m ≥ n

and α ∈ J(R), there are P1, . . . , P2m ∈ X(R) with
∑2m

i=1[Pi−P0] = α+m [Q−2P0],
by Theorem 2.7. From this the assertion follows.

2.9. Corollary. The abelian group Pic(X) is generated by the classes [P ] of all
closed points P on X which are real.

If D is a divisor on X , then |D| denotes the complete linear system of D, i.e.,
the set of all effective divisors D′ linearly equivalent to D. In this language we may
rephrase the theorem as follows:

2.10. Corollary. There exists an integer n ≥ 1 with the following property: For
every complete linear system |D| with deg(D) ≥ n there is D′ ∈ |D| such that
supp(D′) consists of real points.

Proof. Take n to be the integer from Theorem 2.7, with fixed P0 ∈ X(R). If
deg(D) = d ≥ n, then [D− dP0] ∈ J(R), so by 2.7 we find P1, . . . , Pd ∈ X(R) with
D − dP0 ∼

∑
i(Pi − P0). It suffices to put D′ =

∑
i Pi.

The content of Theorem 2.7 is that the composite map X(R)n → X(n)(R)
ϕ(n)

→
J(R) is surjective for some n ≥ 1. The proof is easy in the case where R = R,
the field of classical real numbers. However, this proof does not work for a non-
archimedean real closed base field. Also, it does not seem to produce a bound on
the number n in terms of the curve (e.g., in terms of g), at least not without further
work. Therefore it does not seem possible to derive from it the case of general R by
an immediate application of Tarski’s principle. Still we will see, using properties of
the real spectrum, that we can deduce the general case from the case R = R.

We start by proving Theorem 2.7 over R = R. For this we need the following
lemma:

2.11. Lemma. Let G be a compact real Lie group, and let U be a non-empty open
subset of G. There exists an integer n ≥ 1 such that every element of G0 is a
product of at most n elements of U .

Proof. As usual, G0 denotes the connected component of the identity of G. Write
U(p) for the set of all p-fold products u1 · · ·up with ui ∈ U (p ≥ 1). The sets
U(p) are open in G. Since elements of finite order are dense in G0, there is p ≥ 1
such that 1 ∈ U(p). We can now replace U by a symmetric open neighborhood
of 1 contained in U(p). Then the subgroup of G generated by U is G0, and it is
the union of the sets U(n), n ≥ 1. Since G0 is compact, we have U(n) = G0 for
some n.
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Consider now Theorem 2.7 in the case R = R. We first show that the assertion
holds for every α ∈ J(R)0. Indeed, this case is included in the following more
general version, which will be useful later:

2.12. Lemma. (R = R) Let P0 ∈ X(R), and let U be any non-empty open subset
of X(R). Then there is n ≥ 1 such that for every α ∈ J(R)0 there are P1, . . . , Pr ∈
U with r ≤ n and α =

∑r
i=1[Pi − P0].

Proof. Let ϕ(g) : X(g) → J be the morphism of R-varieties considered above. Let
V be the subset of X(g)(R) which consists of all effective divisors D ∈ Div(X) of
degree g which have supp(D) ⊂ U . This V contains a non-empty open subset of
X(g)(R). Since ϕ(g) is birational and X(g) is smooth, the image of V under ϕ(g)

contains a non-empty open subset of J(R). Therefore the assertion follows from
Lemma 2.11.

We return to the proof of Theorem 2.7 in the case R = R. Let C0, . . . , Cs−1

be the ovals of X(R), with P0 ∈ C0, and choose points Pi ∈ Ci (i = 1, . . . , s− 1).
From Lemma 2.6 it follows that the divisor classes [Pi−P0] (1 ≤ i ≤ s−1) generate
the group J(R)/J(R)0, which is isomorphic to (Z/2)s−1. From this, together with
Lemma 2.12, follows the case R = R of the theorem.

In order to prove Theorem 2.7 over an arbitrary real closed base field R, note
first that the theorem is certainly true if R is archimedean. (Either justify that the
proof given for R remains valid for R, or consider the extension R ⊂ R and apply
Tarski’s principle.)

Now let R be arbitrary. There is a finitely generated subfield k of R such that X
and P0 can be defined over k. Slightly abusing notation, we continue to use the letter
X for this curve over k, and also use Xn, X(n), J for the corresponding k-varieties.
It suffices to show that for every ordering ξ of k there is some integer n = nξ ≥ 1

such that the composite map X(kξ)n → X(n)(kξ)
ϕ(n)

→ J(kξ) is surjective. Here kξ
is the real closure of k at ξ.

For the proof we need the language of the real spectrum; see the notations
section at the end of the introduction and references given there. In particular,
we need the notion of constructible subsets of the real spectrum. If V is any
scheme, let Vr be the real spectrum of V . (If {Vi} is an open affine covering of V ,
then Vr is the topological space obtained by glueing the real spectra of the rings
Γ(Vi, OV ).) For n ≥ 1 let W (n) be the image set of the map (Xn)r → Jr between
real spectra induced by the composite morphism Xn → X(n) → J of k-varieties.
Then W (1) ⊂ W (2) ⊂ · · · is an ascending sequence of constructible subsets of Jr
([9], Prop. 2.3). Given an ordering ξ of k, let W (n)ξ denote the intersection of
W (n) with the set Jr,ξ of points in Jr which lie over ξ. Then Jr,ξ is identified with

J̃(kξ) (:= the real spectrum of the base extension J ⊗k kξ), and its subset W (n)ξ is
the constructible subset associated with the (semi-algebraic) image set of the map
X(kξ)n → J(kξ). Therefore, if the ordering ξ is archimedean, there is n ≥ 1 with
Jr,ξ ⊂W (n).

Now if ξ is any ordering of k with Jr,ξ ⊂ W (n), then also Jr,η ⊂ W (n) holds
for all η ∈ Sper k sufficiently close to ξ. The reason is that the map Jr → Sper k
between the real spectra sends constructible sets to constructible sets ([9], Prop.
2.3). Therefore, if we knew that the archimedean orderings of k form a dense subset
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of Sper k, we would be finished since Sper k is compact. But this is actually true,
since the field k is finitely generated. We isolate this fact as a lemma:

2.13. Lemma. Let k be a finitely generated field extension of Q. Then the archi-
medean orderings of k form a dense subset of Sper k.

Proof. Choose a subfield F of k which is purely transcendental over Q and over
which k is finite. It suffices to prove density of archimedean orderings for F =
Q(t1, . . . , tn), since the restriction map Sper k → SperF is open. Let p1, . . . , pr be
polynomials in Q[t1, . . . , tn] such that there exists an ordering of F which makes all
pj positive. This means that there are R, a real closed field, and x ∈ Rn, such that
pj(x) > 0 for all j. Then the same is true for R = R, the classical reals, by Tarski.
Now it is clear that one can choose x ∈ Rn such that pj(x) > 0 and in addition
x1, . . . , xn are algebraically independent over Q. The embedding F ↪→ R given by
ti 7→ xi defines an archimedean ordering of F under which the pj are positive.

The proof of Theorem 2.7 is now complete.

2.14. Remark. In Theorem 2.7 we can fix a finite subset S of X(R) and require
that P1, . . . , Pn do not lie in S. By an iterated application of this remark, we
can even reach in addition that in 2.7 the points P1, . . . , Pn are distinct from each
other.

2.15. Remark. Note that Lemma 2.12 is definitely false in general if the base field
R is not archimedean. Indeed, the topological group J(R)0 has many open (though
not semi-algebraic!) subgroups in this case, e.g., subgroups defined with the help
of a non-trivial order-compatible valuation on R. Therefore, if the open subset U
is too small, the subgroup of J(R) generated by classes [P − P0] with P ∈ U can
be a small proper subgroup of J(R)0.

We conclude this section with two preparatory results about sums of squares on
curves.

2.16. Lemma. Let Y be a smooth irreducible affine curve over R, and let S be a
finite set of closed points of Y . If in R[Y ] every psd function is sos, then the same
holds in R[Y − S].

Proof. This would be obvious if R[Y −S] were a localization of R[Y ]; this, however,
need not be the case if Y is non-rational, and so one has to be a little more careful.

We first show that there exists s ∈ R[Y ] which vanishes in each point of S,
and such that every zero of s in Y − S is real. Indeed, let X be the smooth
compactification of Y , and consider the divisor D :=

∑
P∈S P on X . Choose a

point ∞ ∈ X r Y . By 2.7 and 2.8, there are P1, . . . , Pr ∈ X(R) and k ≥ 0 such
that−D ∼ ∑

i Pi−k∞. Let s ∈ R(X)∗ be a function with div(s) = D+
∑
i Pi−k∞.

Clearly, s ∈ R[Y ], and s has the required properties.
Now for g ∈ R[Y − S], there is n ≥ 0 such that s2ng =: f has no poles on Y ,

i.e., lies in R[Y ]. If g is psd on Y − S, then f is psd on Y , and so we can write
f =

∑
j f

2
j with fj ∈ R[Y ], by hypothesis. Thus g =

∑
j(
fj

sn )2. If P is any real

point in Y − S, then vP ( fj

sn ) ≥ 0 by Lemma 0.2. Since s has no complex zeros on
Y − S, the fj

sn lie in R[Y − S], and hence g is sos in R[Y − S].

2.17. Proposition. Let Y be a smooth affine curve over R which is rational. Then
every psd element of R[Y ] is a sum of squares.
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Proof. We can assume Y (R) 6= ∅, since otherwise every element of R[Y ] is a sum
of squares. By Lemma 2.16 it is enough to consider the case where Y is either the
affine line A1 or the circle, i.e., the plane curve with equation x2 + y2 = 1. Both
cases are well known and elementary. A proof for the second can be found in [5],
Thm. 3.7, but it is also an immediate consequence of the first.

2.18. Example. The last proposition does not extend to singular rational curves.
On the cuspidal curve y2 = x3 the function x is psd, but locally at the origin it is
not sos (1.9.3). A different kind of example is given by the nodal curve y2 = x3+x2:
The function x + 1 is psd but not sos, although it is a sum of squares locally at
every point of the curve.

3. Non-rational curves I: The non-compact case

Let R be a real closed base field, and let X be a smooth projective irreducible
curve of genus g ≥ 1 over R. Let T be a finite non-empty set of closed points of X ,
and let Y = X r T . The points in T will also be called the points of Y at infinity.
Throughout this section we assume that every point of Y at infinity is real . Under
this assumption it is generally quite easy to construct psd functions in R[Y ] which
are not sos. We will actually show that there are many such functions, in a suitable
sense.

We start with an easy example which already conveys the reason why one should
expect to find psd, non-sos functions:

3.1. Example. Let Y be the affine elliptic curve with equation y2 = x3 + x. Let
∞ be its point at infinity (which is real). The function x is visibly psd on Y , but
an immediate argument shows that x is not sos. To understand this example more
conceptually, note that x has a pole at ∞ of order two. If x were sos, say x =

∑
f2
i

with fi ∈ R[Y ], then the pole order of each fi at ∞ could be at most one. Since the
curve Y is not rational, this would imply that the fi are constant, a contradiction.

This argument can be generalized to give the following result:

3.2. Theorem. Let Y be a smooth connected affine curve of genus g ≥ 1 which
has only real points at infinity. Then there exists f ∈ R[Y ] which is strictly positive
on Y (R) but is not a sum of squares in R[Y ].

Proof. Write Y = X r T as above. Fix a point ∞ ∈ T and let U = X r {∞}.
Let Σ be the semigroup of all integers m ≥ 0 for which there exists f ∈ R[U ] with
v∞(f) = −m. By Riemann-Roch, there are only finitely many integers m ≥ 0 not
contained in Σ. Hence there exists m with m /∈ Σ but 2m ∈ Σ (otherwise we would
have 1 ∈ Σ, contradicting g ≥ 1). Let f ∈ R[U ] with v∞(f) = −2m; hence also
v∞(c ± f) = −2m for all c ∈ R. I claim that c ± f is never a sum of squares in
R[Y ]. Indeed, assume c± f =

∑
i f

2
i with fi ∈ R[Y ]. Then by Lemma 0.2, the fi

lie actually in R[U ] since the points in T r {∞} are real; and v∞(fi) = −m for at
least one index i, again by Lemma 0.2, since ∞ is real. By our choice of m, this
can’t happen.

On the other hand, the value f(P ) has a unique sign for P ∈ U(R) approaching
∞, since v∞(f) is even. Therefore f is bounded on U(R) from either above or
below. Hence there exist c ∈ R and a sign ε ∈ {±1} such that c + εf is strictly
positive on U(R).
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3.3. Remark. Beyond proving the mere existence of psd, non-sos functions, we
want to show that there are “many” such functions. For this it will be convenient
to use the notion of a preorder, which we now recall:

Let A be a ring. A preorder (cône in [3]) in A is a subset P of A which is
closed under addition and multiplication and contains all (sums of) squares. Any
intersection of preorders is again a preorder, so it makes sense to speak of the
preorder generated by a family of elements of A, or to say that a given preorder
is finitely generated. Given finitely many elements f1, . . . , fr in A, the preorder
generated by those consists of all sums∑

i∈{0,1}r

si f
i1
1 · · · f irr

where the si are sums of squares in A. The smallest preorder in A is ΣA2.
Now let V be an affine R-variety. If P is a finitely generated preorder in the

coordinate ring R[V ], we associate with P the basic closed semi-algebraic set

S(P ) := {x ∈ V (R) : f(x) ≥ 0 for every f ∈ P}.
Note that if P is generated by f1, . . . , fr, then S(P ) is the subset of V (R) described
by the simultaneous inequalities f1 ≥ 0, . . . , fr ≥ 0.

Conversely, if S is a subset of V (R), we can associate with S the preorder

P(S) := {f ∈ R[V ] : f ≥ 0 on S}.
Such a preorder is called saturated. The saturation of a finitely generated preorder
P is defined to be P̂ := P(S(P )). For example, the saturation of P = ΣR[V ]2 is
R[V ]+. (There is good reason to study the saturation of arbitrary preorders, but
for this one has to use the real spectrum, and we won’t go into it here.)

A basic question in real algebraic geometry is: Given f, f1, . . . , fr ∈ R[V ] such
that f ≥ 0 on the closed semi-algebraic set {f1 ≥ 0, . . . , fr ≥ 0}, when is f
contained in the preorder generated by f1, . . . , fr? In other words, given a finitely
generated preorder P and f ∈ P̂ , when is f ∈ P? In particular, when is P
saturated?

These questions are closely related to the psd = sos question. Indeed, if W is
the affine R-scheme defined by R[W ] = R[V ][t1, . . . , tr]/(t21− f1, . . . , t2r − fr), then
it is elementary to see that f is psd on W , and that f lies in P if and only if f is
a sum of squares in R[W ].

As before, assume now that X is an irreducible smooth projective curve over R
and that Y = X r T , where T is a finite non-empty subset of X(R).

3.4. Theorem. If X has genus g ≥ 1, then the preorder of all psd functions in
R[Y ] is not finitely generated.

If the base field is archimedean, we can prove the following version, which is
much stronger. It shows that there is a large class of saturated preorders which are
not finitely generated (cf. the discussion in Remark 3.3):

3.5. Theorem. Let R = R, and let X, T and Y = X rT be as before. Let P be a
finitely generated preorder in R[Y ], and assume that T is contained in the closure
of the semi-algebraic set S(P ), the closure being taken in X(R). Then there exists
a psd function f ∈ R[Y ] which is not contained in P .
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The proof of 3.5, resp. 3.4, is based on the following technical lemma, resp. on
its subsequent corollary:

3.6. Lemma. Let X be a smooth projective irreducible curve over R of genus
g ≥ 1, let ∞ ∈ X(R) and Y = X r {∞}. Moreover let U be a non-empty open
subset of X(R).

a) If X is not an M -curve (cf. 2.4), or if U is not contained in the same oval
as ∞, there exists f ∈ R[Y ] such that
(α) f is psd, but not a square;
(β) all zeros of f are real, and they all lie in U .

b) If X is an M -curve and U ∪ {∞} is contained in a single oval C, such f
does not exist. But for any preassigned point N ∈ X(R) with N /∈ C, there is
f ∈ R[Y ] satisfying (α) and
(β′) f has only real zeros, of which one is a double zero at N and all others

lie in U .

Over an arbitrary real closed field R, the lemma fails for general U (Remark 3.8
below). However, from its proof we will at least get the case U = X(R) r {a finite
set} without additional effort:

3.7. Corollary. Let R be an arbitrary real closed field and X a smooth projective
irreducible non-rational curve over R. Let ∞ ∈ X(R) and Y = X r {∞}. Given
finitely many points Q1, . . . , Qr ∈ Y (R), there is a function f ∈ R[Y ] which is psd
but not a square, has only real zeros, and satisfies f(Qi) 6= 0 (i = 1, . . . , r).

Proof of 3.6 and 3.7. Suppose we are in the situation of Lemma 3.6. Let s be the
number of ovals of X(R). We first assume that X is not an M -curve, i.e., s < g+1.
Let L and L0 be defined as in Lemma 2.3. Since X is not an M -curve, we find
0 6= α ∈ L0, by 2.3c). According to Lemma 2.12 there are n ≥ 1 and P1, . . . , Pn ∈ U
such that α is the class of the divisor D := P1 + · · ·+ Pn − n .∞. Let f ∈ R(X)∗

be a function with div(f) = 2D. By diagram (3) (before Lemma 2.3), one of ±f is
psd. Replacing f by −f if necessary, it is clear that (α) and (β) are satisfied.

Exactly the same argument works over an arbitrary real closed base field R if
U = X(R) r {Q1, . . . , Qr}, replacing the reference to 2.12 by 2.7 and 2.14.

Now assume s = g + 1 in the situation of 3.6. Let ϕ = ϕ(1) : X → J be the
canonical morphism associated to the base point ∞, cf. Sect. 2. If U ∪ {∞} is
not contained in a single oval, then the (open) subgroup of J(R) generated by
ϕ(U) is not contained in J(R)0 (2.6). Therefore it contains some 0 6= α ∈ L, (cf.
2.3d); one can now proceed as before. Again, the argument extends to general R if
U = X(R) r {Q1, . . . , Qr}, since then ϕ(U) generates all of J(R) (2.14).

Consider now the situation of 3.6b) (so R = R again). Then [N −∞] /∈ J(R)0,
so there is 0 6= β ∈ L lying in the same connected component as [N −∞]. Now
apply the above argument to α := β − [N − ∞]: Since α ∈ J(R)0, there are
P1, . . . , Pn ∈ U with α =

∑
i[Pi −∞]. Hence there is f ∈ R(X)∗ with div(f) =

2N + 2
∑
i Pi− 2(n+ 1)∞. Again by (3), one of ±f is psd; and ±f are not squares

since β 6= 0.
Note that if X is an M -curve and U ⊂ C, there is no f satisfying (α) and (β),

since ϕ(U) ⊂ J(R)0 in this case, and L0 = {1}.
3.8. Remark. If R is non-archimedean and U 6= ∅ is a very small open subset of
X(R), the (open) subgroup of J(R) generated by ϕ(U) will be very small, and in
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particular, it need not contain any 2-torsion point of J(R). Therefore Lemma 3.6
is definitely false in general for such R.

We now give the proof of Theorem 3.5. Say P is generated by f1, . . . , fr ∈ R[Y ].
We can assume that the fν are not constant. Write S := S(P ) for the basic closed
set associated with P . Since S is not a finite set, there is a non-empty open subset
U of Y (R) contained in S. By removing finitely many points from U we can in
addition assume that none of the fν vanishes anywhere in U .

Fix a point ∞ ∈ T , and let f ∈ R[Y ] be a function as in Lemma 3.6 (part a) or
b), depending on the situation). We proceed to show that f /∈ P (if N is suitably
chosen in case b), see below).

First assume we are in case a), so all zeros of f lie in U ⊂ S. Assume f ∈ P .
Then f = g1 + · · ·+ gs where each gj is a product a2f i11 · · · f irr with iν ∈ {0, 1} and
a ∈ R[Y ]. Now Lemma 0.2 shows vM (gj) ≥ vM (f) for all points M ∈ X(R) in the
closure of S. In particular, this remark applies to the zeros of f and the points in
T . So div(gj) ≥ div(f) for all j, which shows that gj = f up to a positive scalar
factor. Since the fν do not vanish in the zeros of f , the gj must be squares. This
contradicts that f is not a square.

Now assume we are in the exceptional case b) of 3.6. We can then assume
div(f) = 2N + 2D, where D = P1 + · · · + Pm − (m + 1)∞ with P1, . . . , Pm ∈ S,
and N ∈ X(R) is a point of which we can require N /∈ E := T ∪ {M : 2M ∼ 2∞}.
Assuming f ∈ P , we have again f = g1 + · · · + gs where each gj is a product
a2f i11 · · · f irr as above. The same argument as before gives us now div(gj) ≥ 2D for
all j. Since fν(Pµ) 6= 0, the summands gj must therefore either be squares a2, or else
products a2fν , in which case the pole order of fν at∞must be 2. Actually the latter
case cannot occur: We would necessarily have div(a2) = 2

∑
µ(Pµ−∞) = 2D+2∞

(since fν(Pµ) 6= 0), which would imply 2N−2∞ = div(f/a2), contradicting N /∈ E.
Therefore the summands gj must be squares again. But then div(gj) ≥ div(f) (and
thus equality) as before, contradicting that f is not a square.

The proof of Theorem 3.4 (over arbitrary R) works exactly along the lines of the
first part of the above proof, using Corollary 3.7 instead of Lemma 3.6.

3.9. Corollary. (R = R) Assume |T | = 1, i.e., Y = X r {∞} with ∞ ∈ X(R),
and assume again g ≥ 1. If P is any finitely generated preorder in R[Y ] for which
S(P ) is not compact, then P does not contain all psd functions in R[Y ], and in
particular, is not saturated.

4. Non-rational curves II: The compact case

We now study the case of “compact” curves. More precisely, let X be a smooth
irreducible projective curve over a real closed field R, and let ∞ be a complex closed
point of X . We study sums of squares on the affine curve Y := X r {∞}. Note
that Y (R) is semi-algebraically compact since Y (R) = X(R). We will always use
g to denote the genus of X . Again our basic question is: Is every psd function in
R[Y ] a sum of squares in R[Y ]?

The main result (Theorem 4.10) says that this is indeed the case for elliptic
curves, provided that the base field R is archimedean. For non-archimedean R
there are, however, counter-examples (Theorem 4.11). One wonders whether over
archimedean R the positive result might hold for arbitrary genus.

Assume that R is archimedean, i.e., R ⊂ R. Then Schmüdgen’s theorem [30]
implies that every strictly positive f ∈ R[Y ] is a sum of squares. (See [33] for
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Wörmann’s beautiful proof of Schmüdgen’s theorem in purely algebraic terms.)
But it is not clear whether this fact can be used for proving that all psd functions
are sos. Instead we try to make a reduction to the case of psd functions with only
real zeros. We first present some arguments which are valid for arbitrary genus,
and then show how the argument can be completed in the special case g = 1.

Let K = R(X) always be the function field of X , resp. Y , and write KC = K(i),
i =

√−1. We will assume g ≥ 1, the case g = 0 being clear (2.17).

4.1. Proposition. Let f ∈ R[Y ] be a psd function. Then there is a psd function
f ′ ∈ R[Y ] which has at most g − 1 complex zeros (counted with multiplicity), and
such that f − f ′ is a sum of squares in R[Y ].

Proof. Let 2n, resp. r, be the number of real, resp. complex, zeros of f . In other
words, we have divX(f) = 2D +D′ − (n+ r)∞ where D, D′ are effective divisors
with supp(D) ⊂ X(R) and deg(D) = n, and supp(D′) ∩X(R) = ∅, ∞ /∈ supp(D′)
and deg(D′) = 2r.

Assume that there exists a sum of squares h 6= 0 in R[Y ] with divX(h) ≥
2D−(n+r)∞. The function h

f ∈ K∗ is psd and has no real poles, so it is bounded on
X(R) = Y (R). Hence it assumes its maximal value µ > 0 in some point P ∈ X(R).
Put f ′ := f − 1

µh. Clearly vP
(
µ− h

f

) ≥ 2, which means vP (f ′) ≥ 2 + vP (f). Since
obviously vQ(f ′) ≥ vQ(f) for every real point Q, the function f ′ ∈ R[Y ] has at
least one double real zero more than f . Since on the other hand the pole order has
not increased, we conclude that f ′ has at least one complex zero less than f .

To see how far this will take us, consider divisors on the complexification XC of
X . Denote the two closed points of XC which lie over the closed point ∞ of X by
∞0 and ∞1 = ∞0. Assume that p, q are integers with p+ q = n+ r such that there
exists a ∈ K∗

C with divXC (a) ≥ D − p∞0 − q∞1. By Riemann-Roch, such a will
certainly exist if r ≥ g. The function h := aā is a sum of two squares in R[Y ] and
satisfies divX(h) ≥ 2D − (n + r)∞. Using the above argument, we can therefore
reduce the number of complex zeros of f by at least one.

In summary, we have proved that by successively subtracting suitable sums of
squares from f we can arrive at a psd function f ′ with at most g − 1 complex
zeros.

Now we consider psd functions f ∈ R[Y ] which have only real zeros. For such f
we show that the question whether f is sos depends only on the square class of f
in K∗, and that there are exactly 2g+1 such square classes.

4.2. Lemma. Let 0 6= f , f ′ ∈ R[Y ] be such that f ′/f is a square in K∗. If f is
sos, and if vQ(f ′) ≥ vQ(f) for every complex point Q 6= ∞, then also f ′ is sos.

Proof. Let h ∈ K∗ with f ′ = fh2, and let f =
∑
j f

2
j be an sos representation in

R[Y ]. Thus f ′ =
∑
j(fjh)

2, and it suffices to show fjh ∈ R[Y ] for all j. From the
hypothesis it follows that h, and therefore fjh, has no complex poles other than
∞. On the other hand, if P is a real point, then clearly vP (fjh) ≥ 0, by Lemma
0.2.

4.3. Proposition. Let W be the subgroup of K∗/K∗2 consisting of the square
classes of all psd functions f ∈ R[Y ] which have only real zeros. Then the order of
W is equal to 2g+1.
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Proof. The map which sends fK∗2 to v∞(f) mod 2 is a homomorphism ρ : W →
Z/2. Let W0 be its kernel. Recall the definitions of H , L etc. from 2.3. I claim that
W0 = H+ (2.5); i.e., given f ∈ K∗, the square class fK∗2 lies in W0 iff f is psd and
div(f) is divisible by 2. Clearly W0 ⊂ H+. To prove equality, let θ ∈ L = ker(φ̄)
be given. We show that the square class in H+ which maps to θ under σ : H+

∼→ L
can be represented by a psd function in R[Y ]. Indeed, there are m ≥ 1 and real
points P1, . . . , P2m on X with θ = [

∑
j Pj − m∞] (2.8). Thus there is f ∈ K∗

with div(f) = 2
(∑

j Pj −m∞)
. One of ±f is psd since φ̄(θ) = 0, so ±fK∗2 ∈ H+

for a suitable choice of sign ±; and σ(±fK∗2) = θ. This completes the proof of
W0 = H+.

Thus W0 has order 2g (2.5), and it remains to show that ρ is not trivial. Fix
a base point P0 ∈ X(R) and an odd number q ≥ n, with n as in Theorem 2.7.
The class α := [∞− 2P0] lies in J(R)0 by Lemma 2.6, so there is β ∈ J(R)0 with
2β = qα. By 2.7 we can write β =

∑q
i=1[Pi − P0] with P1, . . . , Pq ∈ X(R). Thus

there exists f ∈ R[Y ] with div(f) = 2
∑q
i=1 Pi − q∞. Clearly the function f is lsd.

Choose θ ∈ 2J(R) such that φ̄(θ) = ψ(−1, f), cf. diagram (3). Moreover choose
points Q1, . . . , Q2m ∈ X(R) such that θ is the class of the divisor

∑2m
i=1Qi −m∞

(2.8). Let f ′ ∈ R[Y ] be a function with div(f ′) = 2
(∑2m

i=1Qi−m∞
)
. The function

f ′ is lsd, and ψ(−1, f ′) = ψ(−1, f) by construction. So one of±ff ′ is psd. Moreover
ff ′ ∈ R[Y ] is a function which has only real zeros and for which v∞(ff ′) =
−(q + 2m) is odd.

4.4. Corollary. Let f0, f1, . . . , fg ∈ R[Y ] be g + 1 psd functions with only real
zeros whose classes in K∗/K∗2 are linearly independent (over Z/2). If each fi is
sos, then every psd function f ∈ R[Y ] with only real zeros is sos.

This follows immediately from the proposition, using Lemma 4.2.

To check whether every psd function on Y with only real zeros is sos is therefore,
in principle, a finite task. We will now carry it out explicitly in the case of elliptic
curves.

4.5. So assume that g = 1. It follows from Riemann-Roch that Y is isomorphic to
a plane affine curve with equation

y2 + q(x) = 0,(4)

where (x, y) are plane affine coordinates and q(x) is a quartic separable polyno-
mial. Since Y (R) is semi-algebraically compact, we can assume that q(x) is monic;
moreover q(x) has at least two real roots since Y (R) 6= ∅. So we can write

q(x) = (x− a)(x − b) · q1(x)
where q1 is a monic quadratic polynomial which has positive values outside the
open interval ]a, b[. Let f0 = x − a and f1 = b − x, and write q = fi · hi with
hi ∈ R[x] for i = 0, 1.

4.6. Lemma. The following two conditions are equivalent:

(i) Every psd element of R[Y ] is a sum of squares;
(ii) for i = 0, 1 there are psd polynomials Pi(x), Qi(x) ∈ R[x] satisfying Pifi −

Qihi = 1.
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Proof. Since g = 1, condition (i) is actually equivalent to the apparently weaker
condition that every psd element with only real zeros is a sum of squares. This
follows from Proposition 4.1. On the other hand, Corollary 4.4 shows that the
latter is equivalent to f0 and f1 being sums of squares: Indeed, f0 and f1 are psd
functions on Y with only real zeros, and they are linearly independent in K∗/K∗2.

We show now that fi is sos if and only if condition (ii) holds for i (i = 0, 1). Fix
one of i = 0, 1, and write f = fi and h = hi, so y2 + fh = 0. First suppose that
there are psd polynomials P (x), Q(x) in R[x] with Pf −Qh = 1. Multiplying this
identity with f gives Pf2 +Qy2 = f , which shows that f is sos.

Conversely assume that f is sos. Let M ∈ Y (R) denote the (unique) zero of f
on Y . We need the following

4.7. Sublemma. The ideal I in R[Y ] consisting of the functions which vanish at
M is the R[x]-submodule of R[Y ] generated by f and y.

Proof. I is generated by f and y as an ideal: For this it suffices that f and y
generate I locally at any closed point N of Y . If N 6= M , then f generates I at N
since f(N) 6= 0, while y generates I at M since vM (y) = 1. The assertion of 4.7
follows now from R[Y ] = R[x] + yR[x] and y2 ∈ fR[x].

Back to the proof of Lemma 4.6. Suppose f =
∑

j a
2
j with aj ∈ R[Y ]. Then

every aj must vanish in M , so by 4.7 we can write aj = Pj(x) . f + Qj(x) . y
with polynomials Pj , Qj ∈ R[x]. Expanding the sum of squares we find that
f =

∑
j Pj(x)

2f2 +
∑

j Qj(x)
2y2 (and

∑
j Pj(x)Qj(x) = 0). Thus we have found

psd polynomials P (x), Q(x) in R[x] with f = P (x)f2−Q(x)fh, from which identity
(ii) follows. Lemma 4.6 is proved.

We will now show that the equivalent conditions of Lemma 4.6 are indeed satis-
fied, provided that the base field R is archimedean. Indeed, let f be one of f0 = x−a
and f1 = b − x, and let h = h(x) be defined by y2 + fh = 0, as before. The exis-
tence of psd polynomials P , Q in R[x] with Pf −Qh = 1 is a particular case of the
following more general result (put g := −h there):

4.8. Proposition. Let R be an archimedean real closed field, and let f , g ∈ R[x]
be two polynomials satisfying the following conditions (a)-(c):

(a) (f, g) = 1;
(b) the set {x ∈ R : f(x) ≥ 0, g(x) ≥ 0} is bounded;
(c) the set {x ∈ R : f(x) ≤ 0, g(x) ≤ 0} is empty.

Then there exist psd polynomials P , Q ∈ R[x] such that Pf +Qg = 1.

Observe that conditions (a)-(c) are trivially necessary for the existence of P and
Q, at least if f and g are not constant.

Proof. We can assume R = R. Let p, q be any two polynomials with pf + qg = 1.
We are looking for a polynomial F such that P := p+Fg and Q := q−Ff are psd
(note Pf +Qg = 1). In other words, we want the two inequalities

F (x)g(x) ≥ −p(x),(5a)

F (x)f(x) ≤ q(x)(5b)

to hold for all x ∈ R.
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Claim: There is a continuous function h : R → R which satisfies (5a) and (5b)
(in place of F ), even with strict inequalities.

Let x0 ∈ R. If f(x0)g(x0) < 0, the inequalities (5) are either both upper or
both lower bounds for F (x0). If f(x0) > 0 and g(x0) > 0, they say F (x0) ∈
[− p(x0)

g(x0) ,
q(x0)
f(x0)

], which is an interval of positive length 1/f(x0)g(x0).
Assume f(x0) = 0. Then g(x0) > 0, and so q(x0) > 0. Therefore it is easy to

see that for every continuous solution F to (5a) there exists ε > 0 such that F also
satisfies (5b) for |x−x0| < ε. A similar statement holds if g(x0) = 0, with the roles
of (5a) and (5b) being reversed. From this discussion the claim follows easily.

By hypothesis (b) we can find c > 0 such that f(x)g(x) < 0 for |x| ≥ c. Then
for x ≥ c the two inequalities (5) are either both lower or both upper bounds for
F (x). Similarly for x ≤ −c.

Now let h be a function as in the claim. Using Weierstraß approximation, we find
a polynomial F1 which approximates h very closely on [−c, c]. Then F1(x) satisfies
the strict versions of inequalities (5) for all x ∈ [−c, c]. We want to find a second
polynomial F2 such that |F2| is very small on [−c, c] (so small that F := F1 + F2

still satisfies (5) there), and such that F := F1 +F2 satisfies (5) on |x| ≥ c. Indeed,
F will then satisfy (5) globally, and the proposition will be proved.

The existence of F2 follows easily from the following lemma, whose proof there-
fore completes the proof of Proposition 4.8:

4.9. Lemma. Let r(x) be a rational function without poles for |x| ≥ 1, and with
r(±1) = 0. Given ε > 0, there exists a polynomial G with |G(x)| < ε for |x| ≤ 1
and with G(x) ≥ |r(x)| for |x| ≥ 1.

Proof. We have r(x) = (x2 − 1) q(x) where q(x) has no poles for |x| ≥ 1. There
is a polynomial whose values for |x| ≥ 1 are larger than those of q(x). So we can
assume that q(x) is a polynomial. Evidently we can also assume that q(x) is even.
Let c = maxi≥0 |q(i)(1)|, and choose n so large that 2n ≥ deg(q) and nε > c. Then
G(x) = c · (x2 − 1)x2n has the required properties.

Summing up, we get the following theorem, which for elliptic curves (over archi-
medean R) gives a complete answer to the question whether all psd elements are
sums of squares:

4.10. Theorem. Assume that the real closed field R is archimedean. Let Y be a
smooth affine elliptic curve over R.

a) If Y has at least one complex point at infinity, then every positive semidefinite
function in R[Y ] is a sum of squares.

b) If all points of Y at infinity are real, then there exist positive definite functions
in R[Y ] which are not sums of squares.

Proof. b) is contained in Theorem 3.2 and is only recorded here for completeness.
To prove a), it suffices by Proposition 2.16 to prove the case where Y has only one
complex and no real point at infinity. This is the situation that was considered
above.

There remains the question whether the assumption of R being archimedean
was truly essential. We show that this is indeed so. Notice that this gives also a
counter-example to Proposition 4.8 over non-archimedean R:
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4.11. Theorem. Assume that the real closed field R is not archimedean. Then,
for a suitably chosen equation (4) of an affine elliptic curve Y over R (with q(x) a
monic quartic separable polynomial), there exists a psd function f ∈ R[Y ] which is
not a sum of squares.

Proof. Let ε ∈ R be a positive element which is smaller than any positive rational
number. Let Y be the curve with equation y2 + xh(x) = 0, where

h(x) =
(
x− 1

ε2
)
(x2 + εx+ ε2).

The polynomial h satisfies h(0) = −1 and has only one real zero, at x = 1
ε2 > 0.

Therefore f := x is psd on Y (R). I claim that x is not sos in R[Y ]. If it were, there
would be psd polynomials P , Q ∈ R[x] with Px − Qh = 1 (cf. proof of 4.6), i.e.,
the polynomial x . (1 +Qh) would be psd. So Q would satisfy

Q(x) ≥ − 1
h(x)

for x < 0 and 0 ≤ Q(x) ≤ − 1
h(x)

for 0 < x <
1
ε2
.

In particular Q(0) = 1. It is easily checked that h′(x) < 0 on [0, 1], which implies
0 ≤ Q(x) ≤ 1 for x ∈ [0, 1], and so ‖Q‖ = 1. (By ‖ · ‖ we denote the supremum
norm on [0, 1].) On the other hand, h(ε) = 3ε3 − 3 < −2, and therefore Q(ε) < 1

2 .
It follows that there exists 0 < x < ε with Q′(x) < − 1

2ε , which is a negative number
of infinitely large absolute value.

However, such a polynomial Q cannot exist. Indeed, it is easy to see that for
every n there must be a real number cn > 0 such that ‖q′‖ ≤ cn‖q‖ for every
q ∈ R[x] of degree ≤ n. In fact, Markov’s inequality ([4], p. 233) says that one can
take cn = 2n2 (and this is best possible). By Tarski’s principle, the same holds over
any real closed field, and with the same cn. The polynomial Q from above would
satisfy ‖Q‖ = 1 and ‖Q′‖ ≥ 1

2ε , which is larger than any integer, contradiction.

4.12. Remark. Even if R is not archimedean, there are still many elliptic curves
(4) on which every psd polynomial is a sum of squares, as is obvious from the above
discussion.

4.13. Remark. On singular “compact” curves it may well happen that psd func-
tions are not sums of squares, even if the curve is rational. For an example let
X be the projective closure of the affine curve y2 = x3, and let Y be the comple-
ment of the two (complex) zeros of 1 + x2 on X . Then Y (R) = X(R) is compact,
and f = x+x2

1+x2 is a regular function on Y which is psd but not sos. Indeed, from

f = x+ x2−x3

1+x2 one sees that f is not even sos in the local ring at the singularity.

5. Extending psd functions

In this section we prove that a psd regular function on a smooth affine curve can
always be extended to a psd regular function on any ambient smooth affine variety
(Theorem 5.6).

Let a be any ring, let f ∈ A, and let α ∈ SperA. Recall that β ∈ SperA is
called a generalization of α if α ∈ {β}. We say that f is locally psd around α if the
following two equivalent conditions hold:

(i) f(β) ≥ 0 for every generalization β of α in SperA;
(ii) there is a neighborhood U of α in SperA such that f ≥ 0 on U .
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(The asserted equivalence follows easily from a compactness argument.)
First let A be a regular local domain of dimension d, with maximal ideal m and

residue field κ = A/m. Let 0 6= f ∈ A and n = µ(f), i.e., f ∈ mn r mn+1. We
study the connection between positivity properties of f and of the leading form
`(f). Fixing a regular system x1, . . . , xd of parameters for A, `(f) is a non-zero
homogeneous polynomial of degree n in κ[ξ1, . . . , ξd], where ξi = `(xi) (cf. Sect. 1).
Given an ordering α of κ, we say that `(f) is psd at α if `(f) is psd when considered
as a homogeneous polynomial over the real closure κα of κ at α. We say that `(f)
is pd at α if `(f) is psd at α and has no non-trivial zero in κdα.

5.1. Lemma. Let A be a regular local ring with maximal ideal m and residue field
κ = A/m. Let α ∈ Sper κ, and let 0 6= f ∈ A.

a) If f is locally psd around α, then the leading form `(f) is psd at α.
b) Conversely, if `(f) is pd at α, then f is locally psd around α. In fact, f(β) > 0

for every proper generalization β of α.

If `(f) is only psd (but not pd) at α, then f need not be locally psd around α.
For example, take f = y2 − x3 around the origin.

Proof. We fix a regular system of parameters x1, . . . , xd and consider λ := `(f) as
a homogeneous polynomial of degree n = µ(f) in κ[ξ1, . . . , ξd], where ξi = `(xi).

First assume that f is locally psd around α, and suppose there are a1, . . . , ad ∈
κα with λ(a1, . . . , ad) < 0. Define the homomorphism ϕ : A → κα[[t]] to be the
composition of A→ Â with the κ-homomorphism

Â = κ[[x1, . . . , xd]] → κα[[t]], xi 7→ ait.

Then ϕ(f) = λ(a1, . . . , ad) . tn + (terms of higher order). So at least one of the
two orderings of κα((t)) makes ϕ(f) negative, say ω. Clearly β := ϕ∗(ω) is a
generalization of α and has f(β) < 0, which contradicts the hypothesis.

Conversely, suppose that λ is pd at α. We have to show the following. Let
ρ : A → R be a homomorphism into a real closed field R such that ρ(u) > 0 for
every u ∈ A∗ with u(α) > 0. If moreover ker(ρ) 6= m, then ρ(f) > 0.

There is a convex subring B 6= R of R with ρ(A) ⊂ B and ρ−1(mB) = m, where
mB is the maximal ideal of B ([19], p. 132). Let v be the valuation of R associated
with B, with value group Γ. We have v(ρxi) > 0, and v(ρxi) 6= ∞ for at least one
i, since ker(ρ) 6= m. We can arrange the xi such that v(ρx1) = · · · = v(ρxe) = γ
and v(ρxi) > γ for i = e + 1, . . . , d, where 1 ≤ e ≤ d and 0 < γ ∈ Γ. Clearly
v(ρa) ≥ jγ for every a ∈ mj, j ≥ 0.

The form λ has even degree n = 2m = µ(f). By choosing representatives in A
for the coefficients of λ, we find a homogeneous polynomial L = L(ξ1, . . . , ξd) of
degree n with coefficients in A whose reduction mod m is λ. Define elements f0,
f1, f2 ∈ A by

f0 = L(x1, . . . , xe, 0, . . . , 0), f1 = L(x1, . . . , xd)− f0

and

f2 = f − L(x1, . . . , xd) = f − (f0 + f1).

Since λ is pd at α, it is also pd considered as a form over the residue field of
B (which is real closed and contains (κ, α) as an ordered subfield). This implies
that ρf0 = (ρx1)n · u with u a positive unit of B. In particular, ρf0 > 0 and
v(ρf0) = nγ. Moreover clearly v(ρf1) > nγ, since each monomial occurring in f1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1062 CLAUS SCHEIDERER

involves one of xe+1, . . . , xd. And v(ρf2) ≥ (n + 1)γ since f2 ∈ mn+1. Therefore
v(ρf0) < v

(
ρ(f − f0)

)
, which implies ρf > 0 as asserted.

Now let A be any ring and I an ideal of A. We address the following question:
When can every psd element of A/I be lifted to a psd element of A? In other words,
when is the map A+ → (A/I)+ surjective?

5.2. Remarks.
1. Every sum of squares in A/I can be lifted to a sum of squares in A, and in

particular, lies in the image of A+ → (A/I)+. Therefore A+ → (A/I)+ is surjective
whenever (A/I)+ = Σ(A/I)2.

2. In general, A+ → (A/I)+ fails to be surjective. For example, if A = R[x, y]
and I = (y2 − x3), then f = x is psd on the curve y2 = x3, but cannot be lifted
modulo I to a psd polynomial in R[x, y], not even locally around the origin. This
is obvious from Lemma 5.1a).

We introduce some terminology. Given a subset M of A, write Z(M) = ZA(M)
for the closed subset {α : f(α) = 0 for every f ∈ M} of SperA. So Z(M) can
be identified with Sper(A/I) where I is the ideal generated by M . An element
f ∈ A will be called psd around Z(M) if f(α) ≥ 0 for every α ∈ SperA with
{α} ∩ Z(M) 6= ∅.
5.3. Lemma. Let A be a ring and I an ideal of A. Let f ∈ A be such that f̄ = f+I
is psd in A/I. Assume that for every α ∈ Z(I + (f)) there is some hα ∈ I ∩ A+

such that f + hα is locally psd around α. Then there is h ∈ I with f + h ∈ A+.

This sufficient condition for f̄ to have a psd lift is clearly not necessary. For
example, take A = R[x, y], I = (x) and f = x + y2. There is no psd polynomial
h ∈ I which would make f + h psd around the origin. Still it is obvious that f can
be changed mod I into a psd polynomial (e.g., into y2).

Proof. It suffices to prove that for any α ∈ SperA there is hα ∈ I ∩ A+ with
(f + hα)(α) ≥ 0. Indeed, the subsets {f + hα ≥ 0} of SperA being constructible,
the compactness of SperA under the constructible topology implies that there are
finitely many points α1, . . . , αn ∈ SperA such that

⋃n
i=1{f + hαi ≥ 0} = SperA.

Putting h :=
∑n
i=1 hαi , we then have h ∈ I and f + h ≥ 0 on SperA.

If α has a specialization β in Z(I), we are done by the hypothesis (note that we
can take hα = 0 if f(β) 6= 0). So we may assume {α} ∩Z(I) = ∅. This means that
the ideal I + supp(α) is not contained in any α-convex ideal of A ([19], p. 130).
Therefore there is g ∈ I with g(α) ≥ 1. Put hα := (1 + f2) . g2. Then hα ∈ I ∩A+,
and hα(α) > |f(α)|, so this hα does what we want.

5.4. Corollary. For every f ∈ A which is psd around Z(I), there is h ∈ I with
f + h ∈ A+.

5.5. Corollary. For every f ∈ A which is strictly positive on Z(I), there is h ∈ I
such that f + h is strictly positive on SperA.

Proof. The construction in the proof of Lemma 5.3 gives for every α ∈ SperA an
element hα ∈ I ∩ A+ for which (f + hα)(α) > 0. Conclusion as in the proof of
Lemma 5.3.

A weak version of Corollary 5.4 has been proved earlier by Gondard and Riben-
boim. Namely, in the case where A = R[x1, . . . , xn] is the polynomial ring over a
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real closed field, they proved 5.4 under the additional assumption that the subset
{f < 0} of Rn is bounded ([13], Thm. 2).

We’ll show now that every psd function on a smooth curve can be extended to
a psd function on any ambient smooth variety. More generally:

5.6. Theorem. Let A be a regular noetherian ring and p a prime ideal of A such
that A/p is regular of dimension at most one. Then A+ → (A/p)+ is surjective.

Proof. The proof is obvious if p is a maximal ideal, cf. the first remark in 5.2. So
we assume dim(A/p) = 1. Let f ∈ A, f /∈ p, such that f̄ = f + p is psd in A/p. Let
q1, . . . , qs be those maximal ideals of A which contain p + (f) and have a formally
real residue field. The strategy of the proof will be as follows: For each j = 1, . . . , s
we’ll find an integer mj ≥ 0 and an element hj ∈ p such that, for every h ∈ A with
h ≡ hj mod q

mj

j , the element f + h is psd around Z(qj). Then there will be h ∈ p

with h ≡ hj mod q
mj

j for j = 1, . . . , s (Chinese Remainder Theorem; the usual
proof shows that h can indeed be chosen in p). By construction, therefore, f + h
is psd around Z(p + (f)), and hence around Z(p). An application of Corollary 5.4
completes the proof.

So let q be a maximal ideal containing p + (f) whose residue field k = A/q
is formally real. Let d be the height of q. We can find a sequence x1, . . . , xd of
elements of q whose images in Aq form a regular system of parameters for Aq, and
such that pAq is generated by x2, . . . , xd ([21], Thm. 36, 4), p. 121). Hence x̄1 is a
local uniformizer at q/p in the Dedekind domain A/p, and x2, . . . , xd ∈ p.

Since f is psd on A/p and k is real, the leading term of f̄ in the discrete valuation
ring Aq/pAq must have the form s̄ . x̄2n

1 with n ≥ 1 and s̄ ∈ k∗ a sum of squares.
Consider the isomorphism

A
/
q2n+1 ∼→ Aq

/
(qAq)2n+1 ∼= k[x1, . . . , xd]

/
(x1, . . . , xd)2n+1.(6)

(The left-hand map is indeed an isomorphism since the ideal q is maximal.) Under
(6), the class of f in A/q2n+1 corresponds therefore to the class of a polynomial
s̄ . x2n

1 + p(x1, . . . , xd), where each monomial occurring in p is divisible by one of
x2, . . . , xd. Thus there is an element g ∈ p with f + g ≡ s̄ . x2n

1 modulo q2n+1.
Put h := g + x2n

2 + · · ·+ x2n
d , an element of p. If h′ ∈ A with h′ ≡ h mod q2n+1,

then f + h′ is modulo q2n+1 congruent to s̄ . x2n
1 + x2n

2 + · · ·+ x2n
d . So the leading

form of f + h′ in Aq is visibly positive definite with respect to every ordering of k.
By Lemma 5.1b), f + h′ is therefore psd around Z(q).

6. Surfaces and higher-dimensional varieties

Let R be a real closed field and V an affine algebraic variety over R of dimension
n ≥ 2. We ask the same question as for curves: Is every psd regular function on V
a sum of squares of regular functions? For example, if V is the affine n-space An,
the answer is no. This was proved by Hilbert in 1888 [15].

Given any V as above, suppose we want to prove the analogue of Hilbert’s
theorem, i.e., show that there are psd elements in R[V ] which are not sums of
squares. How could we possibly proceed?

The easiest line of argumentation would be to use local obstructions, provided
there are any. As we have seen in Sect. 1, such obstructions do indeed exist if
n = dim(V ) ≥ 3. This allows us to find a psd, non-sos function on any connected
such V with V (R) 6= ∅ (see 6.2).
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In the case of smooth surfaces, however, this method is doomed to failure since
we do not know a single example of a two-dimensional regular local ring A for
which A+ 6= ΣA2. (See the discussion in Sect. 1.) Instead we will try to reduce the
question to suitable smooth curves on V and use the extension theorem, Theorem
5.6, for psd functions. See Theorem 6.4 below.

We start with dim(V ) ≥ 3. For the notion of a preorder P and its associated
basic closed set S(P ), see Sect. 3. As indicated above, our reasoning will essentially
be of local nature:

6.1. Proposition. Let V be an affine R-variety, and let P be a finitely generated
preorder in R[V ] such that the semi-algebraic set S(P ) has dimension ≥ 3. Then
there exists a psd polynomial in R[V ] which is not contained in P .

Proof. Put A := R[V ]. Let f1, . . . , fr ∈ A be generators of P , let S = S(P ) = {f1 ≥
0, . . . , fr ≥ 0} and assume dim(S) ≥ 3. Let Z be an irreducible component of the
Zariski closure of S in V with dim(Z) ≥ 3, and let p ⊂ A be the prime ideal of Z.
After relabelling, let f1, . . . , fs be those fi with fi /∈ p (here 0 ≤ s ≤ r). There is a
point Q ∈ S ∩Z(R) which is regular on Z and for which f1(Q) > 0, . . . , fs(Q) > 0.
Indeed, S ∩ Z(R) would otherwise be contained in Zsing ∪ {f1 · · · fs = 0}, which is
a proper Zariski closed subset of Z, contradicting that S ∩ Z(R) is Zariski dense
in Z.

The local ring of Q on Z is B := Aq/pAq (q := maximal ideal of Q), and is a
regular local ring of dimension d := dim(Z) ≥ 3. There is a sequence x1, . . . , xd
of elements in A such that the images x̄1, . . . , x̄d of the xj in B form a regular
sequence of parameters for B. Let h(t1, . . . , td) be a psd form over R which is not
a sum of squares (see remark before 1.2), and let f := h(x1, . . . , xd) ∈ A. Then
f ∈ A+ as in the proof of 1.2. I claim that f /∈ P . Indeed, assume there is an
expression f =

∑
i si · f i11 · · · f irr with si ∈ ΣA2, where i is ranging over {0, 1}r.

Read this identity in B̂. For i ≤ s, fi is a square in B̂ since fi(Q) > 0. The
remaining fi are zero in B̂. Therefore the image f̄ of f in B̂ is a sum of squares.
But the leading form `(f̄) in B or in B̂ is h, and hence is not a sum of squares, a
contradiction to Lemma 1.1.

Note that no smoothness assumption was needed in Proposition 6.1. Some hy-
pothesis on S(P ) is, however, necessary to guarantee that S(P ) is not too small. For
example, for any point M ∈ V (R) the preorder P(M) = {f ∈ R[V ] : f(M) ≥ 0} is
finitely generated.

If we ask only for the existence of psd, non-sos functions, we get the positive
answer even for any connected variety of dimension ≥ 3 with an R-point. More
generally, we can prove a version valid over any base field:

6.2. Theorem. Let k be a field and A a connected k-algebra of finite type. Suppose
that dimA ≥ 3 and SperA 6= ∅. Then there is a psd element in A which is not a
sum of squares.

Proof. We say that a ring A is real reduced if the identity a2
1 + · · · + a2

n = 0 in A
implies a1 = · · · = an = 0. It is equivalent that A is reduced and every minimal
prime ideal of A has a formally real residue field. (See [19], III §2, where such rings
have been called real.)

In the situation of the theorem, if A is real reduced, then it satisfies the hy-
potheses of Corollary 1.3 (and so we are done). Indeed, there is s ∈ A such that
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As is a regular domain with formally real quotient field and dim(As) ≥ 3; by the
Artin-Lang theorem ([3], p. 76), As has (plenty of) maximal ideals with formally
real residue field.

In the remaining cases we can apply the following general fact:

6.3. Lemma. Let A be a connected noetherian ring with SperA 6= ∅, and suppose
that A is not real reduced. Then A+ 6= ΣA2; in fact, there is f ∈ A with f ≡ 0 on
SperA but f /∈ ΣA2.

First note that I2 6= I holds for any ideal (0) 6= I 6= (1) of A. Indeed, if I2 = I,
then the Nakayama lemma says that there is a ∈ I with (1 − a)I = 0 ([21], p. 8).
So a2 = a, and A connected implies a = 0 or a = 1, i.e., I = (0) or I = (1).

Now let I = re√(0), the so-called real nilradical of A. By definition, I is the
intersection of all prime ideals whose residue field is formally real ([19], loc.cit.).
By hypothesis, (0) 6= I 6= (1), and so I2 6= I. Any f ∈ I r I2 has the property
required in the lemma, since A/I is real reduced.

We will finally try to study the case of smooth surfaces over R. If V is one,
then by a curve on V we mean an effective divisor on V . By a compactification V
of V we mean a complete R-scheme V of finite type which contains V as an open
dense subscheme. An irreducible curve over R is called real if it has infinitely many
R-rational points, or equivalently, if its function field is formally real.

6.4. Theorem. Let V be a smooth affine surface over R which has a smooth com-
pactification V for which every irreducible curve contained in V r V is real. Then
the preorder of all psd elements in R[V ] is not finitely generated. In particular,
R[V ] contains psd elements which are not sums of squares.

Proof. Let C1, . . . , Cr be the irreducible components of V r V . (The Ci are curves
since V is affine.) We will show that there exists a smooth irreducible non-rational
curve C on V such that C ∩ Ci consists of real points only, for every i = 1, . . . , r.
This will suffice: Suppose that the preorder of psd elements in R[V ] is generated
by f1, . . . , fn. Let C′ = C ∩ V . By Theorem 3.4, there exists ḡ ∈ R[C′] which is
psd on C ′ but not contained in the preorder of R[C′] generated by the restrictions
fi|C′ of the fi to C′. By 5.6 we can find a psd function f ∈ R[V ] with f |C′ = ḡ. It
is clear that f cannot lie in the preorder of R[V ] generated by the fi, contradiction.

6.5. Lemma. Let D0 be a very ample effective divisor on V . There is an integer
N such that for every n > N , there exists D ∈ |nD0| such that D intersects each
Ci in real smooth points of Ci, and all intersection points are transversal.

Using this lemma we can complete the proof of Theorem 6.4, as follows. Since
V is projective, the lemma gives us a very ample effective divisor D on V which
intersects each Ci transversally in real smooth points of Ci. The elements in |D|
with the same property form an open subset of |D| (with respect to the semi-
algebraic topology). So a Bertini argument ([14], ch. V, Lemma 1.2) implies that
we can even find such D which is irreducible and smooth. Moreover, if we replace
D by nD for suitable n ≥ 1 (and apply Lemma 6.5 plus Bertini again), we can make
the genus gD of the smooth irreducible curve D arbitrarily large (and in particular,
make D non-rational), by the adjunction formula 2gD − 2 = D . (D+K) and since
D2 > 0.
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So it remains to prove Lemma 6.5. First of all, after replacing D0 with a linearly
equivalent effective divisor D we can assume that Ci 6⊂ supp(D) and supp(D) ∩Ci
is contained in the smooth locus of Ci, for each i. Fix one of the Ci, and denote by
D∩Ci the intersection divisor; this is an effective divisor on (Ci)reg whose degree is
D .Ci > 0. Now there is Ni > 0 such that for every n > Ni there exists a rational
function fi 6= 0 on Ci such that the divisor n(D ∩ Ci) + divCi(fi) on Ci has the
form P1 + · · ·+Ps where P1, . . . , Ps are distinct smooth real points on Ci. Indeed,
this follows from applying Corollary 2.10 to the normalization of Ci and using also
Remark 2.14. Given n > N := maxiNi, let (for each i) fi be a rational function on
Ci with the just stated property. There is a rational function 0 6= f on V without
zeros or poles along any of the Ci, which restricts to fi on Ci for each i. The divisor
nD + divV (f) has the required properties.

6.6. Remarks.
1. In the situation of 6.4, there even exists f ∈ R[V ] which is strictly positive

on V (R) but not a sum of squares. Indeed, by Theorem 3.2 one finds ḡ ∈ R[C′] (cf.
the first part of the proof of 6.4) which is strictly positive on C ′(R) but not sos,
and can then apply Corollary 5.5.

2. Let R = R. Our reasoning through restriction to suitable curves works fine
for many surfaces, thereby generalizing Hilbert’s theorem. Still there are many
surfaces left for which it doesn’t tell us anything. In particular, this is so for all
surfaces V for which V (R) is compact (and also for every affine Zariski-open subset
of such V ). The reason is that we have no example of a psd, non-sos function on a
smooth curve whose set of real points is compact, cf. Sect. 4.

6.7. Remark. At least over R = R we may generalize Theorem 6.4 to other
preorders, using Theorem 3.5. We leave it to the reader to formulate suitable
versions. For example, if P is a finitely generated preorder in R[x, y] such that
S(P ) contains some non-empty open cone in R2, then P cannot contain all psd
polynomials.

6.8. Remark. The preceding remark gives already an idea of how results on curves
can be useful for the study of psd polynomials. Recall that it is not a trivial matter
to exhibit psd polynomials which are not sos; the first example which figured in
the published literature was given by Motzkin in 1965 [24], almost 80 years after
Hilbert had proved the existence of such examples. Although meanwhile many
other classes of such polynomials have been found, there is still some interest in
new constructions; see Reznick’s survey [27]. Some of the results and methods of
this paper can be used to produce a great variety of new examples. Indeed, in
Sect. 3 we exhibited various ways in which one can construct psd, non-sos functions
on smooth plane curves; to a good extent, these constructions can be made explicit
in concrete cases. By the extension theorem, Theorem 5.6, all these functions
extend to psd, non-sos polynomials in R[x, y], even in many possible ways. Again,
the proof of 5.6 is constructive enough to allow explicit applications.

We would finally like to remark that the idea of constructing examples of psd,
non-sos polynomials f(x, y) by extending suitable regular functions from plane
curves to the affine plane was already applied successfully by Stengle in 1979 [31].
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7. Some open problems

It will have become obvious that there is a large number of unsolved questions
connected with the subject of this paper. Here we want to isolate three basic
problems. They seem to be central for a better understanding of sums of squares
on affine varieties in general, and we hope to stimulate some future work by posing
them explicitly.

Problem 1. Study regular local domains A of dimension two (containing 1
2), with

quotient field K = Quot(A), and decide whether A ∩ ΣK2 = ΣA2 holds or not. In
other words, is every psd element of such a ring a sum of squares?

See Remarks 1.7 for a very short list of cases where this problem has a positive
answer.

Problem 2. Given a smooth affine algebraic curve Y over R for which Y (R) is
compact, is it true that every psd polynomial function f ∈ R[Y ] on Y is a sum of
squares?

One possible approach could be to try to bound the complexity of sos repre-
sentations of strictly positive functions (if one expects a positive answer). Every
strictly positive f ∈ R[Y ] is sos by Schmüdgen’s theorem. Alternatively, one could
try to proceed in the spirit of Sect. 4 of this paper. For example, it may be shown
that the answer is positive if it is so for all psd f with at most one complex zero
(assuming here that Y has only one point at infinity).

Problem 3. Study affine smooth algebraic surfaces V over R with V (R) compact,
and decide whether every psd f ∈ R[V ] is a sum of squares or not.

It seems that not a single example of such a surface V (with V (R) 6= ∅) is known
for which one could either prove or disprove that every psd function is a sum of
squares! To look at an example, let f = f(x, y, z) be a positive definite form in
R[x, y, z] and let V be the complement of the curve f = 0 in P2. Then V is a
smooth affine surface, and V (R) = P2(R) is compact. It is easy to see that each
psd element of R[V ] is sos if and only if for each psd form g(x, y, z) there exists
n ≥ 0 such that the form f2n · g is a sum of squares. Whether or not a form f with
this property exists is not known.

If the answer to Problem 1 is “no”, and if one has counterexamples which are
local rings of surfaces over R, this would imply a negative answer to Problem 3 in
general.

If the answer to Problem 2 is “no”, this would imply a negative answer to
Problem 3 in general, by an application of Theorem 5.6.

Added in proof (October 1998): Recent results provide answers to some of the
questions above. In particular, the answer to Problem 2 is “yes”. As to Problem 3,
there do exist smooth affine surfaces V over R with V (R) compact and non-empty,
for which psd = sos holds in R[V ]. Details will be published elsewhere.
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