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SUMS OF THREE SQUARES

N. C. ANKENY1

Introduction. I would like to present here a short and elementary

proof of the following theorem.

Theorem 1. If m is a positive integer not of the form 4°(8w-f-7), then

m is the sum of three squares.

We make use of an elegant method of Professor H. Davenport [l]

in the Geometry of Numbers.

Without loss of generality we will prove Theorem 1 only when m

is square free. (In the following m will be assumed to be square free.)

In §1 we shall prove Theorem 1 when m = 3 (mod 8). In §2 we will

merely outline the proof when m = l, 2, 5, 6 (mod 8), as the proof is

almost identical except for minor changes.

We shall only assume the reader is familiar with the elementary

facts of the law of quadratic reciprocity, Minkowski's Theorem on

lattice points contained within convex symmetric bodies; and when

a positive integer is the sum of two squares.

1. Let m be a positive square free integer =3 (mod 8), and

m = pip2 • • ■ pr where pj's are primes.

Denote by q a positive prime which satisfies

(1) (-2q/p,) = + l, 7 = 1,2, ---.f,

(2) q m 1 (mod 4)

with (a/b) denoting the Jacobi Symbol. We see that such a prime

exists by Dirichlet's theorem regarding primes in an arithmetic pro-
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gression, as (1) and (2) merely necessitate that q lie within certain

relatively prime residue classes (mod Am).

By (1) and (2)

i = n (-mpb = n (-vp^/ph
;-l j-1

(3) = (-2/m) fi (pjq)
i-l

= (-2/m)(m/q) - (-2/m)(-m/q)

= (-m/q)

as w = 3 (mod 8).

Hence, as q is an odd prime we can find an odd integer b such that

b2= —m (mod q), or

(4) b2 — qhi = — m.

Considering (4) (mod 4) yields 1 — hi =+1 (mod 4), or hi = ih where

h is a rational integer and

(5) b2 - 1qh= - m.

Utilizing (1) we can find an integer t such that

(6) t2 = - l/2g(modw).

We now consider the figure

(7) R2 + S2+ T2 < 2m

where

R = 2tqx + tby + mz,

(8) 5= (2q)l'*x + b/(2qyi2y,

T = m>>2/(2qy>2y

In the (R, S, T) space (7) defines a convex, symmetric (about the

origin) body of volume 4/37r(2w)3'2. The determinant of the trans-

formations (8) is mV2. Hence, in the (x, y, z) space, (7) represents a

convex symmetric body of volume l/3(27/27r), and certainly l/3(2T/27r)

>8.
Hence, by Minkowski's Theorem on convex symmetric body in

three dimensions of volume >8, we know there exist integer values of

x, y, z not all zero which satisfy (7). Let xi, yi, Zi be the integers which

satisfy (7) and (8), Ru Si, Ti the corresponding values of R, S, T.

By (8)
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r[ + S\ + t\ = (2tqxi + tbyi + mzi)2

+ ((2qYI2Xi + b/(2qYl2yi)2 + (m1'2/(2q)1l2yiY

(9) m t2(2qxi + byi)2 + l/2q(2qxx + byi)2

= 0 (mod m)

by (6), the selection of t.

Furthermore,

2 2 2 2 1/2 1/2        2 1/2 1/2       2

Ri + Si+Ti = Ri+ ((2q)     xi + b/(2q)    y,)  + (m    /(2q)     y^

(10) = Pl + l/2q(2qxi + byi) * + m/2qy\
2 2 2

= Ri+ 2(5x1 + bxiyi + hyi).

Let v be the positive rational integer defined by

2 2
(11) v = qxi + bxiyi + hyx.

We note that Ri is a rational integer and by (9), (10), and (11)

that m\R\ + 2v, but by (7) R\ + 2v<2m. Furthermore R\ + 2v^0, by

the nondegenerate triangular transformation (8) and the fact that

not all xi, yi, Zi equal zero. Hence,

(12) R\+2v = m.

Let p be an odd prime which exactly divides v to an odd power, i.e.

p^+'Wv.
If p does not divide m, then by (12),

(13) (m/p) = + 1.

By (11)
2

(14) Aqv = (2qxi + byi)2 + myi.

Ifp/q, then (5), (-m/p) = l.
If p\q, then by (14)

^2n+i||e2 _|_ mp> or (-m/p) = 1.

Thus, in either case,

(15) (-m/p) = + 1

which combined with (13) implies

(16) (-1/P) = 1 or p = 1 (mod 4).

If p/v, p/m, then by (11) and (12)
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r\ +2v = m

or

(17) R\ + — ((2qxi + byi) 2+ my\) = m
2q

which implies p/Ri, p/(2qxi+byi), and thus as m is square free by

dividing both sides of (17) by p, yields

1   m    i      m
-yi = — (mod p)
2q  p p

or

yi = 2?(mod£),      (—J = + 1

which combined with (1) gives ( — l/p) = +1 or p = l (mod 4).

Thus all odd primes which exactly divide v to an odd power are

= 1 (mod 4). Thus 2v is the sum of two square integers. By (12) this

implies m is the sum of three square integers, which proves Theorem

1 when m = 3 (mod 8).

2. If m = l, 2, 5 or 6 (mod 8), we alter the proof in §1 in the fol-

lowing ways. Let q be a prime, (—q/pj) = +1 for all odd prime divi-

sors of m, q= 1 (mod 4), and if m is even,

m = 2«i,      (~2/q) = (-!)(■*-»/»,      t2= - l/q (mod p,)%

/ odd, b2 — qh = — m

and

R = tqX + tby + mz,

S = qll2x + b/q"2y,

T = m^/q^y.

The proof will proceed exactly as in §1, which will complete the

proof when m = l, 2, 3, 5, 6 (mod 8), and thus for all square free m.
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