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Abstract

Sumudu transform of the Dixon elliptic function with non zero modulus α , 0 for arbitrary powers smN(x,α) ; N ≥
1 , smN(x,α)cm(x,α) ; N ≥ 0 and smN(x,α)cm2(x,α) ; N ≥ 0 is given by product of Quasi C fractions. Next by

assuming denominators of Quasi C fraction to 1 and hence applying Heliermann correspondance relating formal power

series (Maclaurin series of Dixon elliptic functions) and regular C fraction, Hankel determinants are calculated and

showed by taking α = 0 gives the Hankel determinants of regular C fraction. The derived results were back tracked

to the Laplace transform of sm(x,α) , cm(x,α) and sm(x,α)cm(x,α).

Keywords : Dixon elliptic functions, non-zero modulus, Sumudu transform, Hankel determinants, Continued

fractions, Quasi C fractions.

Mathematics subject classification : 33E05, 44A10, 11A55, 11C20.

1 Introduction

To determine the coeffecients in the Maclaurin series of Jacobi elliptic functions, continued fractions and the Heilermann

correspondence the relation employing Formal Power Series (FPS) and its continued fraction to calculate Hankel

determinants are used in [2], also determinants of Bernoulli numbers were calculated from the correspondence in [2].

By using continued fraction and Fourier series expansions of Jacobi elliptic functions in [13] obtained orthogonal

polynomials which are related to each other through multiplication formulas of Jacobi elliptic functions in [13]. Laplace

transform of Jacobi elliptic functions expanded as continued fractions and shown their coeffecients are orthogonal

polynomials and derived dual Hahn polynomials in [19]. Fourier series and continued fractions expansions of ratis of

Jacobi elliptic functions and their Hankel determinants are given in [25] from which different ways of representing

sum of square numbers derived in determinant forms in [25]. Laplace transform of bimodular Jacobi elliptic functions

expanded as continued fractions in [14] and by modular transformation results were back tracked to unimodular Jacobi

elliptic functions in [14].

A. C. Dixon studied the cubic curve x3 +y3 −3αxy = 1 ; α ,−1 for the orthogonal polynomials, where the curve

has double period in [16] which then give raise to two set of elliptic functions sm(x,α) and cm(x,α) now known

as Dixon Elliptic Functions (DEF). The examples, its relation to hypergeometric series, modular transformation and

formulae for their ratio given in [17]. When α = 0 in the above cubic curve, their series expansions and transformations

studied in [18]. DEF were used in the study of conformal mapping and geographical structure of world maps in [1]

addition and multiplication formulae for DEF are derived in [1]. Laplace transform applied for DEF for both the cases

of α = 0 and α , 0 to expand as set of continued fractions in [14]. The above cubis curve and its relation to Fermat

curve is studied for the Urn representation and combinatorics in [15]. Number theory related results followed by [25]

for factorial of numbers using DEF given in [4]. DEF relation to trefoil curves and relation to Weierstrass and its

derivative functions shown in [23].
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Fractional heat equations are solved using Sumudu transform in [3]. Sumudu transform embedded in decomposition

method in [27] and in homotopy perturbation method to solve Klein-Gordon equations in [26]. Fractional Maxwell’s

equations solved with Sumudu transform in [28] and some differential equations with Sumudu transform in [29].

Fractional gas dynamics differential equations using Sumudu transform is solved in [5]. Sumudu transform definition

for trigonometric functions and its infinite series expansions proved with examples comprising tables and properties

in [6]. Maxwell’s coupled equations solved with Sumudu transform for magnetic field solutions in TEMP waves given

in [7]. Without using any of decomposition, perturbation (or) analysis techniques Sumudu transform of functions

calculated by differentiating the function in [8]. Symbolic C++ program for Sumudu transform given in [8]. Sumudu

transform applied for bimodular Jacobi elliptic functions [14] for arbitrary powers in [9] as associated continued fraction

and their Hankel determinants. Applying modular transformation, Sumudu transform of tan(x) and sec(x) derived in [9].

Sumudu transform of f (x) defined in the set A = { f (x)|∃M,τ1,τ2 > 0, | f (x)|< Me
|x|
τ j , if x ∈ (−1) j × [0,∞)} given by

integral equation.

S[ f (x)](u)
def
= F(u)

def
=

∫ ∞

0
e−x f (ux)dx =

1

u

∫ ∞

0
e−

1
u f (x)dx ; u ∈ (−τ1,τ2). (1)

In this work Sumudu transform applied for DEF of arbitrary powers smN(x,α) ; N ≥ 1, smN(x,α)cm(x,α) ; N ≥ 0

and smN(x,α)cm2(x,α) ; N ≥ 0 and expanded as Quasi C Fractions (QCF). Using the numerator coeffecients of QCF,

Hankel determinants are calculated by the correspondence connecting FPS and Regular C fractions through Sumudu

transform.

2 Preliminaries

Cubic curve x3+y3−3αxy = 1 ; (α ,−1) studied for its orthogonal polynomials in [16] derived the two set of elliptic

functions namely sm(x,α) and cm(x,α) which are having double period. Derivative of DEF (equations (1) and (3),

page 171, [16] and equations (1.18) and (1.19), page 9, [14]) takes the following,

d

dx
sm(x,α) = cm2(x,α)−αsm(x,α) and

d

dx
cm(x,α) =−sm2(x,α)+αcm(x,α). (2)

and have (equation (1.21), page 10, [14]),

sm(0,α) = 0 and cm(0,α) = 1. (3)

these functions satisfies the cubic curve mentioned above what is called Pythagorean theorem (equation (2), page

171, [16] and equation (1.22), page 10, [14]).

sm3(x,α)+ cm3(x,α)−3αsm(x,α)cm(x,α) = 1. (4)

Continued fraction notation is followed from (equation (2.1.4b), page 18, [20] and (equation (1.2.5
′
), page 8, [22]).

∞

K
n=1

an

bn

def
=

a1

b1+

a2

b2+

a3

b3 + · · ·

def
=

a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
. . .

.

Definition 1. Let a = {an} , b = {bn} and u is an indeterminate, then the continued fraction of following form is called

C-fraction (equation (7.1.1), page 221, [20]), [30] and (equation (54.2), page 208, [31]).

1+
∞

K
n=1

anuβ (n)

1
.
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When the sequence β (n) is constant then C-fraction is called Regular C fraction. And QCF has the following form.

a0

b0(u)+

∞

K
n=1

anu

bn(u)
.

Sometimes the coeffecient an = an(u) thus the coeffecients are functions of u which can be seen in the main results of

this work.

Definition 2. Let c = {cv}
∞
v=1 be a sequence in C. Then the following m×m matrices are defined [14,20,25], whose

determinants are denoted by respective H
(n)
m and χm.

H
(n)
m

def
= H

(n)
m (cv)

def
= det











cn cn+1 · · · cm+n−2 cn+m−1

cn+1 cn+2 · · · cm+n−1 cm+n

.

.

.
.
.
.

. . .
.
.
.

.

.

.

cm+n−1 cm+n · · · c2m+n−3 c2m+n−2











.

χm
def
= χm(cv)

def
= det











c1 c2 · · · cm−1 cm+1

c2 c3 · · · cm cm+2

.

.

.
.
.
.

. . .
.
.
.

.

.

.

cm cm+1 · · · c2m−2 c2m











.

Remark 1. The matrix for χm is obtained from the matrix for H
(1)
m+1 by deleting the last row and next to last column

[14,20,25]. For n = 1, H
(1)
1 = c1 and χ1 = c2. Determinants H

(n)
m and χm are named as persymmetric determinants

(or) Turanian determinants (or) Hankel determinants.

The relation between FPS and Regular C fraction is given as lemma [14], (Theorem 7.2, pp 223-226, [20]), [25].

Lemma 1. When the Regular C fraction converges to FPS.

1+
∞

∑
v=1

cvzv = 1+
∞

K
n=1

anu

1
; (an , 0). (5)

then,

H
(1)
m ([cv]) , 0 , H

(2)
m ([cv]) , 0 and a1 = H

(1)
1 ([cv]) ; (m ≥ 1). (6)

a2m =−
H

(1)
m−1H

(2)
m

H
(1)
m H

(2)
m−1

and a2m+1 =−
H

(1)
m+1H

(2)
m−1

H
(1)
m H

(2)
m

; (m ≥ 1). (7)

where H
(1)
0 = H

(2)
0 = 1. Conversely if Eqs (6) and (7) holds then Eq (5) holds true. Also,

H
(2)
m ([cv]) = (−1)mH

(1)
m ([cv])

m

∏
j=1

a2 j = (−1)mH
(1)
m+1([cv])

m

∏
j=1

1

a2 j+1
; (m ≥ 1). (8)

3 Main results 1 : Sumudu transform of Dixon elliptic functions (α , 0)

Laplace transform of DEF sm(x,α) , cm(x,α) and sm(x,α)(cm(x,α)) given as QCF in [14]. In this work Sumudu

transform Eq (1) of DEF smN(x,α) ; N ≥ 1, smN(x,α)cm(x,α) ; N ≥ 0 and smN(x,α)cm2(x,α) ; N ≥ 0 for arbitrary

powers derived as QCF. Followed by assuming the denominator of QCF be 1, using Lemma 1, Hankel determinants

are calculated. The following three theorems are main results of this work.
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Theorem 1. Sumudu transform of DEF smN(x,α) ; N ≥ 1 as QCF given by the following enumerates:

(i) For j ≥ 1.

S[sm(x,α)] =
u

(1−2αu)(1+αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)(3 j−1)2

b2 j(u) = (1− (6 j−1)αu)

a2 j+1 = (3 j)2(3 j+1)

b2 j+1(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

(9)

(ii) For j ≥ 1.

S[sm2(x,α)] =
1

(1−αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)2(3 j−1)

b2 j(u) = (1−2(3 j−1)αu)(1+(3 j−1)αu)

a2 j+1 = (3 j−1)(3 j)2

b2 j+1(u) = (1− (6 j+1)αu)

×
2u2

(1−4αu)(1+2αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−1)(3 j)2

b2 j(u) = (1− (6 j+1)αu)

a2 j+1 = (3 j+1)2(3 j+2)

b2 j+1(u) = (1−2(3 j+2)αu)(1+(3 j+2)αu)

(10)

(iii) Let N = 3,6,9,12, · · · and j ≥ 1.

S[smN(x,α)] =

N
3

∏
i=1

(3i−2)u

(1− (6i−3)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−4)2(3 j+3i−3)

b2 j(u) = (1−2(3 j+3i−3)αu)(1+(3 j+3i−3)αu)

a2 j+1 = (3 j+3i−3)(3 j+3i−2)2

b2 j+1(u) = (1− (6 j+6i−3)αu)

×

N
3

∏
i=1

(3i−1)(3i)u2

(1−2(3i)αu)(1+(3i)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−3)(3 j+3i−2)2

b2 j(u) = (1− (6 j+6i−3)αu)

a2 j+1 = (3 j+3i−1)2(3 j+3i)

b2 j+1(u) = (1−2(3 j+3i)αu)(1+(3 j+3i)αu)

(11)

(iv) Let N = 4,7,10,13, · · · and j ≥ 1.

S[smN(x,α)] =
u

(1−2αu)(1+αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)(3 j−1)2

b2 j(u) = (1− (6 j−1)αu)

a2 j+1 = (3 j)2(3 j+1)

b2 j+1(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

×

N−1
3

∏
i=1

(3i−1)u

(1− (6i−1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−3)2(3 j+3i−2)

b2 j(u) = (1−2(3 j+3i−2)αu)(1+(3 j+3i−2)αu)

a2 j+1 = (3 j+3i−2)(3 j+3i−1)2

b2 j+1(u) = (1− (6 j+6i−1)αu)

×

N−1
3

∏
i=1

(3i)(3i+1)u2

(1−2(3i+1)αu)(1+(3i+1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−2)(3 j+3i−1)2

b2 j(u) = (1− (6 j+6i−1)αu)

a2 j+1 = (3 j+3i)2(3 j+3i+1)

b2 j+1(u) = (1−2(3 j+3i+1)αu)(1+(3 j+3i+1)αu)

(12)
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(v) Let N = 5,8,11,14, · · · and j ≥ 1.

S[smN(x,α)] =
1

(1−αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)2(3 j−1)

b2 j(u) = (1−2(3 j−1)αu)(1+(3 j−1)αu)

a2 j+1 = (3 j−1)(3 j)2

b2 j+1(u) = (1− (6 j+1)αu)

×
2u2

(1−4αu)(1+2αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−1)(3 j)2

b2 j(u) = (1− (6 j+1)αu)

a2 j+1 = (3 j+1)2(3 j+2)

b2 j+1(u) = (1−2(3 j+2)αu)(1+(3 j+2)αu)

×

N−2
3

∏
i=1

(3i)u

(1− (6i+1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−2)2(3 j+3i−1)

b2 j(u) = (1−2(3 j+3i−1)αu)(1+(3 j+3i−1)αu)

a2 j+1 = (3 j+3i−1)(3 j+3i)2

b2 j+1(u) = (1− (6 j+6i+1)αu)

×

N−2
3

∏
i=1

(3i+1)(3i+2)u2

(1−2(3i+2)αu)(1+(3i+2)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−1)(3 j+3i)2

b2 j(u) = (1− (6 j+6i+1)αu)

a2 j+1 = (3 j+3i+1)2(3 j+3i+2)

b2 j+1(u) = (1−2(3 j+3i+2)αu)(1+(3 j+3i+2)αu)

(13)

Proof. Defining the Sumudu transform of DEF by integral equations, Let N = 0,1,2, · · · .

S[smN(x,α)] = AN =
∫ ∞

0
e−xsmN(xu,α)dx. (14)

S[smN(x,α)cm(x,α)] = BN =
∫ ∞

0
e−xsmN(xu,α)cm(xu,α)dx. (15)

S[smN(x,α)cm2(x,α)] =CN =
∫ ∞

0
e−xsmN(xu,α)cm2(xu,α)dx. (16)

By parts method, using Eqs (2) - (4), with A0 = 1 leads to the following:

A1 = uC0 −αuA1.

A2 = 2uC1 −2αuA2.

A3 = 3uC2 −3αuA3.

AN = NuCN−1 −NαuAN .

Solving with the recurrences of Eqs (15) and (16) yields the following QCF:

AN

BN−2
=

(N −1)Nu2

(1−2Nαu)(1+Nαu)+N(N +1)u2 BN+1

AN

; (N ≥ 2). (17)

BN

AN−1
=

Nu

(1− (2N +1)αu)+(N +1)u
AN+2

BN

; (N ≥ 2). (18)
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When N = 1,2 and 3.

A1 =
u

(1−2αu)(1+αu)+2u2 B2
A1

. (19)

A2 = B0 ×
2u2

(1−4αu)(1+2αu)+6u2 B3
A2

. (20)

A3 = B1 ×
6u2

(1−6αu)(1+3αu)+12u2 B4
A3

. (21)

Now Eq (9) obtained from Eq (19) by iterating with Eqs (17) and (18). Next Eq (10) obtained from Eq (20) by iterating

with Eqs (17) and (18) where B0 is derived from Eq (15). Following the same procedure Eqs (11) - (14) derived upon

continuous iteration of Eqs (17) and (18) and after the mathematical simplifications. �

Theorem 2. Sumudu transform of smN(x,α)cm(x,α) ; N ≥ 0 as QCF is given by following equations:

(i) For j ≥ 1.

S[cm(x,α)] =
1

(1−αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)2(3 j−1)

b2 j(u) = (1−2(3 j−1)αu)(1+(3 j−1)αu)

a2 j+1 = (3 j−1)(3 j)2

b2 j+1(u) = (1− (6 j+1)αu)

(22)

(ii) For j ≥ 1.

S[sm(x,α)cm(x,α)] =
u

(1−3αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−1)2(3 j)

b2 j(u) = (1−2(3 j)αu)(1+(3 j)αu)

a2 j+1 = (3 j)(3 j+1)2

b2 j+1(u) = (1− (6 j+3)αu)

(23)

(iii) For j ≥ 1.

S[sm2(x,α)cm(x,α)] =
u

(1−2αu)(1+αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)(3 j−1)2

b2 j(u) = (1− (6 j−1)αu)

a2 j+1 = (3 j)2(3 j+1)

b2 j+1(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

×
2u

(1−5αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j)2(3 j+1)

b2 j(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

a2 j+1 = (3 j+1)(3 j+2)2

b2 j+1(u) = (1− (6 j+5)αu)

(24)
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(iv) Let N = 3,6,9,12, · · · and j ≥ 1.

S[smN(x,α)cm(x,α)] =
1

(1−αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)2(3 j−1)

b2 j(u) = (1−2(3 j−1)αu)(1+(3 j−1)αu)

a2 j+1 = (3 j−1)(3 j)2

b2 j+1(u) = (1− (6 j+1)αu)

×

N
3

∏
i=1

(3i−2)(3i−1)u2

(1−2(3i−1)αu)(1+(3i−1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−4)(3 j+3i−3)2

b2 j(u) = (1− (6 j+6i−5)αu)

a2 j+1 = (3 j+3i−2)2(3 j+3i−1)

b2 j+1(u) = (1−2(3 j+3i−1)αu)(1+(3 j+3i−1)αu)

×

N
3

∏
i=1

(3i)u

(1− (6i+1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−2)2(3 j+3i−1)

b2 j(u) = (1−2(3 j+3i−1)αu)(1+(3 j+3i−1)αu)

a2 j+1 = (3 j+3i−1)(3 j+3i)2

b2 j+1(u) = (1− (6 j+6i+1)αu)

(25)

(v) Let N = 4,7,10,13, · · · and j ≥ 1.

S[smN(x,α)cm(x,α)] =
u

(1−3αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−1)2(3 j)

b2 j(u) = (1−2(3 j)αu)(1+(3 j)αu)

a2 j+1 = (3 j)(3 j+1)2

b2 j+1(u) = (1− (6 j+3)αu)

×

N−1
3

∏
i=1

(3i−1)(3i)u2

(1−2(3i)αu)(1+(3i)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−3)(3 j+3i−2)2

b2 j(u) = (1− (6 j+6i−3)αu)

a2 j+1 = (3 j+3i−1)2(3 j+3i)

b2 j+1(u) = (1−2(3 j+3i)αu)(1+(3 j+3i)αu)

×

N−1
3

∏
i=1

(3i+1)u

(1− (6i+3)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−1)2(3 j+3i)

b2 j(u) = (1−2(3 j+3i)αu)(1+(3 j+3i)αu)

a2 j+1 = (3 j+3i)(3 j+3i+1)2

b2 j+1(u) = (1− (6 j+6i+3)αu)

(26)
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(vi) Let N = 5,8,11,14, · · · and j ≥ 1.

S[smN(x,α)cm(x,α)] =
u

(1−2αu)(1+αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)(3 j−1)2

b2 j(u) = (1− (6 j−1)αu)

a2 j+1 = (3 j)2(3 j+1)

b2 j+1(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

×
2u

(1−5αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j)2(3 j+1)

b2 j(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

a2 j+1 = (3 j+1)(3 j+2)2

b2 j+1(u) = (1− (6 j+5)αu)

×

N−2
3

∏
i=1

(3i)(3i+1)u2

(1−2(3i+1)αu)(1+(3i+1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−2)(3 j+3i−1)2

b2 j(u) = (1− (6 j+6i−1)αu)

a2 j+1 = (3 j+3i)2(3 j+3i+1)

b2 j+1(u) = (1−2(3 j+3i+1)αu)(1+(3 j+3i+1)αu)

×

N−2
3

∏
i=1

(3i+2)u

(1− (6i+5)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i)2(3 j+3i+1)

b2 j(u) = (1−2(3 j+3i+1)αu)(1+(3 j+3i+1)αu)

a2 j+1 = (3 j+3i+1)(3 j+3i+2)2

b2 j+1(u) = (1− (6 j+6i+5)αu)

(27)

Proof. Solving the recurrences of Eq (15):

B0 = 1−uA2 +αuB0.

B1 = u−2uA3 +3αuB1.

B2 = 2uA1 −3uA4 +5αuB2.

B3 = 3uA2 −4uA5 +7αuB3.

BN = NuAN−1 − (N +1)uAN+2 +(2N +1)αuBN .

For N = 0 , 1 and 2 in Eq (15) after solving with recurrences of Eqs (14) and (16):

B0 =
1

(1−αu)+u
A2
B0

. (28)

B1 =
u

(1−3αu)+2u
A3
B1

. (29)

B0 = A1 ×
2u

(1−5αu)+3u
A4
B2

. (30)

Now Eq (22) derived from Eq (28) upon iterating with Eqs (17) and (18). Eq (23) derived from Eq (29) upon iterating

with Eqs (17) and (18). Eq (24) derived from Eq (30) where A1 given by Eq (19) and both are iterated with Eqs

(17) and (18). Continuing in the same way Eqs (25) - (27) obtained by iterations, mathematical calculations and

simplification. �

Theorem 3. Sumudu transform of smN(x,α)cm2(x,α) ; N ≥ 0 as QCF given by the following equations:

(i) For j ≥ 1.

S[cm2(x,α)] =
1

(1−2αu)+

∞

K
n=2

an(u)u
3

bn(u)



















a2 j(u) = (3 j−2)(3 j−1)2(1+(3 j+1)αu)

b2 j(u) = Y3 j−1

a2 j+1(u) = (3 j)2(3 j+1)(1+(3 j−2)αu)

b2 j+1(u) = (1− (6 j+2)αu)

(31)
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(ii) For j ≥ 1.

S[sm(x,α)cm2(x,α)] =
1

(1−αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)2(3 j−1)

b2 j(u) = (1−2(3 j−1)αu)(1+(3 j−1)αu)

a2 j+1 = (3 j−1)(3 j)2

b2 j+1(u) = (1− (6 j+1)αu)

×
u

(1−4αu)+

∞

K
n=2

an(u)u
3

bn(u)



















a2 j(u) = (3 j−1)(3 j)2(1+(3 j+2)αu)

b2 j(u) = Y3 j

a2 j+1(u) = (3 j+1)2(3 j+2)(1+(3 j−1)αu)

b2 j+1(u) = (1− (6 j+4)αu)

(32)

(iii) For j ≥ 1.

S[sm2(x,α)cm2(x,α)] =
u

(1−3αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−1)2(3 j)

b2 j(u) = (1−2(3 j)αu)(1+(3 j)αu)

a2 j+1 = (3 j)(3 j+1)2

b2 j+1(u) = (1− (6 j+3)αu)

×
2u

(1−6αu)+

∞

K
n=2

an(u)u
3

bn(u)



















a2 j(u) = (3 j)(3 j+1)2(1+(3 j+3)αu)

b2 j(u) = Y3 j+1

a2 j+1(u) = (3 j+2)2(3 j+3)(1+(3 j)αu)

b2 j+1(u) = (1− (6 j+6)αu)

(33)

(iv) For j ≥ 1.

S[sm3(x,α)cm2(x,α)] =
u

(1−2αu)(1+αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)(3 j−1)2

b2 j(u) = (1− (6 j−1)αu)

a2 j+1 = (3 j)2(3 j+1)

b2 j+1(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

×
2u

(1−5αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j)2(3 j+1)

b2 j(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

a2 j+1 = (3 j+1)(3 j+2)2

b2 j+1(u) = (1− (6 j+5)αu)

×
3u

(1−8αu)+

∞

K
n=2

an(u)u
3

bn(u)



















a2 j(u) = (3 j+1)(3 j+2)2(1+(3 j+4)αu)

b2 j(u) = Y3 j+2

a2 j+1(u) = (3 j+3)2(3 j+4)(1+(3 j+1)αu)

b2 j+1(u) = (1− (6 j+8)αu)

(34)
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(v) Let N = 4,7,10,13, · · · and j ≥ 1.

S[smN(x,α)cm2(x,α)] =
1

(1−αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)2(3 j−1)

b2 j(u) = (1−2(3 j−1)αu)(1+(3 j−1)αu)

a2 j+1 = (3 j−1)(3 j)2

b2 j+1(u) = (1− (6 j+1)αu)

×

N−1
3

∏
i=1

(3i−2)(3i−1)u2

(1−2(3i−1)αu)(1+(3i−1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−4)(3 j+3i−3)2

b2 j(u) = (1− (6 j+6i−5)αu)

a2 j+1 = (3 j+3i−2)2(3 j+3i−1)

b2 j+1(u) = (1−2(3 j+3i−1)αu)(1+(3 j+3i−1)αu)

×

N−1
3

∏
i=1

(3i)u

(1− (6i+1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−2)2(3 j+3i−1)

b2 j(u) = (1−2(3 j+3i−1)αu)(1+(3 j+3i−1)αu)

a2 j+1 = (3 j+3i−1)(3 j+3i)2

b2 j+1(u) = (1− (6 j+6i+1)αu)

×
Nu

(1− (2(N +1))αu)+

∞

K
n=2

an(u)u
3

bn(u)



















a2 j(u) = (3 j+N −2)(3 j+N −1)2(1+(3 j+N +1)αu)

b2 j(u) = Y3 j+N−1

a2 j+1(u) = (3 j+N)2(3 j+N +1)(1+(3 j+N −2)αu)

b2 j+1(u) = (1− (6 j+2(N +1))αu)

(35)

(vi) Let N = 5,8,11,14, · · · and j ≥ 1.

S[smN(x,α)cm2(x,α)] =
u

(1−3αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−1)2(3 j)

b2 j(u) = (1−2(3 j)αu)(1+(3 j)αu)

a2 j+1 = (3 j)(3 j+1)2

b2 j+1(u) = (1− (6 j+3)αu)

×

N−2
3

∏
i=1

(3i−1)(3i)u2

(1−2(3i)αu)(1+(3i)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−3)(3 j+3i−2)2

b2 j(u) = (1− (6 j+6i−3)αu)

a2 j+1 = (3 j+3i−1)2(3 j+3i)

b2 j+1(u) = (1−2(3 j+3i)αu)(1+(3 j+3i)αu)

×

N−2
3

∏
i=1

(3i+1)u

(1− (6i+3)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−1)2(3 j+3i)

b2 j(u) = (1−2(3 j+3i)αu)(1+(3 j+3i)αu)

a2 j+1 = (3 j+3i)(3 j+3i+1)2

b2 j+1(u) = (1− (6 j+6i+3)αu)

×
Nu

(1− (2(N +1))αu)+

∞

K
n=2

an(u)u
3

bn(u)



















a2 j(u) = (3 j+N −2)(3 j+N −1)2(1+(3 j+N +1)αu)

b2 j(u) = Y3 j+N−1

a2 j+1(u) = (3 j+N)2(3 j+N +1)(1+(3 j+N −2)αu)

b2 j+1(u) = (1− (6 j+2(N +1))αu)

(36)
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(vii) Let N = 6,9,12,15, · · · and j ≥ 1.

S[smN(x,α)cm2(x,α)] =
u

(1−2αu)(1+αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j−2)(3 j−1)2

b2 j(u) = (1− (6 j−1)αu)

a2 j+1 = (3 j)2(3 j+1)

b2 j+1(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

×
2u

(1−5αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j)2(3 j+1)

b2 j(u) = (1−2(3 j+1)αu)(1+(3 j+1)αu)

a2 j+1 = (3 j+1)(3 j+2)2

b2 j+1(u) = (1− (6 j+5)αu)

×

N−3
3

∏
i=1

(3i)(3i+1)u2

(1−2(3i+1)αu)(1+(3i+1)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i−2)(3 j+3i−1)2

b2 j(u) = (1− (6 j+6i−1)αu)

a2 j+1 = (3 j+3i)2(3 j+3i+1)

b2 j+1(u) = (1−2(3 j+3i+1)αu)(1+(3 j+3i+1)αu)

×

N−3
3

∏
i=1

(3i+2)u

(1− (6i+5)αu)+

∞

K
n=2

anu3

bn(u)



















a2 j = (3 j+3i)2(3 j+3i+1)

b2 j(u) = (1−2(3 j+3i+1)αu)(1+(3 j+3i+1)αu)

a2 j+1 = (3 j+3i+1)(3 j+3i+2)2

b2 j+1(u) = (1− (6 j+6i+5)αu)

×
Nu

(1− (2(N +1))αu)+

∞

K
n=2

an(u)u
3

bn(u)



















a2 j(u) = (3 j+N −2)(3 j+N −1)2(1+(3 j+N +1)αu)

b2 j(u) = Y3 j+N−1

a2 j+1(u) = (3 j+N)2(3 j+N +1)(1+(3 j+N −2)αu)

b2 j+1(u) = (1− (6 j+2(N +1))αu)

(37)

Proof. Evaluating by parts Eq (16) gives:

C0 = 1−2uB2 +2αuC0.

C1 = uB0 −3uB3 +4αuC1.

C2 = 2uB1 −4uB4 +6αuC2.

C3 = 3uB2 −5uB5 +8αuC3.

CN = NuBN−1 − (N +2)uBN+2 +(2N +2)αuCN .

Solving with recurrences of Eqs (14) and (15) yields the QCF:

CN

BN−1
=

Nu

(1− (2N +2)αu)+(N +2)u
BN+2

CN

; (N ≥ 1). (38)

BN

CN−2
=

(N −1)N(1+(N +2)αu)u2

YN +(N +1)(N +2)(1+(N −1)αu)u2 CN+1

BN

; (N ≥ 2). (39)

where,

YN = YN(u,α) = (1− (2N +1)αu)(1+(N −1)αu)(1+(N +2)αu). (40)
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For N = 0,1 and 2 in Eq (16).

C0 =
1

(1−2αu)+2u
B2
C0

. (41)

C1 = B0 ×
u

(1−4αu)+3u
B3
C1

. (42)

C2 = B1 ×
2u

(1−6αu)+4u
B4
C2

. (43)

Hence Eq (31) obtained by iterating Eqs (38) and (39) starting with Eq (41). Eq (32) obtained from the Eq (42) with

B0 given by Eq (28) iterating both respectively with Eqs (17), (18) and Eqs (38), (39). Following the same way Eq (33)

obtained from (43). Eqs (34) - (37) derived by continuous iteration of Eqs (38) and (39) after mathematical calculations

and simplification yields the results. �

4 Main results 2 : Applications - Hankel determinants calculations

By assuming the denominator of QCF to 1, QCF converted to Regular C fractions. So that Lemma 1 can be applied to

QCF for deriving their Hankel determinants. In Lemma 1 H
(1)
(.)

([cv]) represents the Hankel determinants of Associated

continued fractions. As QCF is dealing in this article, Quasi Associated continued fractions are considered which are

discussed in detail in [11]. Therefore H
(1)
(.)

([cv]) of Lemma 1 are taken from [11]. The main results of this section are

given in the following theorems which are Hankel determinants of the Theorems 1 - 3 respectively.

Theorem 4. Hankel determinants corresponding to Theorem 1 are given by the following equations:

(i)

H
(2)
1 ([sm(x,α)]3v+1) =−4(1−5αu). (44)

H
(2)
2 ([sm(x,α)]3v+1) = 2400(1−5αu)2E4. (45)

H
(2)
m ([sm(x,α)]3v+1) = (−1)m6(m−1)(1−5αu)m

m−1

∏
j=0

E
(m− j−1)
3 j+4

m−2

∏
j=1

H
(m− j−1)
3 j+1

m

∏
j=1

(3 j−2)(3 j−1)2 ; m ≥ 3.

(46)

(ii)

H
(2)
1 ([sm2(x,α)]3v+2) =−36(1−7αu). (47)

H
(2)
m ([sm2(x,α)]3v+2) = (−1)m2m(1−7αu)m

m−1

∏
j=1

E
(m− j)
3 j+2 H

(m− j)
3 j−1

m

∏
j=1

(3 j−1)(3 j)2 ; m ≥ 2. (48)

(iii) Let N = 3,6,9,12, · · · .

H
(2)
1 ([smN(x,α)]3v+N) =−(3i)(3i+1)2E3i. (49)

H
(2)
m ([smN(x,α)]3v+N) = (−1)mEm

3i

m−1

∏
j=1

E
(m− j)
3 j+3i H

(m− j)
3 j+3i−3

m

∏
j=1

(3 j+3i−3)(3 j+3i−2)2 ; m ≥ 2. (50)

where i = 1,2,3, · · · , N
3

.
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(iv) Let N = 4,7,10,13, · · · .

H
(2)
1 ([smN(x,α)]3v+N) =−(3i+1)(3i+2)2E3i+1. (51)

H
(2)
m ([smN(x,α)]3v+N) = (−1)mEm

3i+1

m−1

∏
j=1

E
(m− j)
3 j+3i+1H

(m− j)
3 j+3i−2

m

∏
j=1

(3 j+3i−2)(3 j+3i−1)2 ; m ≥ 2. (52)

where i = 1,2,3, · · · , N−1
3

.

(v) Let N = 5,8,11,14, · · · .

H
(2)
1 ([smN(x,α)]3v+N) =−(3i+2)(3i+3)2E3i. (53)

H
(2)
m ([smN(x,α)]3v+N) = (−1)mEm

3i+2

m−1

∏
j=1

E
(m− j)
3 j+3i+2H

(m− j)
3 j+3i−1

m

∏
j=1

(3 j+3i−1)(3 j+3i)2 ; m ≥ 2. (54)

where i = 1,2,3, · · · , N−2
3

.

Here E(.) and H(.) are the polynomials in u and α given in [11].

EN = EN(u,α) = (N −2)(N −1)N(1− (2N +3)αu) ; (N ≥ 3).

HN = HN(u,α) = N(N +1)(N +2)(1− (2N −3)αu) ; (N ≥ 3).

Proof. Let [smN(x,α)]3v+N be coeffecients in Maclaurin series of smN(x,α) ; N = 1,2,3, · · · .

smN(x,α) =
∞

∑
v=0

[smN(x,α)]3v+Nx3v+N

(3v+N)!
; N = 1,2,3, · · · .

Assume denominators of Theorem 1 to 1. Now applying Eq (8) of Lemma 1 to the coeffecients of Theorem 1 where

H
(1)
(.)

are the Hankel determinants of quasi associated continued fraction given in [11]. Now iterating and simplifying

Hankel determinants of Eqs (9) - (13) given by respective enumerates of Theorem 4. �

Theorem 5. Hankel determinants corresponding to Theorem 2 given by the following equations:

(i)

H
(2)
1 ([cm(x,α)]3v) =−2P∗

0 . (55)

H
(2)
2 ([cm(x,α)]3v) = 960(P∗

0 )
2P3. (56)

H
(2)
m ([cm(x,α)]3v) = (−1)m6m−1(P∗

0 )
mPm−1

3

m−2

∏
j=1

S
(m− j−1)
3 j P

(m− j−1)
3 j+3

m

∏
j=1

(3 j−2)2(3 j−1) ; m ≥ 3. (57)

(ii)

H
(2)
1 ([sm(x,α)cm(x,α)]3v+1) =−12P∗

1 . (58)

H
(2)
m ([sm(x,α)cm(x,α)]3v+1) = (−1)m(P∗

1 )
m

m−1

∏
j=1

S
(m− j)
3 j−2 P

(m− j)
3 j+1

m

∏
j=1

(3 j−1)2(3 j) ; m ≥ 2. (59)

(iii)

H
(2)
1 ([sm2(x,α)cm(x,α)]3v+2) =−72P∗

2 . (60)

H
(2)
m ([sm2(x,α)cm(x,α)]3v+2) = (−1)m2m(P∗

2 )
m

m−1

∏
j=1

S
(m− j)
3 j−1 P

(m− j)
3 j+2

m

∏
j=1

(3 j)2(3 j+1) ; m ≥ 2. (61)
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(iv) Let N = 3,6,9,12, · · · .

H
(2)
1 ([smN(x,α)cm(x,α)]3v+N) =−(3i+1)2(3i+2)P3i. (62)

H
(2)
m ([smN(x,α)cm(x,α)]3v+N) = (−1)m(P3i)

m
m−1

∏
j=1

S
(m− j)
3 j+3i−3P

(m− j)
3 j+3i

m

∏
j=1

(3 j+3i−2)2(3 j+3i−1) ; m ≥ 2.

(63)

where i = 1,2,3, · · · N
3

.

(v) Let N = 4,7,10,13, · · · .

H
(2)
1 ([smN(x,α)cm(x,α)]3v+N) =−(3i+2)2(3i+3)P3i+1. (64)

H
(2)
m ([smN(x,α)cm(x,α)]3v+N) = (−1)m(P3i+1)

m
m−1

∏
j=1

S
(m− j)
3 j+3i−2P

(m− j)
3 j+3i+1

m

∏
j=1

(3 j+3i−1)2(3 j+3i) ; m ≥ 2.

(65)

where i = 1,2,3, · · · N−1
3

.

(vi) Let N = 5,8,11,14, · · · .

H
(2)
1 ([smN(x,α)cm(x,α)]3v+N) =−(3i+3)2(3i+4)P3i+2. (66)

H
(2)
m ([smN(x,α)cm(x,α)]3v+N) = (−1)m(P3i+2)

m
m−1

∏
j=1

S
(m− j)
3 j+3i−1P

(m− j)
3 j+3i+2

m

∏
j=1

(3 j+3i)2(3 j+3i+1) ; m ≥ 2.

(67)

where i = 1,2,3, · · · N−2
3

.

Here P∗
(.) and S(.) are polynomials in u and α given in [11].

P∗
0 = P∗

0 (u,α) =(1−4αu)(1+2αu).

P∗
1 = P∗

1 (u,α) =(1−6αu)(1+3αu).

P∗
2 = P∗

2 (u,α) =(1−8αu)(1+4αu).

PN = PN(u,α) =(N −2)(N −1)N(1− (2N +4)αu)(1+(N +2)αu) ; (N ≥ 3).

SN = SN(u,α) =(N +1)(N +2)(N +3)(1− (2N −2)αu)(1+(N −1)αu) ; (N ≥ 1).

Proof. Let [smN(x,α)cm(x,α)]3v+N denotes the coeffecients in Maclaurin series of smN(x,α)cm(x,α) ; N = 0,1,2, · · · .

smN(x,α)cm(x,α) =
∞

∑
v=0

[smN(x,α)cm(x,α)]3v+Nx3v+N

(3v+N)!
; N = 0,1,2, · · · .

Assume denominator of Theorem 2 to 1. Applying coeffecients of Theorem 2 in Eq (8) of Lemma 1 where H
(1)
(.)

are

the Hankel determinants of Quasi associated continued fraction given in [11]. Iterating and simplifying leads to the

Hankel determinants of Eqs (22) - (27) by respective enumerates of Theorem 5. �

Theorem 6. Hankel determinants corresponding to Theorem 3 given by the following equations:
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(i)

H
(2)
1 ([cm2(x,α)]3v) =−4T ∗

0 (1+4αu). (68)

H
(2)
2 (cm2([x,α)]3v) =400(T ∗

0 )
2X∗

0 T3(1+4αu)(1+7αu). (69)

H
(2)
m ([cm2(x,α)]3v) =(−1)m(T ∗

0 )
m(X∗

0 )
m−1T m−1

3

m−2

∏
j=1

X
(m− j−1)
3 j T

(m− j−1)
3 j+3

×
m

∏
j=1

(3 j−2)(3 j−1)2(1+(3 j+1)αu) ; m ≥ 3. (70)

(ii)

H
(2)
1 ([sm(x,α)cm2(x,α)]3v+1) =−18T ∗

1 (1+5αu). (71)

H
(2)
2 ([sm(x,α)cm2(x,α)]3v+1) =3240(T ∗

1 )
2X∗

1 T4(1+5αu)(1+8αu). (72)

H
(2)
m ([sm(x,α)cm2(x,α)]3v+1) =(−1)m(T ∗

1 )
m(X∗

1 )
m−1T m−1

4

m−2

∏
j=1

X
(m− j−1)
3 j+1 T

(m− j−1)
3 j+4

×
m

∏
j=1

(3 j−1)(3 j)2(1+(3 j+2)αu) ; m ≥ 3. (73)

(iii)

H
(2)
1 ([sm2(x,α)cm2(x,α)]3v+1) =−48T ∗

2 (1+6αu). (74)

H
(2)
m ([sm2(x,α)cm2(x,α)]3v+1) =(−1)m(T ∗

2 )
m

m−1

∏
j=1

X
(m− j)
3 j−1 T

(m− j)
3 j+2

×
m

∏
j=1

(3 j)(3 j+1)2(1+(3 j+3)αu) ; m ≥ 2. (75)

(iv)

H
(2)
1 ([sm3(x,α)cm2(x,α)]3v+3) =−100T3(1+7αu). (76)

H
(2)
m ([sm3(x,α)cm2(x,α)]3v+3) =(−1)mT m

3

m−1

∏
j=1

X
(m− j)
3 j T

(m− j)
3 j+3

×
m

∏
j=1

(3 j+1)(3 j+2)2(1+(3 j+4)αu) ; m ≥ 2. (77)

(v) Let N = 4,7,10,13, · · · .

H
(2)
1 ([smN(x,α)cm2(x,α)]3v+N) =− (3i+2)(3i+3)2(1+(3i+5)αu)T3i+1. (78)

H
(2)
m ([smN(x,α)cm2(x,α)]3v+N) =(−1)mT m

3i+1

m−1

∏
j=1

X
(m− j)
3 j+3i−2T

(m− j)
3 j+3i+1

×
m

∏
j=1

(3 j+3i−1)(3 j+3i)2(1+(3 j+3i+2)αu) ; m ≥ 2. (79)

where i = 1,2,3, · · · N−1
3

.
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(vi) Let N = 5,8,11,14, · · · .

H
(2)
1 ([smN(x,α)cm2(x,α)]3v+N) =− (3i+3)(3i+4)2(1+(3i+6)αu)T3i+2. (80)

H
(2)
m ([smN(x,α)cm2(x,α)]3v+N) =(−1)mT m

3i+2

m−1

∏
j=1

X
(m− j)
3 j+3i−1T

(m− j)
3 j+3i+2

×
m

∏
j=1

(3 j+3i)(3 j+3i+1)2(1+(3 j+3i+3)αu) ; m ≥ 2. (81)

where i = 1,2,3, · · · N−2
3

.

(vii) Let N = 6,9,12,15, · · · .

H
(2)
1 ([smN(x,α)cm2(x,α)]3v+N) =− (3i+4)(3i+5)2(1+(3i+7)αu)T3i+3. (82)

H
(2)
m ([smN(x,α)cm2(x,α)]3v+N) =(−1)mT m

3i+3

m−1

∏
j=1

X
(m− j)
3 j+3i T

(m− j)
3 j+3i+3

×
m

∏
j=1

(3 j+3i+1)(3 j+3i+2)2(1+(3 j+3i+4)αu) ; m ≥ 2. (83)

where i = 1,2,3, · · · N−3
3

.

Here T ∗
(.) , X∗

(.) , T(.) and X(.) are the polynomials given in [11].

T ∗
0 = T ∗

0 (u,α) =(1+αu)(1+4αu)(1−5αu).

X∗
0 = X∗

0 (u,α) =24(1+αu).

T ∗
1 = T ∗

1 (u,α) =(1+2αu)(1−7αu)(1+5αu).

X∗
1 = X∗

1 (u,α) =60(1−αu)(1+2αu).

T ∗
2 = T ∗

2 (u,α) =2(1+3αu)(1−9αu)(1+6αu).

TN = TN(u,α) =(N −2)(N −1)N(1+(N +1)αu)(1+(N +4)αu)(1− (2N +5)αu) ; (N ≥ 3).

XN = XN(u,α) =(N +2)(N +3)(N +4)(1+(N +1)αu)(1+(N −2)αu)(1− (2N −1)αu) ; (N ≥ 1).

Proof. Let [smN(x,α)cm2(x,α)]3v+N be the coeffecients in Maclaurin series of smN(x,α)cm2(x,α) ; N = 0,1,2, · · · .

smN(x,α)cm2(x,α) =
∞

∑
v=0

[smN(x,α)cm2(x,α)]3v+Nx3v+N

(3v+N)!
; N = 0,1,2, · · · .

Assume denominator of Theorem 3 to 1. Next applying the coeffecients of Theorem 3 in Eq (8) of Lemma 1 where

H
(1)
(.)

are the Hankel determinants of Quasi associated continued fraction given in [11]. Now iterating and simplifying

Hankel determinants of Eqs (31) - (37) given by respective enumerates of Theorem 6. �

5 Results and discussions

Multiplying Eq (9) with u gives the Laplace transform of sm(x,α) in [14] (Theorem 19. page 61, [14]). Multiplication

of u to Eqs (22) and (23) gives the results given in [14] (Theorems 20 and 21 respectively, pp 62-63, [14]). Remaining

results in Theorems 1, 2 and 3 appears in this work are new to the literature reviewed.

Letting α = 0 in Eqs (44) - (46) gives the results in [14] (H
(2)
m (.) in Theorem 16, pp 57-58, [14]). When α = 0 in Eqs

(55) - (57) and Eqs (58) and (59) gives the results in [14] (H
(2)
m (.) of Theorems 17 and 18, pp 58-59, [14]) respectively.

Remaining results of Theorems 4, 5 and 6 appears for first time in this work as far as the literature reviewed.
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6 Conclusion

In this research work we applied the Sumudu integral transform to non-zero modulus Dixon elliptic functions to

derive general three term recurrences from which Quasi C fractions expanded. Next by assuming the functions in the

denominator of QCF we calculated the Hankel determinants H2
m of non-zero DEF without expanding their Maclaurin’s

series by using Lemma 1 in which Hankel determinants H1
m are used from authors previous work [11]. Results and

discussions section ensures our asumptions are correct and gives the previous results. It remains the open query

of Sumudu transform of cm3(x,α) and other higher powers as they lead to four term recurrences. Secondly if the

assumption of denominators to 1 is restricted for the Hankel determinants of QCF is another open query which will be

the further study from this work.
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