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Abstract

We propose a definition of saliency by considering what the visual system is trying to op-

timize when directing attention. The resulting model is a Bayesian framework from which

bottom-up saliency emerges naturally as the self-information of visual features, and overall

saliency (incorporating top-down information with bottom-up saliency) emerges as the point-

wise mutual information between the features and the target when searching for a target. An

implementation of our framework demonstrates that our model’s bottom-up saliency maps per-

form as well as or better than existing algorithms in predicting people’s fixations in free view-

ing. Unlike existing saliency measures, which depend on the statistics of the particular image

being viewed, our measure of saliency is derived from natural image statistics, obtained in ad-

vance from a collection of natural images. For this reason, we call our model SUN (Saliency

Using Natural statistics). A measure of saliency based on natural image statistics, rather than

based on a single test image, provides a straightforward explanation for many search asymme-

tries observed in humans; the statistics of a single test image lead to predictions that are not

consistent with these asymmetries. In our model, saliency is computed locally, which is con-

sistent with the neuroanatomy of the early visual system and results in an efficient algorithm

with few free parameters.

Keywords: saliency, attention, eye movements.

1 Introduction

The surrounding world contains a tremendous amount of visual information, which the visual

system cannot fully process. The visual system thus faces the problem of how to allocate its pro-

cessing resources to focus on important aspects of a scene. Despite the limited amount of visual
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information the system can handle, sampled by discontinuous fixations, we experience a seamless,

continuous world. Yet humans, as well as most other animals, thrive using this heavily downsam-

pled visual information. Visual attention as reflected in eye movements discloses the sampling

strategy of the visual system and is of great research interest as an essential component of visual

cognition. Psychologists have investigated visual attention for many decades using psychophysical

experiments, such as visual search tasks, with carefully controlled stimuli. Sophisticated mathe-

matical models have been built to account for the wide variety of human performance data (e.g.

Treisman & Gelade, 1980; Wolfe, Cave, & Franzel, 1989; Bundesen, 1990).

With the development of affordable and easy-to-use modern eye-tracking systems, the loca-

tions that people fixate when they perform certain tasks can be explicitly recorded and can provide

insight into how people allocate their attention when viewing complex natural scenes. The pro-

liferation of eye-tracking data over the last two decades has led to a number of computational

models attempting to account for the data and addressing the question of what attracts attention.

Most models have focused on bottom-up attention, where the subjects are free-viewing a scene and

salient objects attract attention. Many of these saliency models are based on findings from psychol-

ogy and neurobiology and explain the mechanisms guiding attention allocation (Koch & Ullman,

1985; Itti, Koch, & Niebur, 1998; Wolfe et al., 1989). More recently, a number of models attempt

to explain attention based on more mathematically motivated principles, addressing the goal of

the computation (Chauvin, Herault, Marendaz, & Peyrin, 2002; Kadir & Brady, 2001; Renninger,

Coughlan, Verghese, & Malik, 2004; Harel, Koch, & Perona, 2007; Gao & Vasconcelos, 2004,

2007; Bruce & Tsotsos, 2006; Oliva, Torralba, Castelhano, & Henderson, 2003; Torralba, Oliva,

Castelhano, & Henderson, 2006; Zhang, Tong, & Cottrell, 2007). Both types of models tend to

rely solely on the statistics of the current test image when it comes to computing the saliency of a

point in the image. We argue here that natural statistics (the statistics of visual features in natural

scenes, which an organism would learn through experience) must also play an important role in

this process.

In this paper, we make an effort to address the underlying question: what is the goal of the

computation performed by the attentional system? Our model starts from the simple assumption

that an important goal of the visual system is to find potential targets, and builds up a Bayesian

probabilistic framework of what the visual system should calculate to optimally achieve this goal.

In this framework, bottom-up saliency emerges naturally as self-information. When searching for

a particular target, top-down effects from a known target emerge in our model as a log-likelihood

term in the Bayesian formulation. The model also dictates how to combine bottom-up and top-

down information, leading to pointwise mutual information as a measure of overall saliency. We

develop a bottom-up saliency algorithm that performs as well as or better than state-of-the-art

saliency algorithms at predicting human fixations when free viewing images. Whereas existing

bottom-up saliency measures are defined solely in terms of the image currently being viewed, ours

is instead defined based on natural statistics (collected from a set of natural images), to represent the

visual experience an organism would acquire during development. This difference is most notable

when comparing with models that also use a Bayesian formulation (e.g. Torralba et al. (2006))

or self-information (e.g. Bruce and Tsotsos (2006)). For this reason, we call our saliency model

SUN (Saliency Using Natural statistics). As a result of using natural statistics, SUN provides a
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straightforward account of many human search asymmetries that cannot be explained based on

the statistics of the test image alone. Unlike many models, our measure of saliency only involves

local computation on images. This makes the SUN algorithm not only more efficient, but also

more biologically plausible, as long-range connections are scarce in the lower levels of the visual

system.

The rest of the paper is organized as follows. Section 2 reviews previous work. In Section 3,

we assume an intuitive goal for the visual system, and infer what measure of saliency would have

evolved to achieve this goal. In Section 4, we describe how we implement SUN for computing

bottom-up saliency maps based on the proposed definition of saliency. Results are presented and

evaluated using human eye-tracking data in Section 5 along with a discussion of evaluation meth-

ods. Section 6 concludes the paper with a discussion. This includes a comparison, in the context of

visual search asymmetries, of the predictions of saliency based on natural statistics versus saliency

based on the statistics of the current image. Saliency based on natural statistics explains many

observations in the visual search paradigm, such as the search asymmetry between feature pres-

ence versus absence, between prototypes versus non-prototype exemplars, and between other-race

versus same-race faces (Zhang et al., 2007).

2 Previous Work

In this section we discuss previous saliency models, which have achieved good performance in

predicting human fixations in viewing images. The motivation for these models has come from

psychophysics and biological systems (Itti et al., 1998; Itti & Koch, 2001), classification optimality

(Gao & Vasconcelos, 2004, 2007), the task of looking for a target (Oliva et al., 2003; Torralba et

al., 2006), or information maximization (Bruce & Tsotsos, 2006).

Itti and Koch’s saliency model (Itti et al., 1998; Itti & Koch, 2000, 2001) is one the earliest

and the most used for comparison in later work. The model is an implementation of and expansion

on the basic ideas first proposed by Koch and Ullman (1985). The model is inspired by the visual

attention literature, such as feature integration theory (Treisman & Gelade, 1980), and care is

taken in the model’s construction to ensure that the model is neurobiologically plausible. The

model takes an image as input, which is then decomposed into three channels: intensity, color,

and orientation. A center-surround operation, implemented by taking the difference of the filter

responses from two scales, yields a set of feature maps. The feature maps for each channel are

then normalized and combined across scales and orientations, creating conspicuity maps for each

channel. The conspicuous regions of these maps are further enhanced by normalization, and the

channels are linearly combined to form the overall saliency map. This process allows locations to

vie for conspicuity within each feature dimension, but has separate feature channels contribute to

saliency independently; this is consistent with the feature integration theory. This model has been

shown to be successful in predicting human fixations and to be useful in object detection (Itti et al.,

1998; Itti & Koch, 2001; Parkhurst, Law, & Niebur, 2002). However, it can be criticized as being

ad hoc, partly because the overarching goal of the system (i.e., what it is designed to optimize) is

not specified, and it has many parameters that need to be hand-selected.

Several saliency algorithms are based on measuring the complexity of a local region (Yamada
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& Cottrell, 1995; Chauvin et al., 2002; Kadir & Brady, 2001; Renninger et al., 2004). Yamada

and Cottrell (1995) measure the variance of 2D Gabor filter responses across different orientations.

Kadir and Brady (2001) measure the entropy of the local distribution of image intensity. Renninger

et al. (2004) measure the entropy of local line orientation histograms, and the most salient point at

any given time is the one that provides the greatest information gain conditioned on the knowledge

obtained during previous fixations. All of these saliency-as-variance/entropy models are based

on the idea that the entropy of a feature distribution over a local region measures the richness

and diversity of that region (Chauvin et al., 2002), and intuitively a region should be salient if

it contains features with many different orientations and intensities. A common critique of these

models is that highly textured regions are always salient regardless of their context. For example,

human observers find an egg in a nest highly salient, but local-entropy-based algorithms find the

nest to be much more salient than the egg (Gao & Vasconcelos, 2004; Bruce & Tsotsos, 2006).

Gao and Vasconcelos (2004, 2007) proposed a specific goal for saliency: classification. That

is, a goal of the visual system is to classify each stimulus as belonging to a class of interest (or

not) and saliency should be assigned to useful locations for that task. This was first used for object

detection (Gao & Vasconcelos, 2004), where a set of features are selected to best discriminate the

class of interest (e.g., faces or cars) from all other stimuli, and saliency is defined as the weighted

sum of feature responses for the set of features that are salient for that class. This forms a definition

that is inherently top-down and goal directed, as saliency is defined for a particular class. Gao and

Vasconcelos (2007) define bottom-up saliency using the idea that locations are salient if they differ

greatly from their surroundings. They use difference of Gaussians (DoG) filters and Gabor filters,

measuring the saliency of a point as the Kullbach-Liebler (KL) divergence between the histogram

of filter responses at the point and the histogram of filter responses in the surrounding region. This

addresses a previously mentioned problem commonly faced by complexity-based models (as well

as some other saliency models that use linear filter responses as features): these models always

assign high saliency scores to highly textured areas. In Section 6.3, we will discuss a way that the

SUN model could address this problem, by using non-linear features that model complex cells or

neurons in higher levels of the visual system.

Oliva and colleagues proposed a probabilistic model for visual search tasks (Oliva et al., 2003;

Torralba et al., 2006). When searching for a target in an image, the probability of interest is the

joint probability that the target is present in the current image, together with the target’s location

(if the target is present), given the observed features. This can be calculated using Bayes rule:

p(O = 1, L|F, G) =
1

p(F |G)
︸ ︷︷ ︸

bottom-up saliency
(as defined by Oliva et al.)

p(F |O = 1, L,G)p(L|O = 1, G)p(O = 1|G) (1)

where O = 1 denotes the event that the target is present in the image, L denotes the location

of the target when O = 1, F denotes the local features at location L, and G denotes the global

features of the image. The global features of G represent the scene gist. Experiments show that

the gist of a scene can be quickly determined, and the focus of their work largely concerns how

this gist affects eye movements. The first term on the right side of (1) is independent of the
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target and is defined as bottom-up saliency; Oliva and colleagues approximate this conditional

probability distribution using the current image’s statistics. The remaining terms on the right side

of (1) respectively address the distribution of features for the target, the likely locations for the

target, and the probability of the target’s presence, all conditioned on the scene gist. As we will see

in Section 3, our use of Bayes’ rule to derive saliency is reminiscent of this approach. However,

the probability of interest in the work of Oliva and colleagues is whether or not a target is present

anywhere in the test image, whereas the probability we are concerned with is the probability that a

target is present at each point in the visual field. In addition, Oliva and colleagues condition all of

their probabilities on the values of global features. Conditioning on global features/gist affects the

meaning of all terms in equation (1), and justifies their use of current image statistics for bottom-up

saliency. In contrast, SUN focuses on the effects of an organism’s prior visual experience.

Bruce and Tsotsos (2006) define bottom-up saliency based on maximum information sampling.

Information, in this model, is computed as Shannon’s self-information, − log p(F ), where F is a

vector of the visual features observed at a point in the image. The distribution of the features is

estimated from a neighborhood of the point, which can be as large as the entire image. When the

neighborhood of each point is indeed defined as the entire image of interest, as implemented in

(Bruce & Tsotsos, 2006), the definition of saliency becomes identical to the bottom-up saliency

term in equation (1) from the work of Oliva and colleagues (Oliva et al., 2003; Torralba et al.,

2006). It is worth noting, however, that the feature spaces used in the two models are different.

Oliva and colleagues use biologically-inspired linear filters of different orientations and scales.

These filter responses are known to correlate with each other; for example, a vertical bar in the

image will activate a filter tuned to vertical bars but will also activate (to a lesser degree) a filter

tuned to 45-degree-tilted bars. The joint probability of the entire feature vector is estimated using

multivariate Gaussian distributions (Oliva et al., 2003) and later multivariate generalized Gaussian

distributions (Torralba et al., 2006). Bruce and Tsotsos (2006), on the other hand, employ features

that were learned from natural images using independent component analysis (ICA). These have

been shown to resemble the receptive fields of neurons in primary visual cortex (V1), and their re-

sponses have the desired property of sparsity. Furthermore, the features learned are approximately

independent, so the joint probability of the features is just the product of each feature’s marginal

probability, simplifying the probability estimation without making unreasonable independence as-

sumptions.

3 A Bayesian framework for saliency

We propose that one goal of the visual system is to find potential targets that are important for

survival, such as food and predators. To achieve this, the visual system must actively estimate the

probability of a target at every location given the visual features observed. We propose that this

probability is visual saliency.

To formalize this, let z denote a point in the visual field. A point here is loosely defined; in

the implementation described in Section 4, a point corresponds to a single image pixel. (In other

contexts, a point could refer other things, such as an object (Zhang et al., 2007).) We let the binary

random variable C denote whether or not a point belongs to a target class, let the random variable L
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denote the location (i.e., the pixel coordinates) of a point, and let the random variable F denote the

visual features of a point. Saliency of a point z is then defined as p(C = 1|F = fz, L = lz), where

fz represents the feature values observed at z and lz represents the location (pixel coordinates) of z.

This probability can be calculated using Bayes’ rule:

sz = p(C = 1|F = fz, L = lz)

=
p(F = fz, L = lz|C = 1)p(C = 1)

p(F = fz, L = lz)
. (2)

We assume for simplicity that features and location are independent and conditionally independent

given C = 1:

p(F = fz, L = lz) = p(F = fz)p(L = lz), (3)

p(F = fz, L = lz|C = 1) = p(F = fz|C = 1)p(L = lz|C = 1). (4)

This entails the assumption that the distribution of a feature does not change with location. For

example, (3) implies that a point in the left visual field is just as likely to be green as a point in

the right visual field. Furthermore, (4) implies (for instance) that a point on a target in the left

visual field is just as likely to be green as a point on a target in the right visual field1. With these

independence assumptions, (2) can be rewritten as:

sz =
p(F = fz|C = 1)p(L = lz|C = 1)p(C = 1)

p(F = fz)p(L = lz)
(5)

=
p(F = fz|C = 1)

p(F = fz)
·
p(L = lz|C = 1) · p(C = 1)

p(L = lz)
(6)

=
1

p(F = fz)
︸ ︷︷ ︸

Independent
of target

(bottom-up saliency)

· p(F = fz|C = 1)
︸ ︷︷ ︸

Likelihood

· p(C = 1|L = lz)
︸ ︷︷ ︸

Location prior
︸ ︷︷ ︸

Dependent on target
(top-down knowledge)

(7)

To compare this probability across locations in an image, it suffices to estimate the log proba-

bility (since logarithm is a monotonically increasing function). For this reason, we take the liberty

of using the term saliency to refer both to sz and to log sz, which is given by:

log sz = − log p(F = fz)
︸ ︷︷ ︸

Self-information

+ log p(F = fz|C = 1)
︸ ︷︷ ︸

Log likelihood

+ log p(C = 1|L = lz)
︸ ︷︷ ︸

Location prior

. (8)

The first term on the right side of this equation, − log p(F = fz), depends only on the visual fea-

tures observed at the point, and is independent of any knowledge we have about the target class.

1These independence assumptions do not generally hold (they could be relaxed in future work). For example,

illumination is not invariant to location: as sunshine normally comes from above, the upper part of the visual field is

likely to be brighter. But illumination contrast features, such as the responses to DoG (Difference of Gaussians) filters,

will be more invariant to location changes.
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In information theory, − log p(F = fz) is known as the self-information of the random variable F

when it takes the value fz. Self-information increases when the probability of a feature decreases—

in other words, rarer features are more informative. We have discussed self-information in Sec-

tion 2 in the context of previous work, but as we will see later, SUN’s use of self-information

differs from that of previous approaches.

The second term on the right side of (8), log p(F = fz|C = 1), is a log-likelihood term that

favors feature values that are consistent with our knowledge of the target. For example, if we know

that the target is green, then the log-likelihood term will be much larger for a green point than for a

blue point. This corresponds to the top-down effect when searching for a known target, consistent

with the finding that human eye movement patterns during iconic visual search can be accounted

for by a maximum likelihood procedure for computing the most likely location of a target (Rao,

Zelinsky, Hayhoe, & Ballard, 2002).

The third term in (8), log p(C = 1|L = lz), is independent of visual features and reflects any

prior knowledge of where the target is likely to appear. It has been shown that if the observer is

given a cue of where the target is likely to appear, the observer attends to that location (Posner

& Cohen, 1984). For simplicity and fairness of comparison with (Itti & Koch, 2001; Bruce &

Tsotsos, 2006; Gao & Vasconcelos, 2007), we assume location invariance (no prior information

about the locations of potential targets) and omit the location prior; in Section 5, we will further

discuss the effects of the location prior.

After omitting the location prior from (8), the equation for saliency has just two terms, the

self-information and the log-likelihood, which can be combined:

log sz = −log p(F=fz)
︸ ︷︷ ︸

Self-information
(bottom-up saliency)

+ log p(F=fz|C=1)
︸ ︷︷ ︸

Log likelihood
(top-down knowledge)

(9)

= log
p(F =fz|C =1)

p(F =fz)
(10)

= log
p(F =fz, C =1)

p(F =fz)p(C =1)
︸ ︷︷ ︸

Pointwise mutual information
(overall saliency)

. (11)

The resulting expression, which is called the pointwise mutual information between the visual

feature and the presence of a target, is a single term that expresses overall saliency. Intuitively, it

favors feature values that are more likely in the presence of a target than in a target’s absence.

When the organism is not actively searching for a particular target (the free viewing condi-

tion), the organism’s attention should be directed to any potential targets in the visual field, de-

spite the fact that the features associated with the target class are unknown. In this case, the

log-likelihood term in (8) is unknown, so we omit this term from the calculation of saliency (this

can also be thought of as assuming that for an unspecified target, the likelihood distribution is

uniform over feature values). In this case, the overall saliency reduces to just the self-information

term: log sz = −log p(F =fz). We take this to be our definition of bottom-up saliency. It implies
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that the rarer a feature is, the more it will attract our attention.

Note that all of the probability distributions described here should be learned by the visual

system through experience. Because the goal of the SUN model is to find potential targets in the

surrounding environment, the probabilities should reflect the natural statistics of the environment

and the learning history of the organism, rather than just the statistics of the current image. (This

is especially obvious for the top-down terms, which require learned knowledge of the targets.)

In summary, calculating the probability of a target at each point in the visual field leads nat-

urally to the estimation of information content. In the free-viewing condition, when there is no

specific target, saliency reduces to the self-information of a feature. This implies that when the

attention is directed only by bottom-up saliency, moving one’s eyes to the most salient points in

an image can be regarded as maximizing information sampling, which is consistent with the basic

assumption of Bruce and Tsotsos (2006). When a particular target is being searched for, on the

other hand, our model implies that the best features to attend to are those that have the most mutual

information with the target. This has been shown to be very useful in object detection with objects

such as faces and cars (Ullman, Vidal-Naquet, & Sali, 2002).

In the rest of this paper, we will concentrate on bottom-up saliency for static images. This

corresponds to the free viewing condition, when no particular target is of interest. In Section 4,

we provide a simple and efficient algorithm for bottom-up saliency that (as we demonstrate in

Section 5) produces state-of-the-art performance in predicting human fixations. In addition, we

discuss a surprising result concerning the location prior in Section 5.1.

4 Implementation

In this section, we develop an algorithm based on our SUN model that takes color images as input

and calculates their saliency maps (the saliency at every pixel in an image). Given a probabilistic

formula for saliency, such as the one we derived in Section 3, there are two key factors that affect

the final results of a saliency model when operating on an image. One is the feature space, and the

other is the probability distribution over the features.

In most existing saliency algorithms, the features are calculated as responses of biologically

plausible linear filters, such as DoG (difference of Gaussians) filters and Gabor filters (e.g., Itti et

al., 1998; Itti & Koch, 2001; Oliva et al., 2003; Torralba et al., 2006; Gao & Vasconcelos, 2004,

2007). In (Bruce & Tsotsos, 2006), the features are calculated as the responses to filters learned

from natural images using independent component analysis (ICA). In this paper, we conduct ex-

periments with both kinds of features.

Below, we describe the SUN algorithm for estimating the bottom-up saliency that we derived in

Section 3, − log p(F = fz). Here, a point z corresponds to a pixel in the image. For the remainder

of the paper, we will drop the subscript z for notational simplicity. In this algorithm, F is a random

vector of filter responses, F = [F1, F2, . . .], where the random variable Fi represents the response

of the ith filter at a pixel, and f = [f1, f2, . . .] are the values of these filter responses at this location.
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4.1 Method 1: Difference of Gaussians filters

As noted above, many existing models use a collection of DoG (difference of Gaussians) and/or

Gabor filters as the first step of processing the input images. These filters are popular due to their

resemblance to the receptive fields of neurons in the early stages of the visual system, namely the

lateral geniculate nucleus of the thalamus (LGN) and the primary visual cortex (V1). DoGs, for

example, give the well-known “Mexican hat” center-surround filter. Here, we apply DoGs to the

intensity and color channels of an image.

Let r, g and b denote the red, green, and blue components of an input image pixel. The inten-

sity (I), red/green (RG), and blue/yellow (BY ) channels are calculated as:

I = r + g + b, RG = r − g, BY = b −
r + g

2
−

min(r, g)

2
. (12)

The DoG filters are generated by2

DoG(x, y) =
1

σ2
exp

(

−
x2 + y2

σ2

)

−
1

(1.6σ)2
exp

(

−
x2 + y2

(1.6σ)2

)

. (13)

where (x, y) is the location in the filter. These filters are convolved with the intensity and color

channels (I , RG, and BY ) to produce the filter responses. We use four scales of DoG (σ = 4, 8, 16
or 32 pixels) on each of the three channels, leading to 12 feature response maps. The filters are

shown in Figure 1, top.

By computing these feature response maps on a set of 138 images of natural scenes (pho-

tographed by the first author), we obtained an estimate of the probability distribution over the

observed values of each of the 12 features. To parameterize this estimated distribution for each

feature Fi, we used an algorithm proposed by Song (2006) to fit a zero-mean generalized Gaussian

distribution, also known as an exponential power distribution, to the filter response data:

p(f ; σ, θ) =
θ

2σΓ(1

θ
)
exp

(

−

∣
∣
∣
∣

f

σ

∣
∣
∣
∣

θ
)

. (14)

In this equation, Γ is the gamma function, θ is the shape parameter, σ is the scale parameter, and f

is the filter response. This resulted in one shape parameter, θi, and one scale parameter, σi, for each

of the 12 filters: i = 1, 2, ..., 12. Figure 1 shows the distributions of the four DoG filter responses

on the intensity (I) channel across the training set of natural images, and the fitted generalized

Gaussian distributions. As the figure shows, the generalized Gaussians provide an excellent fit to

the data.

Taking the logarithm of (14), we obtain the log probability over the possible values of each

feature:

log p(Fi = fi) = log θi − log 2 − log σi − log Γ
( 1

θi

)

−

∣
∣
∣
∣

fi

σi

∣
∣
∣
∣

θi

(15)

= −

∣
∣
∣
∣

fi

σi

∣
∣
∣
∣

θi

+ const. , (16)

2Equation (13) is adopted from the function filter DOG 2D, from Image Video toolbox for Matlab by Piotr Dollar.

The toolbox can be found at http://vision.ucsd.edu/∼pdollar/toolbox/doc/.
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Figure 1: Four scales of difference of Gaussians (DoG) filters were applied to each channel of

a set of 138 images of natural scenes. Top: The four scales of difference of Gaussians (DoG)

filters that were applied to each channel. Bottom: The graphs show the probability distribution

of filter responses for these four filters (with σ increasing from left to right) on the intensity (I)

channel collected from the set of natural images (blue line), and the fitted generalized Gaussian

distributions (red line). Aside from the natural statistics in this training set being slightly sparser,

the generalized Gaussian distributions provide an excellent fit.

where the constant term does not depend on the feature value. To simplify the computations, we

assume that the 12 filter responses are independent. Hence the total bottom-up saliency of a point

takes the form:

log s = − log p(F = f) =
12∑

i=1

∣
∣
∣
∣

fi

σi

∣
∣
∣
∣

θi

+ const. (17)

4.2 Method 2: Linear ICA Filters

In SUN’s final formula for bottom-up saliency (17), we assumed independence between the filter

responses. However, this assumption does not always hold. For example, a bright spot in an image

will generate a positive filter response for multiple scales of DoG filters. In this case the filter

responses, far from being independent, are highly correlated. It is not clear how this correlation

affects the saliency results when a weighted sum of filter responses is used to compute saliency (as

in Itti et al., 1998; Itti & Koch, 2001) or when independence is assumed in estimating probability

(as in our case). Torralba et al. (2006) used a multivariate generalized Gaussian distribution to fit
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Figure 2: The 362 linear features learned by applying a complete independent component analy-

sis (ICA) algorithm to 11×11 patches of color natural images from the Kyoto dataset.

the joint probability of the filter responses. However, although the response of a single filter has

been shown to be well fitted by a univariate generalized Gaussian distribution, it is less clear that the

joint probability follows a multivariate generalized Gaussian distribution. Also, much more data

is necessary for a good fit of a high-dimensional probability distribution than for one-dimensional

distributions. It has been shown that estimating the moments of a generalized Gaussian distribution

has its limitations even for the one-dimensional case (Song, 2006), and it is much less likely to

work well for the high-dimensional case.

To obtain the linear features used in their saliency algorithm, Bruce and Tsotsos (2006) applied

independent component analysis (ICA) to a training set of natural images. This has been shown

to yield features that qualitatively resemble those found in the visual cortex (Olshausen & Field,

1996; Bell & Sejnowski, 1997). Although the linear features learned in this way are not entirely

independent, they have been shown to be independent up to third-order statistics (Wainwright,

Schwartz, & Simoncelli, 2002). Such a feature space will provide a much better match for the

independence assumptions we made in (17). Thus, in this method we follow (Bruce & Tsotsos,
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2006) and derive complete ICA features to use in SUN. It is worth noting that although Bruce and

Tsotsos (2006) use a set of natural images to train the feature set, they determine the distribution

over these features solely from a single test image when calculating saliency.

We applied the FastICA algorithm (Hyvarinen & Oja, 1997) to 11-pixel × 11-pixel color nat-

ural image patches drawn from the Kyoto image dataset (Wachtler, Doi, Lee, & Sejnowski, 2007).

This resulted in 11 · 11 · 3 − 1 = 362 features3. Figure 2 shows the linear ICA features obtained

from the training image patches.

Like the DoG features from Section 4.1, the ICA feature responses to natural images can be

fitted very well using generalized Gaussian distributions, and we obtain the shape and scale param-

eters for each ICA filter by fitting its response to the ICA training images. The formula for saliency

is the same as in Method 1 (equation 17), except that the sum is now over 362 ICA features (rather

than 12 DoG features).

Some examples of bottom-up saliency maps computed using the algorithms from Methods 1

and 2 are shown in Figure 3. Each row displays an original test image (from Bruce & Tsotsos,

2006), the same image with human fixations overlaid as red crosses, and the saliency maps on

the image computed using Method 1 and Method 2. For Method 1, we applied the DoG filters

to 511 × 681 images; for computational efficiency of Method 2, we downsampled the images

by a factor of 4 before applying the ICA-derived filters. Figure 3 is included for the purpose of

qualitative comparison; the next section provides a detailed quantitative evaluation.

5 Results

5.1 Evaluation method and the center bias

5.1.1 ROC area

Several recent publications (Bruce & Tsotsos, 2006; Harel et al., 2007; Gao & Vasconcelos, 2007;

Kienzle, Wichmann, Schlkopf, & Franz, 2007) use the ROC area metric proposed by Tatler, Bad-

deley, and Gilchrist (2005) to evaluate eye fixation prediction. Using this method, the saliency map

is treated as a binary classifier on every pixel in the image; pixels with larger saliency values than

threshold are classified as fixated while the rest are classified as non-fixated. Human fixations are

used as ground truth. By varying the threshold, an ROC curve can be drawn and the area under the

curve indicates how well the saliency map predicts actual human eye fixations. This measurement

has the desired characteristic of transformation invariance, in that the area under the ROC curve

does not change when applying any monotonically increasing function (such as logarithm) to the

saliency measure.

Assessing performance in this manner runs into problems because most human fixation data

sets collected with head-mounted eye tracking systems have a strong center bias. This bias is partly

due to factors related to the setup of the experiment, such as subjects being centered with respect

3The training image patches are considered as 11 · 11 · 3 = 363-dimensional vectors, z-scored to have zero mean

and unit standard deviation, then processed by principal component analysis (where one dimension is lost due to mean

subtraction).
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Figure 3: Examples of saliency maps for qualitative comparison. Each row contains, from left

to right: An original test image; the same image with human fixations (from Bruce & Tsotsos,

2006) shown as red crosses; the saliency map produced by our SUN algorithm with DoG filters

(Method 1); and the saliency map produced by SUN with ICA features (Method 2).
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Figure 4: Plots of all human eye fixation locations in three data sets. Left: Subjects viewing color

images (Bruce & Tsotsos, 2006); Middle: Subjects viewing grey images (W. Einhauser & Konig,

2006); Right: Subjects viewing color videos (Itti & Baldi, 2006).

to the center of the screen and framing effects caused by the monitor, but also reflects the fact that

human photographers tend to center objects of interest (Parkhurst & Niebur, 2003; Tatler et al.,

2005). Figure 4 shows the strong center bias of human eye fixations from free-viewing color static

images (data from Bruce & Tsotsos, 2006), gray static images (data from W. Einhauser & Konig,

2006) and videos (data from Itti & Baldi, 2006). In fact, simply using a Gaussian blob centered in

the middle of the image as the saliency map produces excellent results. For example, on the data

set collected in (Bruce & Tsotsos, 2006), a Gaussian blob fitted to the human eye fixations for that

set has an ROC area of 0.80, exceeding the reported results of 0.75 (in Bruce & Tsotsos, 2006) and

0.77 (in Gao & Vasconcelos, 2005) on this data set.

5.1.2 KL divergence

Itti and colleagues make use of the Kullback-Leibler (KL) divergence between the histogram of

saliency sampled at eye fixations and that sampled at random locations as the evaluation metric

for their dynamic saliency (Itti & Baldi, 2005, 2006). If a saliency algorithm performs signifi-

cantly better than chance, the saliency computed at human-fixated locations should be higher than

that computed at random locations, leading to a high KL divergence between the two histograms.

This KL divergence, similar to the ROC measurement, has the desired property of transformation

invariance—applying a continuous monotonic function (such as logarithm) to the saliency values

would not affect scoring (Itti & Baldi, 2006). In (Itti & Baldi, 2005, 2006), the random locations

are drawn from a uniform spatial distribution over each image frame. Like the ROC performance

measurement, the KL divergence awards excellent performance to a Gaussian blob due to the

center bias of the human fixations. The Gaussian blob discussed earlier, trained on the (Bruce

& Tsotsos, 2006) data, yields a KL divergence of 0.44 on the data set of Itti and Baldi (2006),

exceeding their reported result of 0.24. Thus, both the ROC and KL measurements are strongly

sensitive to the effects of the center bias.
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5.1.3 Edge effects

These findings imply that models which make use of a location prior (discussed in Section 3) would

better model human behavior. Since all of these models (Itti et al., 1998; Itti & Koch, 2000; Bruce

& Tsotsos, 2006; Gao & Vasconcelos, 2007) calculate saliency at each pixel without regard to the

pixel’s location, it would appear that both the ROC measurement and the KL divergence provide a

fair comparison between models since no model takes advantage of this additional information.

However, both measures are corrupted by an edge effect due to variations in the handling of

invalid filter responses at the borders of images. When an image filter lies partially off the edge

of an image, the filter response is not well defined and various methods are used to deal with

this problem. Figure 5 shows the average of all of the image saliency maps using each of the

algorithms of (Itti & Koch, 2001; Bruce & Tsotsos, 2006; Gao & Vasconcelos, 2007) on the

data set of Bruce and Tsotsos (2006). It is clear from Figure 5 that all three algorithms have

borders with decreased saliency, but to varying degrees. These border effects introduce an implicit

center bias on the saliency maps; “cool borders” result in the bulk of salience being located at

the center of the image. Because different models are affected by these edge effects to varying

degrees, it is difficult to determine using the previously described measures whether the difference

in performance between models is due to the models themselves, or merely due to edge effects4.

Figure 6 illustrates the impact that varying amounts of edge effects can have on the ROC area

evaluation score by examining the performance of dummy saliency maps that are all 1’s except

for a border of 0’s. The map with a four-pixel border yields an ROC area of 0.62, while the map

with an eight-pixel border has an area of 0.73. All borders are small relative to the 120 × 160

pixel saliency map and for these measurements, we assume that the border points are never fixated

by humans, which corresponds well with actual human fixation data. A dummy saliency map of

all 1’s with no border has a baseline ROC area of 0.5.

The KL measurement, too, is quite sensitive to how the filter responses are dealt with at the

edges of images. Since the human eye fixations are rarely near the edges of the test images, the

edge effects primarily change the distribution of saliency of the random samples. For the dummy

saliency maps used in Figure 6, the baseline map (of all 1’s) gives a KL divergence of 0, the

four-pixel-border map gives a KL divergence of 0.12, and the eight-pixel-border map gives a KL

divergence of 0.25.

While this dummy example presents a somewhat extreme case, we have found that in compar-

ing algorithms on real data sets (using the ROC area, the KL divergence, and other measures), the

differences between algorithms are dwarfed by differences due to how borders are handled.

5.1.4 Eliminating border effects

Parkhurst and Niebur (2003) and Tatler et al. (2005) have pointed out that random locations should

be drawn from the distribution of actual human eye fixations. In this paper, we measure the KL

divergence between two histograms: the histogram of saliency at the fixated pixels of a test image,

4When comparing different feature sets within the same model, edge effects can also make it difficult to assess

which features are best to use; larger filters result in a smaller valid image after convolution, which can artificially

boost performance.
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Figure 5: The average saliency maps of three recent algorithms on the stimuli used in collecting

human fixation data by Bruce and Tsotsos (2006). Averages were taken across the saliency maps

for the 120 color images. The algorithms used are, from left to right: Itti et al. (1998), Bruce and

Tsotsos (2006), and Gao and Vasconcelos (2007). All three algorithms exhibit decreased saliency

at the image borders, an artifact of the way they deal with filters that lie partially off the edge of

the images.

and the histogram of saliency at the same pixel locations but of a randomly chosen image from

the test set (effectively shuffling the saliency maps with respect to the images). This method of

comparing models has several desired properties. First, it avoids the aforementioned problem that

a static saliency map (such as a centered Gaussian blob) can receive a high score even though it

is completely independent of the input image. By shuffling the saliency maps, any static saliency

map will give a KL divergence of zero—for a static saliency map, shuffling has no effect, and the

salience values at the human-fixated pixels are identical to those from the same pixel locations at

a random image. Secondly, shuffling saliency maps also diminishes the effect of variations in how

borders are handled since few eye fixations are located near the edges.

The potential problem with the shuffling method is that because photos taken by humans are

often centered on interesting objects, the center is often genuinely more salient than the periphery.

As a result, shuffling saliency maps can bias the random samples to be at more salient locations,

which leads to an underestimate of a model’s performance (Carmi & Itti, 2006). However, this

does not affect the validity of this evaluation measurement for comparing the relative performance

of different models, and its properties make for a fair comparison that is free from border effects.

5.2 Performance

We evaluate our bottom-up saliency algorithm on human fixation data from (Bruce & Tsotsos,

2006). Data were collected from 20 subjects free-viewing 120 color images for 4 seconds each. As

described in Section 4, we calculated saliency maps for each image using DoG filters (Method 1)

and linear ICA features (Method 2). We also obtained saliency maps for the same set of images

using the algorithms of Itti et al. (1998, obtained from Bruce and Tsotsos)5, Bruce and Tsotsos

5The saliency maps that produce the score for Itti et al. in Table 1 come from Bruce and Tsotsos (2006) and were

calculated using the online Matlab saliency toolbox (http://www.saliencytoolbox.net/index.html) using the parameters
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Figure 6: Illustration of edge effects on performance. Left: A saliency map of size 120 × 160

that consists of all 1’s except for a four-pixel-wide border of 0’s. Center: A saliency map of size

120× 160 that consists of all 1’s except for an eight-pixel-wide border of 0’s. Right: The ROC

curves of these two dummy saliency maps, as well as for a baseline saliency map (all 1’s). The

ROC areas for these two curves are 0.62 and 0.73, respectively. (The baseline ROC area is 0.5.)

(2006, implemented by the original authors)6, and Gao and Vasconcelos (2007, implemented by the

original authors). The performance of these algorithms evaluated using the KL measure described

in Section 5.1.4 is summarized in Table 1. For each algorithm, the shuffling of the saliency maps is

repeated 100 times. Each time, KL divergence is calculated between the histograms of unshuffled

saliency and shuffled saliency on human fixations. The mean and the standard errors are reported

in the table.

Table 1: Performance in predicting human eye fixations when viewing color images. Comparison

of our SUN algorithm (Method 1 using DoG filters and Method 2 using linear ICA features) with

previous algorithms. The KL divergence metric measures the divergence between the saliency

distributions at human fixations and at randomly shuffled fixations (see text for details); higher

values therefore denote better performance.

Model KL (std. error)

Itti et al. (1998) 0.1130 (0.00115)

Bruce and Tsotsos (2006) 0.2029 (0.00173)

Gao and Vasconcelos (2007) 0.1535 (0.00155)

SUN: Method 1 (DoG filters) 0.1723 (0.0122)

SUN: Method 2 (linear ICA filters) 0.2097 (0.00157)

The results show that SUN with DoG filters (Method 1) significantly outperforms Itti and

that correspond to (Itti et al., 1998). Using the default parameters of this online toolbox generates inferior binary-like

saliency maps that give a KL score of 0.1095 (0.00140).
6The results reported in (Bruce & Tsotsos, 2006) used ICA features of size 7 × 7. The results reported here,

obtained from Bruce and Tsotsos, used features of size 11×11, which the authors say achieved better performance.
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Koch’s algorithm (p < 10−57) and Gao and Vasconcelos’ algorithm (p < 10−14), where signif-

icance was measured with a two-tailed t-test over different random shuffles. Between Method 1

(DoG features) and Method 2 (ICA features), the ICA features work significantly better (p < 10−32).

There are further advantages to using ICA features: efficient coding has been proposed as one of the

fundamental goals of the visual system (Barlow, 1994), and linear ICA has been shown to generate

receptive fields akin to those found in primary visual cortex (V1) (Olshausen & Field, 1996; Bell &

Sejnowski, 1997). In addition, generating the feature set using natural image statistics means that

both the feature set and the distribution over features can be calculated simultaneously. However, it

is worth noting that the online computations for Method 1 (using DoG features) take significantly

less time since only 12 DoG features are used, compared to 362 ICA features in Method 2. There

is thus a trade off between efficiency and performance in our two methods.

SUN with linear ICA features (Method 2) performs significantly better than Bruce and Tsotsos’

algorithm (p = 0.0035) on this data set, though the KL divergence scores are numerically quite

close. This similarity in performance is not surprising, for two reasons. First, since both algorithms

construct their feature sets using ICA, the feature sets are qualitatively similar. Second, although

SUN uses the statistics learned from a training set of natural images whereas Bruce and Tsotsos

(2006) calculate these statistics using only the current test image, the response distribution for a

low-level feature on a single image of a complex natural scene will generally be close to overall

natural scene statistics. In any case, SUN is more efficient than the algorithm of Bruce and Tsotsos

(2006). The reason is that in our SUN algorithm, the probability distributions of features are pre-

computed offline from the training set, while in their algorithm the probability distributions have

to be estimated for every image.

6 Discussion

In this paper, we have derived a theory of saliency from the simple assumption that a goal of

the visual system is to find potential targets such as prey and predators. Based on a probabilistic

description of this goal, we proposed that bottom-up saliency is the self-information of visual

features and that overall saliency is the pointwise mutual information between the visual features

and the desired target. Here, we have focused on the bottom-up component. The use of self-

information as a measure of bottom-up saliency provides a surface similarity between our SUN

model and some existing models (Bruce & Tsotsos, 2006; Oliva et al., 2003; Torralba et al., 2006),

but this belies fundamental differences between our approach and theirs. In Section 6.1, we explain

that the core motivating intuitions behind SUN lead to a use of different statistics, which better

accounts for a number of human search assymetries.

6.1 Test image statistics vs. natural scene statistics

6.1.1 Comparison with previous work

All of the existing bottom-up saliency models described in Section 2 compute saliency by com-

paring the feature statistics at a point in a test image with either the statistics of a neighborhood of
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the point or the statistics of the entire test image. When calculating the saliency map of an image,

these models only consider the statistics of the current test image. In contrast, SUN’s definition

of saliency (derived, as explained in Section 3, from a simple intuitive assumption about a goal of

the visual system) compares the features observed at each point in a test image to the statistics of

natural scenes. An organism would learn these natural statistics through a lifetime of experience

with the world; in the SUN algorithm, we obtained them from a collection of natural images (see

Section 4).

SUN’s formula for bottom-up saliency is similar to the one in the work of Oliva and colleagues

(Oliva et al., 2003; Torralba et al., 2006) and the one in (Bruce & Tsotsos, 2006) in that they are

all based on the notion of self-information. However, the differences between image statistics and

natural statistics lead to radically different kinds of self-information. Briefly, the motivation for

using self-information with current image statistics is that a foreground object is likely to have

features that are distinct from the features of the background. The idea that the saliency of an item

is dependent on its deviation from the average statistics of the image can find its roots in the visual

search model proposed in (Rosenholtz, 1999), which accounted for a number of motion pop-out

phenomena, and can be seen as a generalization of the center-surround-based saliency found in

Koch and Ullman (1985). SUN’s use of natural statistics for self-information, on the other hand,

corresponds to the intuition that since targets are observed less frequently than background during

an organism’s lifetime, rare features are more likely to indicate targets. The idea that infrequent

features attract attention has its origin in findings that novelty attracts the attention of infants (Fantz,

1964; Caron & Caron, 1968; Fagan, 1970; Friedman, 1972) and that novel objects are faster to find

in visual search tasks (see (Wolfe, 2001) for a review). This fundamental difference in motivation

between SUN and existing saliency models leads to very different predictions about what attracts

attention.

In Section 6.1.2, below, we show that by using natural image statistics, SUN provides a simple

explanation for a number of psychophysical phenomena that are difficult to account for using the

statistics of either a local neighborhood in the test image or the entire test image. In addition, since

natural image statistics are computed well in advance of the test image presentation, in the SUN

algorithm the estimation of saliency is strictly local and efficient.

6.1.2 Visual search asymmetry

When the probability of a feature is based on the distribution of features in the current test image,

as in previous saliency models, a straightforward consequence is that if all items in an image are

identical except for one, this odd item will have the highest saliency and thus attract attention. For

example, if an image consists of a number of vertical bars with one bar that is slightly tilted from

the vertical, the tilted bar “pops out” and attracts attention almost instantly (Treisman & Gormican,

1988); see Figure 7, left, for an illustration. If, on the other hand, an image consists of a number

of slightly-tilted-from-vertical bars with one vertical bar, saliency based on the statistics of the

current image predicts the same pop-out effect for the vertical bar. However, this simply is not the

case, as humans do not show the same pop-out effect: it requires more time and effort for humans

to find a vertical bar within a sea of tilted bars (Treisman & Gormican, 1988); see Figure 7, right,

for an illustration. This is known in the visual search literature as a search asymmetry, and this

19



Figure 7: Illustration of the “prototypes do not pop out” visual search asymmetry (Treisman &

Gormican, 1988). Left: A tilted bar in a sea of vertical bars pops out—the tilted bar can be found

almost instantaneously. Right: A vertical bar in sea of tilted bars does not pop out. The bar with

the odd orientation in this case requires more time and effort for subjects to find than in the case

illustrated in the image on the left.

particular example corresponds to findings that “prototypes do not pop out” because the vertical is

regarded as a prototypical orientation (Treisman & Souther, 1985; Treisman & Gormican, 1988;

Wolfe, 2001).

Unlike saliency measures based on the statistics of the current image or a neighborhood in

the current image, saliency based on natural statistics readily predicts this search asymmetry. The

vertical orientation is prototypical because it occurs more frequently in natural images than the

tilted orientation (Schaaf & Hateren, 1996). As a result, the vertical bar will have smaller salience

than the surrounding tilted bars, so it will not attract attention as strongly.

Another visual search asymmetry exhibited by human subjects involves long and short line

segments. Saliency measures based on test image statistics or local neighborhood statistics predict

that a long bar in a group of short bars (illustrated on the left in Figure 8) should be as salient as a

short bar in a group of long bars (illustrated on the right in Figure 8). However, it has been shown

that humans find a long bar among short bar distractors much more quickly than they find a short

bar among long bars (Treisman & Gormican, 1988). Saliency based on natural statistics readily

predicts this search asymmetry, as well. Due to scale invariance, the probability distribution over

the lengths of line segments in natural images follows the power law (Ruderman, 1994). That is,

the probability of the occurrence of a line segment of length v is given by p(V = v) ∝ 1

v
. Since

longer line segments have lower probability in images of natural scenes, the SUN model implies

that longer line segments will be more salient.

Visual search asymmetry is also observed for higher-level stimuli such as roman letters, Chi-

nese characters, animal silhouettes, and faces. For example, people are faster to find a mirrored

letter in normal letters than the reverse (Frith, 1974). People are also faster at searching for an

inverted animal silhouette in a sea of upright silhouettes than the reverse (Wolfe, 2001), and faster
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Figure 8: Illustration of a visual search asymmetry with line segments of two different lengths

(Treisman & Gormican, 1988). Left: A long bar is easy to locate in a sea of short bars. Right: A

short bar in a sea of long bars is harder to find.

at searching for an inverted face in a group of upright faces than the reverse (Nothdurft, 1993).

These phenomena have been referred to as “the novel target is easier to find.” Here, “novel” means

that subjects have less experience with the stimulus, indicating a lower probability of encounter

during development. This corresponds well with SUN’s definition of bottom-up saliency, as items

with novel features are more salient by definition.

If the saliency of an item depends upon how often it has been encountered by an organism, then

search asymmetry should vary among people with different experience with the items involved.

This seems to indeed be the case. Modified/inverted Chinese characters in a sea of real Chinese

characters are faster to find than the reverse situation for Chinese readers, but not for non-Chinese

readers (Wang, Cavanagh, & Green, 1994; Shen & Reingold, 2001). Levin found an “other-

race advantage” as American Caucasians are faster to search for an African-American face among

Caucasian faces than to search for a Caucasian face among African-American faces (Levin, 1996).

This is consistent with what SUN would predict for American Caucasian subjects that have more

experience with Caucasian faces than with African-American faces. In addition, Levin found that

Caucasian basketball fans who are familiar with many African-American basketball players do not

show this other-race search advantage (Levin, 2000). These seem to provide direct evidence that

experience plays an important role in saliency (Zhang et al., 2007), and the statistics of the current

image alone cannot account for these phenomena.

6.2 Efficiency comparison with existing saliency models

Table 2 summarizes some computational components of several algorithms discussed in Section 2

and compared in Section 5. Computing feature statistics in advance using a data set of natural

images allows the SUN algorithm to compute saliency quickly compared with algorithms that

require calculations of statistics on the current image. In addition, SUN requires strictly local
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Table 2: Some computational components of the algorithms. Notably, our SUN algorithm requires

only offline probability distribution estimation and no global computation over the test image in

calculating saliency.

Model
Statistics

calculated using

Global

operations

Statistics

calculated on image

Itti et al.

(1998)
N/A

Sub-map

normalization
None

Bruce and

Tsotsos

(2006)

Current

image

Probability

estimation

Once for

each image

Gao and

Vasconcelos

(2007)

Local region of

current image
None

Twice for

each pixel

SUN

Training set

of natural images

(pre-computed offline)

None None

operations, which is consistent with implementation in the low levels of the visual system.

6.3 Higher-order features

The range of visual search asymmetry phenomena described in Section 6.1.2 seem to suggest

that the statistics of observed visual features are estimated by the visual system at many different

levels, including basic features such as color and local orientation as well as higher-level features.

The question of exactly what feature set is employed by the visual system is beyond the scope

of this paper. In the current implementation of SUN, explained in Section 4, we only consider

linear filter responses as features for computational efficiency. This use of linear features (DoG

or linear ICA features) causes highly-textured areas to have high saliency, a characteristic shared

with complexity-based algorithms (Yamada & Cottrell, 1995; Chauvin et al., 2002; Kadir & Brady,

2001; Renninger et al., 2004). In humans, however, it is often not the texture itself but a change in

texture that attracts attention. Saliency algorithms that use local region statistics, such as (Gao &

Vasconcelos, 2007), address this problem explicitly.

Our SUN model could resolve this problem implicitly by using a non-linear feature space.

Whereas linear ICA features learned from natural images respond to discontinuities in illumination

or color, higher-order non-linear ICA features are found to respond to discontinuity in textures

(Shan, Zhang, & Cottrell, 2007; Karklin & Lewicki, 2003; Osindero, Welling, & Hinton, 2005).

Figure 9 shows an image of birthday candles, the response of a linear DoG filter to that image, and

the response of a non-linear feature inspired by the higher-order ICA features learned in (Shan et

al., 2007). Perceptually, the white hole in the image attracts attention (Bruce & Tsotsos, 2006).

Whereas the linear feature has zero response to this hole, the higher-order feature responds strongly
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Figure 9: Demonstration that non-linear features could capture discontinuity of textures without

using a statistical model that explicitly measures the local statistics. Left: The input image, adapted

from (Bruce & Tsotsos, 2006). Middle: The response of a linear DoG filter. Right: The response

of a non-linear feature. The non-linear feature is constructed by applying a DoG filter, then non-

linearly transforming the output before another DoG is applied. (See (Shan et al., 2007) for details

on the non-linear transformation.) Whereas the linear feature has zero response to the white hole

in the image, the non-linear feature responds strongly in this region, consistent with the white

region’s perceptual salience.

in this region. We will explore the use of such features in future work.

6.4 Conclusion

Based on the intuitive assumption that a goal of the visual system is to find potential targets, we

derived a definition of saliency in which overall visual saliency is the pointwise mutual informa-

tion between the observed visual features and the presence of a target, and bottom-up saliency is

the self-information of the visual features. Using this definition, we developed a simple algorithm

for bottom-up saliency that can be expressed in a single equation (17). We applied this algorithm

using two different set of features, difference of Gaussians (DoG) and ICA-derived features, and

compared the performance to several existing bottom-up saliency algorithms. Not only does SUN

perform as well as or better than the state-of-the-art algorithms, but it is also more computation-

ally efficient. In its use of self-information to measure bottom-up saliency, SUN is similar to the

algorithms in (Oliva et al., 2003; Torralba et al., 2006; Bruce & Tsotsos, 2006), but stems from a

different set of intuitions and is calculated using different statistics. In SUN, the probability distri-

bution over features is learned from natural statistics (which corresponds to an organism’s visual

experience over time), whereas the previous saliency models compute the distribution over features

from each individual test image. We explained that several search asymmetries that may pose dif-

ficulties for models based on test image statistics can be accounted for when feature probabilities

are obtained from natural statistics.

In future work, we intend to incorporate the higher-level non-linear features discussed in Sec-

tion 6.3. In addition, our definition of overall saliency includes a top-down term that captures the

features of a target. Although this is beyond the scope of the present paper, we plan to examine

top-down influences on saliency in future research; preliminary work with images of faces shows

promise. We also plan to extend the implementation of SUN from static images into the domain of

video.
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