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Abstract

Scene categorization is a fundamental problem in com-

puter vision. However, scene understanding research has

been constrained by the limited scope of currently-used

databases which do not capture the full variety of scene

categories. Whereas standard databases for object cate-

gorization contain hundreds of different classes of objects,

the largest available dataset of scene categories contains

only 15 classes. In this paper we propose the extensive

Scene UNderstanding (SUN) database that contains 899

categories and 130,519 images. We use 397 well-sampled

categories to evaluate numerous state-of-the-art algorithms

for scene recognition and establish new bounds of perfor-

mance. We measure human scene classification perfor-

mance on the SUN database and compare this with com-

putational methods. Additionally, we study a finer-grained

scene representation to detect scenes embedded inside of

larger scenes.

1. Introduction

Whereas the fields of computer vision and cognitive sci-

ence have developed several databases to organize knowl-

edge about object categories [10, 28], a comprehensive

database of real world scenes does not currently exist (the

largest available dataset of scene categories contains only

15 classes). By “scene” we mean a place in which a human

can act within, or a place to which a human being could nav-

igate. How many kinds of scenes are there? How can the

knowledge about environmental scenes be organized? How

do the current state-of-art scene models perform on more

realistic and ill-controlled environments, and how does this

compare to human performance?

To date, computational work on scene and place recog-

nition has classified natural images within a limited num-

ber of semantic categories, representing typical indoor and

outdoor settings [17, 7, 23, 32, 21, 3, 29]. However, any re-

stricted set of categories fails to capture the richness and

diversity of environments that make up our daily experi-

ence. Like objects, scenes are associated with specific func-
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Figure 1. Examples of scene categories in our dataset.

tions and behaviors, such as eating in a restaurant, drinking

in a pub, reading in a library, and sleeping in a bedroom.

Scenes, and their associated functions, are closely related to

the visual features that structure the space. The function of

environments can be defined by their shape and size (a nar-

row corridor is for walking, an expansive arena is for public

events), by their constituent materials (snow, grass, water,

wood), or by embedded objects (table and chairs, displays

of jewelry, laboratory equipment).

The spatial layout and structure of a place often constrain

human activities: for instance, a long open corridor affords

walking or running, a classroom affords seating. Previous

attempts to characterize environmental scenes have capital-

ized on uncovering a manageable set of dimensions, fea-

tures or objects that are correlated with the semantic of pur-

pose of a space [21, 17, 7, 32, 12].

This paper has the following four objectives. First, we

seek to quasi-exhaustively determine the number of differ-

ent scene categories with different functionalities. Rather

than collect all scenes that humans experience – many of

which are accidental views such as the corner of an office

or edge of a door – we identify all the scenes and places that

are important enough to have unique identities in discourse,

and build the most complete dataset of scene image cate-



gories to date. Second, we measure how accurately humans

can classify scenes into hundreds of categories. Third, we

evaluate the scene classification performance of state of the

art algorithms and establish new bounds for performance on

the SUN database and the 15 scene database using a kernel

combination of many features. Finally, we study the possi-

bility of detecting scenes embedded inside larger scenes.

2. A Large Database for Scene Recognition

In order to get a quasi-exhaustive list of environmental

categories, we selected from the 70,000 terms of WordNet

[8] available on the tiny Images dataset [28] all the terms

that described scenes, places, and environments (any con-

crete noun which could reasonably complete the phrase I

am in a place, or Let’s go to the place). Most of the terms

referred to basic and entry level places [30, 24, 25, 14] with

different semantic descriptions. We did not include specific

place names (like Grand Canyon or New York) or terms

which did not seem to evoke a specific visual identity (terri-

tory, workplace, outdoors). Non-navigable scenes (such as

a desktop) were not included, nor were vehicles (except for

views of the inside of vehicles) or scenes with mature con-

tent. We included specific types of buildings (skyscraper,

house, hangar), because, although these can be seen as ob-

jects, they are known to activate scene-processing-related

areas in the human brain. [5]. We also maintained a high tol-

erance for vocabulary terms that may convey significance to

experts in particular domains (e.g. a baseball field contains

specialized subregions such the pitcher’s mound, dugout,

and bullpen; a wooded area could be identified as a pine

forest, rainforest, orchard, or arboretum, depending upon its

layout and the particular types of plants it contains). To the

WordNet collection we added a few categories that seemed

like plausible scenes but were missing from WordNet, such

as jewelry store and mission1.

This gave about 2500 initial terms of space and scene,

and after bundling together synonyms (provided by Word-

Net, and separating scenes with different visual identities

such as indoor and outdoor views of churches), the fi-

nal dataset reaches 899 categories and 130,519 images.

We refer to this dataset as “SUN” (Scene UNderstanding)

database2.

1An alternate strategy to obtain a list of relevant scene categories is to

record the visual experience of an observer and to count the number of

different scene categories viewed. This procedure is unlikely to produce

a complete list of all scene categories, as many scene categories are only

viewed in rare occasions (e.g., a cloister, a corn field, etc.). However, we

use this to validate the completeness of the list provided by WordNet. A

set of 7 participants where asked to write down every half an hour the

name of the scene category in which they were. They reported scenes for

a total period of 284 hours. In that period, they reported 52 different scene

categories, all of them within the set of scenes covered by our dataset.
2All the images and scene definitions are available at

http://groups.csail.mit.edu/vision/SUN/.

Figure 2. SUN categories with the highest human recognition rate.

For each scene category, images were retrieved using

WordNet terminology from various search engines on the

web [28]. Only color images of 200 × 200 pixels or larger

were kept. Each image was examined to confirm whether

or not it fit a detailed, verbal definition for its category.

For similar scene categories (e.g. “abbey”, “church”, and

“cathedral”) explicit rules were formed to avoid overlap-

ping definitions. Degenerate or unusual images (black and

white, distorted colors, very blurry or noisy, incorrectly ro-

tated, aerial views, noticeable borders) were removed. All

duplicate images, within and between categories, were re-

moved.

For many of the 899 SUN categories the Internet search

returns relatively few unique photographs3. For all experi-

ments in this paper we use only the 397 categories for which

there are at least 100 unique photographs.

3. Human Scene Classification

In the previous section we provide a rough estimate on

the number of common scene types that exist in the vi-

sual world and built the extensive SUN database to cover as

many of those scenes as possible. In this section, we mea-

sure human scene classification performance on the SUN

database. We have two goals: 1) to show that our database is

constructed consistently and with minimal overlap between

categories 2) to give an intuition about the difficulty of 397-

way scene classification and to provide a point of compari-

son for computational experiments (Section 4.2).

Measuring human classification accuracy with nearly

400 categories is difficult. We do not want to penal-

ize humans for being unfamiliar with our specific scene

taxonomy, nor do we want to require extensive training

concerning the definitions and boundaries between scenes

(however, such training was given to those who built the

database). Ideally our scene categories would be clear and

distinct enough such that an untrained participant can un-

ambiguously assign a categorical label to each scene in our

database given a list of possible scene types. To help par-

3Examples of under-sampled categories include “airlock”, “editing

room”, “grotto”, “launchpad”, “lava flow”, “naval base”, “oasis”, “os-

suary”, “salt plain”, “signal box”, “sinkhole”, “sunken garden”, “winners

circle”



Figure 3. Top row: SUN categories with the lowest human recog-

nition rate. Below each of these categories, in the remaining three

rows, are the most confusing classes for that category.

ticipants know which labels are available, we group the 397

scene categories in a 3-level tree, and the participants nav-

igate through an overcomplete three-level hierarchy to ar-

rive at a specific scene type (e.g. “bedroom”) by making

relatively easy choices (e.g. “indoor” versus “outdoor nat-

ural” versus “outdoor man-made” at the first level). Many

categories such as “hayfield” are duplicated in the hierarchy

because there might be confusion over whether such a cat-

egory belongs in the natural or man-made sub-hierarchies.

This hierarchy is used strictly as a human organizational

tool, and plays no roll in our experimental evaluations. For

each leaf-level SUN category the interface shows a proto-

typical photograph of that category.

We measure human scene classification accuracy using

Amazon’s Mechanical Turk (AMT). For each SUN cate-

gory we measure human accuracy on 20 distinct test scenes,

for a total of 397×20 = 7940 experiments or HITs (Human

Intelligence Tasks in AMT parlance). We restricted these

HITs to participants in the U.S. to help avoid vocabulary

confusion.

On average, workers took 61 seconds per HIT and

achieved 58.6% accuracy at the leaf level. This is quite

high considering that chance is 0.25% and numerous cate-

gories are closely related (e.g. “dining room”, “dining car”,

“home dinette”, and “vehicle dinette”). However, a signif-

icant number of workers have 0% accuracy – they do not

appear to have performed the experiment rigorously. If we

instead focus on the “good workers” who performed at least

100 HITs and have accuracy greater than 95% on the rela-

tively easy first level of the hierarchy the leaf-level accuracy

rises to 68.5%. These 13 “good workers” accounted for just

over 50% of all HITs. For reference, an author involved in

the construction of the database achieved 97.5% first-level

accuracy and 70.6% leaf-level accuracy. Therefore, these 13

good workers are quite trustable. In the remainder of the pa-

per, all evaluations and comparisons of human performance

(a) 15 scene dataset (b) SUN database

Figure 4. Recognition performance on the 15 scene dataset[21, 17,

7], and our SUN database. For the 15 scene dataset, the combina-

tion of all features (88.1%) outperforms the current state of the art

(81.4%) [17].

utilize only the data from the good AMT workers.

Figures 2 and 3 show the SUN categories for which the

good workers were most and least accurate, respectively.

For the least accurate categories, Figure 3 also shows the

most frequently confused categories. The confused scenes

are semantically similar – e.g. abbey to church, bayou to

river, and sandbar to beach. Within the hierarchy, indoor

sports and leisure scenes are the most accurately classified

(78.8%) while outdoor cultural and historical scenes were

least accurately classified (49.6%). Even though humans

perform poorly on some categories, the confusions are typ-

ically restricted to just a few classes.

Human and computer performance are compared exten-

sively in Section 4.2. It is important to keep in mind that the

human and computer tasks could not be completely equiva-

lent. The “training data” for AMT workers was a text label,

a single prototypical photo, and their lifetime visual expe-

rience. For some categories, a lifetime of visual experience

is quite large (e.g “bedroom”) while for others it is quite

small (e.g. “medina”). On the other hand, the computa-

tional methods had (up to) 50 training examples. It is also

likely the case that human and computer failures are qual-

itatively different – human misclassifications are between

semantically similar categories (e.g. “food court” to “fast-

food restaurant”), while computational confusions are more

likely to include semantically unrelated scenes due to spu-

rious visual matches (e.g. “skatepark” to “van interior”). In

Figure 8 we analyze the degree to which human and compu-

tational confusions are similar. The implication is that the

human confusions are the most reasonable possible confu-

sions, having the shortest possible semantic distance. But

human performance isn’t necessarily an upper bound – in

fact, for many categories the humans are less accurate than

the best computational methods (Figure 6).
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Figure 5. This figure shows the pattern of confusion across cat-

egories. The classes have been re-arranged to reveal the blocky

structure. For clarity, the elements in the diagonal have been set

to zero in order to increase the contrast of the off-diagonal ele-

ments. On the Y axis we show a sample of the scene categories.

Confusions seem to be coherent with semantic similarities across

classes. The scenes seem to be organized as indoor (top), urban

(center) and nature (bottom).

4. Computational Scene Classification

In this section we explore how discriminable the SUN

categories are with a variety of image features and kernels

paired with 1 vs. all support vector machines.

4.1. Image Features and Kernels

We selected or designed several state-of-art features that

are potentially useful for scene classification. GIST features

[21] are proposed specifically for scene recognition tasks.

Dense SIFT features are also found to perform very well at

the 15-category dataset [17]. We also evaluate sparse SIFTs

as used in “Video Google” [27]. HOG features provide ex-

cellent performance for object and human recognition tasks

[4, 9], so it is interesting to examine their utility for scene

recognition. While SIFT is known to be very good at find-

ing repeated image content, the self-similarity descriptor

(SSIM) [26] relates images using their internal layout of lo-

cal self-similarities. Unlike GIST, SIFT, and HOG, which

are all local gradient-based approaches, SSIM may provide

a distinct, complementary measure of scene layout that is

somewhat appearance invariant. As a baseline, we also in-

clude Tiny Images [28], color histograms and straight line

histograms. To make our color and texton histograms more

invariant to scene layout, we also build histograms for spe-

cific geometric classes as determined by [13]. The geomet-

ric classification of a scene is then itself used as a feature,

hopefully being invariant to appearance but responsive to

Figure 6. Categories with similar and disparate performance in hu-

man and “all features” SVM scene classification. Human accuracy

is the left percentage and computer performance is the right per-

centage. From top to bottom, the rows are 1) categories for which

both humans and computational methods perform well, 2) cate-

gories for which both perform poorly, 3) categories for which hu-

mans perform better, and 4) categories for which computational

methods perform better. The “all features” SVM tended to outper-

form humans on categories for which there are semantically sim-

ilar yet visually distinct confusing categories. E.g. sandbar and

beach, baseball stadium and baseball field, landfill and garbage

dump.

layout.

GIST: The GIST descriptor [21] computes the output en-

ergy of a bank of 24 filters. The filters are Gabor-like filters

tuned to 8 orientations at 4 different scales. The square out-

put of each filter is then averaged on a 4× 4 grid.

HOG2x2: First, histogram of oriented edges (HOG)

descriptors [4] are densely extracted on a regular grid at

steps of 8 pixels. HOG features are computed using the

code available online provided by [9], which gives a 31-

dimension descriptor for each node of the grid. Then, 2× 2
neighboring HOG descriptors are stacked together to form

a descriptor with 124 dimensions. The stacked descriptors

spatially overlap. This 2× 2 neighbor stacking is important

because the higher feature dimensionality provides more

descriptive power. The descriptors are quantized into 300

visual words by k-means. With this visual word represen-

tation, three-level spatial histograms are computed on grids

of 1 × 1, 2 × 2 and 4 × 4. Histogram intersection[17] is

used to define the similarity of two histograms at the same

pyramid level for two images. The kernel matrices at the

three levels are normalized by their respective means, and

linearly combined together using equal weights.

Dense SIFT: As with HOG2x2, SIFT descriptors are

densely extracted [17] using a flat rather than Gaussian win-

dow at two scales (4 and 8 pixel radii) on a regular grid at

steps of 5 pixels. The three descriptors are stacked together

for each HSV color channels, and quantized into 300 visual

words by k-means, and spatial pyramid histograms are used

as kernels[17].
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Figure 7. Selected SUN scene classification results using all features.

LBP: Local Binary Patterns (LBP) [20] is a powerful

texture feature based on occurrence histogram of local bi-

nary patterns. We can regard the scene recognition as a

texture classification problem of 2D images, and therefore

apply this model to our problem. We also try the rotation

invariant extension version [2] of LBP to examine whether

rotation invariance is suitable for scene recognition.

Sparse SIFT histograms: As in “Video Google” [27],

we build SIFT features at Hessian-affine and MSER [19] in-

terest points. We cluster each set of SIFTs, independently,

into dictionaries of 1,000 visual words using k-means. An

image is represented by two histograms counting the num-

ber of sparse SIFTs that fall into each bin. An image is

represented by two 1,000 dimension histograms where each

SIFT is soft-assigned, as in [22], to its nearest cluster cen-

ters. Kernels are computed with χ2 distance.

SSIM: Self-similarity descriptors [26] are computed on

a regular grid at steps of five pixels. Each descriptor is ob-

tained by computing the correlation map of a patch of 5× 5
in a window with radius equal to 40 pixels, then quantizing

it in 3 radial bins and 10 angular bins, obtaining 30 dimen-

sional descriptor vectors. The descriptors are then quan-

tized into 300 visual words by k-means and we use χ2 dis-

tance on spatial histograms for the kernels.

Tiny Images: The most trivial way to match scenes is

to compare them directly in color image space. Reducing

the image dimensions drastically makes this approach more

computationally feasible and less sensitive to exact align-

ment. This method of image matching has been examined

thoroughly by Torralba et al.[28] for the purpose of object

recognition and scene classification.

Line Features: We detect straight lines from Canny

edges using the method described in Video Compass [15].

For each image we build two histograms based on the statis-

tics of detected lines– one with bins corresponding to line

angles and one with bins corresponding to line lengths.

We use an RBF kernel to compare these unnormalized his-

tograms. This feature was used in [11].

Texton Histograms: We build a 512 entry universal tex-

ton dictionary [18] by clustering responses to a bank of fil-

ters with 8 orientations, 2 scales, and 2 elongations. For

each image we then build a 512-dimensional histogram by

assigning each pixel’s set of filter responses to the nearest

texton dictionary entry. We compute kernels from normal-

ized χ2 distances.

Color Histograms: We build joint histograms of color

in CIE L*a*b* color space for each image. Our histograms

have 4, 14, and 14 bins in L, a, and b respectively for a total

of 784 dimensions. We compute distances between these

histograms using χ2 distance on the normalized histograms.

Geometric Probability Map: We compute the geomet-

ric class probabilities for image regions using the method of

Hoiem et al. [13]. We use only the ground, vertical, porous,

and sky classes because they are more reliably classified.

We reduce the probability maps for each class to 8× 8 and

use an RBF kernel. This feature was used in [11].



Figure 8. For each feature, the proportion of categories for which

the largest incorrect (off-diagonal) confusion is the same category

as the largest human confusion.

Geometry Specific Histograms: Inspired by “Illumi-

nation Context” [16], we build color and texton histograms

for each geometric class (ground, vertical, porous, and sky).

Specifically, for each color and texture sample, we weight

its contribution to each histogram by the probability that it

belongs to that geometric class. These eight histograms are

compared with χ2 distance after normalization.

4.2. Experiments and Analysis

With the features and kernels defined above, we train

classifiers with one-vs-all Support Vector Machines. To bet-

ter establish comparisons with other papers we start by pro-

viding results on the 15 scene categories dataset [21, 17, 7]

(Figure 4(a)).

For the experiments with our SUN database, the perfor-

mance of all features enumerated above is compared in Fig-

ure 4(b). For each feature, we use the same set of training

and testing splits. For trials with fewer training examples,

the testing sets are kept unchanged while the training sets

are consistently decimated. The “all features” classifier is

built from a weighted sum of the kernels of the individual

features. The weight of each constituent kernel is propor-

tional to the fourth power of its individual accuracy. As an

additional baseline, we plot the performance of the “all fea-

tures” kernel using one-nearest-neighbor classification. The

1-vs-all SVM has nearly three times higher accuracy. It is

interesting to notice that with increasing amounts of train-

ing data, the performance increase is more pronounced with

the SUN dataset than the 15 scene dataset. The confusion

matrix of the “all features” combined classifier is shown in

Figure 5.

The best scene classification performance with all fea-

tures, 38%, is still well below the human performance of

68%. Computational performance is best for outdoor nat-

ural scenes (43.2%), and then indoor scenes (37.5%), and

worst in outdoor man-made scenes (35.8%). Within the

hierarchy, indoor transportation (vehicle interiors, stations,

etc.) scenes are the most accurately classified (51.9%) while

indoor shopping and dining scenes were least accurately

classified (29.0%). In Figure 6, we examine the categories

(a)

Ground Truth Annotations

beach

harbor

sky

village

(b) (c) (d) (e)

Figure 9. (a) Examples of photographs that contain multiple scene

types. (b) Ground truth annotations. (c)-(e): Detections of beach,

harbor, and village scene categories in a single image. In all vi-

sualizations, correct detections are green and incorrect detections

are red. Bounding box size is proportional to classifier confidence.

For this and other visualizations, all detections above a constant

confidence threshold are shown. In this result, one harbor detec-

tion is incorrect because it does not overlap with enough ground

truth “harbor” annotation. “Beach” or “village” would have been

acceptable.

for which human and machine accuracies are most similar

and most dissimilar. In Figure 8 we examine the similar-

ity in scene classification confusions between humans and

machines. The better performing features not only tend to

agree with humans on correct classifications, they also tend

to make the same mistakes that humans make. However,

humans have dramatically fewer confusions – for humans,

on average, the three largest entries in each row of the con-

fusion matrix sum to 0.95, while the “all features” SVM

needs 11 entries to reach this mark.

5. Scene Detection

The dominant view in the scene recognition literature is

that one image depicts one scene category. There are a few

exceptions to this trend – In [31], each image is graded ac-

cording to different scene categories. In [21], scenes are

represented along continuous dimensions. However, cur-

rent approaches assume that there is a unique scene label

that can be assigned to an entire image, and this assumption

is reasonable within a relatively narrow and disjoint selec-

tion of categories (e.g. the 15 in [17]), but the real world

is not so neatly divided. Just as people can move contin-

uously between scene categories (e.g. “office” into “corri-

dor”, “street” into “shopfront”), it is frequently the case that

a single photograph depicts multiple scenes types at differ-

ent scales and locations within the image (see Figure 9). By

constructing a scene database with broad coverage we can

explore the possibility of distinguishing all of the scenes

types within single images.

We introduce the concept of Scene Detection – recog-

nizing the scene type within image regions rather than en-

tire images. Our terminology is consistent with the object

detection literature[6] where object classification involves

classifying entire images, while object detection requires
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All Features 23.1 1.7 18.4 14.5 20.8 58.4 25.7 24.3 50.1 44.2 65.2 29.5 58.4 48.0 46.7 18.9 25.4 13.2 32.4 64.2 48.2 30.4 8.7 57.4 34.5

Tiny Images 5.4 1.2 5.0 5.4 7.7 38.7 9.1 5.3 34.0 4.7 23.9 13.8 18.0 27.4 12.4 12.7 7.7 6.0 9.8 59.8 12.1 18.2 8.1 10.6 14.9

Chance 3.1 1.0 4.2 2.2 6.6 30.8 5.1 3.0 17.9 3.5 12.4 4.8 4.8 17.1 4.8 9.2 4.0 5.2 6.6 35.9 5.7 13.4 2.3 6.7 8.8

Table 1. Scene Detection Average Precision. We compare the scene detection performance of our algorithm using all features and 200

training examples per class to baselines using only the “tiny images” feature and random guessing. “Sky”, “Forest”, and “Building

Facade” make up a large portion of the test set and thus random guessing can achieve significant AP.

localizing and recognizing objects within an image.

As in object detection, we adopt a multiscale scanning-

window approach to find sub-scenes. More specifically, we

examine sub-images of a fixed aspect ratio at three differ-

ent scales (1, 0.65. 0.42). We classify ∼ 100 crops per

image using the same features, training data, and classifi-

cation pipeline used in Section 4. Finally we evaluate our

detections against a novel, spatially annotated test set as de-

scribed below.

5.1. Test Set and Evaluation Criteria

For these experiments we restrict ourselves to outdoor,

urban environments to make the annotation process easier.

We use 24 of the 398 well-sampled SUN categories. Our

test set consists of 104 photographs containing an average

of four scene categories each. In every photo we trace the

ground truth spatial extent of each sub-scene and ensure that

sub-scenes obey the same definitions used to construct the

SUN database.

A ground truth annotation labeled “village” implies if

a sub-image bounding box (Bp) has at least T % overlap

with polygon (Pgt), it can be correctly classified as a “vil-

lage”. More precisely, a correct detection has area(Bp ∩

Pgt)/area(Bp) ≥ T . This notion of overlap is not sym-

metric as it is in object detection[6]. We do not care if the

ground truth annotation is larger than the detection. A beach

detection is correct even if the beach has much greater spa-

tial extent than the detection. In this regard, scenes behave

more like materials (or “stuff” [1]) in that they have un-

specified spatial extent. The boundaries of a street scene or

a forest are not as well defined as the boundaries of a chair.4

Annotations of differing categories can also spatially

overlap – A “restaurant patio” can be wholly contained

within a “plaza”. Overlap can also occur where scene types

transition or share dual meaning, e.g. the “beach” and “har-

bor” in Figure 9. In our experiments, we set the overlap

threshold T = 15%. This is necessarily small because in

some scene types, e.g. “tower” and “street”, the defining

element of the scene can occupy a relatively small percent-

4Along these same lines, non-maximum suppression of overlapped de-

tections is not important in this domain. While it is reasonable to require

that one chair should generate one detection, a forest can generate an arbi-

trary number of smaller forest scenes.

age of pixels. A side effect of this low threshold, together

with possibly overlapped annotations, is that for some sub-

images there is more than one valid classification. At a

given image location, the number of valid classifications

can change with scale. In Figure 9, classifying the entire

image “village” would be incorrect, but some sub-images

are small enough such that the ground truth “village” anno-

tation exceeds T % overlap.

Unlike most object detection approaches, we have no

“background” class. Under our overlap criteria, more than

90% of the sub-images in our test set have a valid scene

classification. Those that do not are excluded from all eval-

uations. In order to achieve a perfect recall rate under our

evaluation criteria an algorithm must densely classify nearly

∼ 100 sub-images per test image (not just one correct de-

tection per scene annotation). This is a difficult task because

the detector must recognize sub-scenes that are transition-

ing from one category to another, even though such transi-

tion examples are infrequent in the SUN database because

ambiguous scenes were filtered out. However, at lower re-

call rates our classifiers are quite accurate (on average, 80%

accuracy at 20% recall).

5.2. Experiments and Analysis

To distinguish between the 24 scene detection classes we

first train 1-vs-all SVMs using the same training data (50

per class), features, and distance metrics described in Sec-

tion 4. For each class, we compute the average precision

of the detector in a manner analogous to the PASCAL VOC

evaluation, except for our differing overlap criteria. Aver-

age precision varies from 62% for “sky” to 2.8% for “bal-

cony (exterior)” with an average of 30.1%. If we instead

use more of the SUN database to train our detectors (200

exemplars per class), we get the performance shown in Ta-

ble 1.

6. Conclusion

To advance the field of scene understanding we need

datasets that encompass the richness and varieties of en-

vironmental scenes and knowledge about how scene cate-

gories are organized and distinguished from each other. In

this work, we have proposed a quasi-exhaustive dataset of



scene categories (899 environments). Using state-of-the-

art algorithms for image classification, we have achieved

new performance bounds for scene classification. We hope

that the SUN database will help the community advance the

state of scene understanding. Finally, we introduced a new

task of scene detection within images.
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