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SUN: Top-down saliency using natural statistics

Christopher Kanan, Mathew H. Tong, Lingyun Zhang,
and Garrison W. Cottrell

Department of Computer Science and Engineering, University of California
San Diego, La Jolla, CA, USA

When people try to find particular objects in natural scenes they make extensive use
of knowledge about how and where objects tend to appear in a scene. Although
many forms of such ‘‘top-down’’ knowledge have been incorporated into saliency
map models of visual search, surprisingly, the role of object appearance has been
infrequently investigated. Here we present an appearance-based saliency model
derived in a Bayesian framework. We compare our approach with both bottom-up
saliency algorithms as well as the state-of-the-art Contextual Guidance model of
Torralba et al. (2006) at predicting human fixations. Although both top-down
approaches use very different types of information, they achieve similar perfor-
mance; each substantially better than the purely bottom-up models. Our experi-
ments reveal that a simple model of object appearance can predict human fixations
quite well, even making the same mistakes as people.

Keywords: Attention; Saliency; Eye movements; Visual search; Natural statistics.

The arboreal environments that early primates evolved within demanded
keen eyesight to support their ability to find targets of interest (Ravosa &
Savakova, 2004; Regan et al., 2001). The ability to visually search for fruits
and other foods while avoiding camouflaged predators such as snakes is
essential for survival. However, the amount of information in the visual
world presents a task too overwhelming for the visual system to fully process
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concurrently (Tsotsos, 1990). Saccadic eye movements are an overt
manifestation of the visual system’s attempt to focus the fovea on important
parts of the visual world in a serial manner (Henderson, 1992). In order to
accomplish this feat, numerous brain structures, including visual cortex, the
frontal eye fields, superior colliculus, the posterior parietal cortex, and the
lateral geniculate nucleus (O’Connor, Fukui, Pinsk, & Kastner, 2002) are
involved in determining where the next fixation should be directed (Schall,
2002). These brain regions are thought to compute, or influence the
computation of, saliency maps, which guide eye movements to regions of
interest (Koch & Ullman, 1985; see Itti & Koch, 2001, for a review).

Although the saliency map was originally intended to model covert
attention, it has achieved great prominence in models of overt visual
attention. In this context, saliency maps attach a value to each location in
the visual field given the visual input and the current task, with regions of
higher salience being more likely to be fixated. This framework has been
extensively used to model eye movements, an overt form of attentional shift.
What makes something salient depends on many factors. Generally in the
modelling literature it has been assumed a region is salient if it differs greatly
from its surroundings (Bruce & Tsotsos, 2006; Gao & Vasconcelos, 2007;
Itti, Koch, & Niebur, 1998; Rosenholtz, 1999). Our model, SUN (Saliency
Using Natural statistics; Zhang, Tong, & Cottrell, 2007; Zhang, Tong,
Marks, Shan, & Cottrell, 2008), defines bottom-up saliency as deviations
from the natural statistics learned from experience, and is a form of the kind
of ‘‘novelty’’ detector useful in explaining many search asymmetries (see
Wolfe, 2001, for a review of the asymmetries).

Recently, the ability of purely bottom-up models to predict human
fixations during free viewing has been questioned. It is not clear if bottom-
up saliency plays a causal role in human fixation, even if the correlations
between predictions and fixations were stronger (Einhäuser & König, 2003;
Tatler, 2007; Underwood, Foulsham, van Loon, Humphreys, & Bloyce,
2006). However, it has long been clear that bottom-up models are
inadequate for modelling eye movements when top-down task requirements
are involved, both intuitively and via some of the earliest studies of eye
movements (Buswell, 1935; Einhäuser, Rutishauser, & Koch, 2008; Hayhoe
& Ballard, 2005; Yarbus, 1967). For example, when searching for a person in
an image, looking for something relatively tall, skinny, and on the ground
will provide a more efficient search than hunting for the scene’s intrinsically
interesting features.

Several approaches have attempted to guide attention based on knowl-
edge of the task, the visual appearance, or features, of the target. Perhaps the
best known is Wolfe’s Guided Search model (1994), which modulates the
response of feature primitives based on a number of heuristics. Others have
incorporated top-down knowledge into the computation of a saliency map.
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Gao and Vasconcelos (2005) focus on features that minimize classification
error of the class or classes of interest with their Discriminative Saliency
model. The Iconic Search model (Rao & Ballard, 1995; Rao, Zelinsky,
Hayhoe, & Ballard, 1996; Rao, Zelinsky, Hayhoe, & Ballard, 2002) uses the
distance between an image region and a stored template-like representation
of feature responses to the known target. Navalpakkam and Itti’s work
(2005) finds the appropriate weight of relevant features by maximizing the
signal to noise ratio between the target and distractors. Turano, Garuschat,
and Baker (2003) combine basic contextual location and appearance
information necessary to complete a task, showing vast improvements in
the ability to predict eye movements. The Contextual Guidance model
(Ehinger, Hidalgo-Sotelo, Torralba, & Oliva, this issue 2009; Oliva,
Torralba, Castelhano, & Henderson, 2003; Torralba, Oliva, Castelhano, &
Henderson, 2006) uses a holistic representation of the scene (the gist) to
guide attention to locations likely to contain the target, combining top-down
knowledge of where an object is likely to appear in a particular context with
basic bottom-up saliency.

One of the virtues of probabilistic models is that experimenters have
absolute control over the types of information the model can use in making
its predictions (Geisler & Kersten, 2002; Kersten & Yuille, 2003). As long
as the models have sufficient power and training to represent the relevant
probability distributions, the models make optimal use of the information
they can access. This allows researchers to investigate what information is
being used in a biological system, such as the control of human eye
fixations.

In this paper we examine two probabilistic models, each using different
types of information, that predict fixations made while counting objects in
natural scenes. Torralba et al.’s (2006) Contextual Guidance model makes
use of global features to guide attention to locations in a scene likely to
contain the target. Our model, SUN, contains a top-down component that
guides attention to areas of the scene likely to be a target based on
appearance alone. By comparing the two approaches, we can gain insight
into the efficacy of these two types of knowledge, both clearly used by the
visual system, in predicting early eye movements.

THE SUN FRAMEWORK

It is vital for animals to rapidly detect targets of interest, be they predators,
food, or targets related to the task at hand. We claim this is one of the goals
of visual attention, which allocates computational resources to potential
targets for further processing, with the preattentive mechanism actively and
rapidly calculating the probability of a target’s presence at each location
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using the information it has available. We have proposed elsewhere (Zhang
et al., 2007, 2008) that this probability is visual saliency.

Let z denote a point in the visual field. In the context of this paper, a
point corresponds to a single image pixel, but in other contexts, a point
could refer to other things, such as an object (Zhang et al., 2007). We let
the binary random variable C denote whether or not a point belongs to a
target class,1 let the random variable L denote the location (i.e., the pixel
coordinates) of a point, and let the random variable F denote the visual
features of a point. Saliency of a point z is then defined as p(C"1 j F"fz,
L"lz) where fz represents the feature values observed at z, and lz
represents the location (pixel coordinates) of z. This probability can be
calculated using Bayes’ rule:

sz"p(C"1½F" fz;L" lz)

"
p(F " fz;L " lz½C " 1)p(C " 1)

p(F " fz;L " lz)

After making the simplifying assumptions that features and location are
independent and conditionally independent given C"1, this can be
rewritten as:

sz"
p(F " fz½C " 1)p(L " lz½C " 1)p(C " 1)

p(F " fz)p(L " lz)

"
1

p(F " fz)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Independent

of target

(bottom-up saliency)

p(F"fz½C"1)
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Likelihood

p(C"1½L" lz)
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Location Prior
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dependent on target

(top-down saliency)

These assumptions can be summarized as entailing that a feature’s
distribution across scenes does not change with location, regardless of
whether or not it appears on a target.

SUN can be interpreted in an information theoretic way by looking at the
log salience, log sz. Since the logarithm is a monotonically increasing
function, this does not affect the ranking of salience across locations in an
image. For this reason, we take the liberty of using the term saliency to refer
both to sz and to log sz, which is given by:

1 In other contexts, we let C denote the particular class of interest, e.g., people, mugs, or
paintings.
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logsz" #log p(F" fz)
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Self-information:

Bottom-up saliency

$log p(F"fz½C"1)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Log likelihood:

Top-down knowledge

of appearance

$log p(C"1½L" lz)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Location prior:

Top-down knowledge

of target0s location

Our first term, #log p(F"fz), depends only on the visual features
observed at the point, and is independent of any knowledge we have about
the target class. In information theory, #log p(F"fz) is known as the self-
information of the random variable F when it takes the value fz. Self-
information increases when the probability of a feature decreases*in other
words, rarer features are more informative. When not actively searching for a
particular target (the free-viewing condition), a person or animal’s attention
should be directed to any potential targets in the visual field, despite the
features associated with the target class being unknown. Therefore, the log-
likelihood and location terms are omitted in the calculation of saliency.
Thus, the overall saliency reduces to the self-information term: log sz"#log
p(F"fz). This is our definition of bottom-up saliency, which we modelled in
earlier work (Zhang et al., 2007, 2008). Using this term alone, we were able
to account for many psychological findings and outperform many other
saliency models at predicting human fixations while free-viewing.

Our second term, log p(F"fzjC"1), is a log-likelihood term that favours
feature values consistent with our knowledge of the target’s appearance. The
fact that target appearance helps guide attention has been reported and used
in other models (Rao et al., 1996; Wolfe, 1994). For example, if we know the
target is green, then the log-likelihood term will be much larger for a green
point than for a blue point. This corresponds to the top-down effect when
searching for a known target, consistent with the finding that human eye
movement patterns during iconic visual search can be accounted for by a
maximum likelihood procedure which computes the most likely location of a
target (Rao et al., 2002).

The third term, log p(C"1jL"lz), is independent of the visual features
and reflects any prior knowledge of where the target is likely to appear. It has
been shown that if the observer is given a cue of where the target is likely to
appear, the observer attends to that location (Posner & Cohen, 1984). Even
basic knowledge of the target’s location can be immensely useful in
predicting where fixations will occur (Turano et al., 2003).

Now, consider what happens if the location prior is uniform, in which
case it can be dropped as a constant term. The combination of the first two
terms leads to the pointwise mutual information between features and the
presence of a target:
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#log p(F"fz)
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Self-information:

Bottom-up saliency

$log p(F" fz½C"1)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Log likelihood:

Top-down knowledge

of appearance

" log
p(F " fz;C " 1)

p(F " fz)p(C " 1)
:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pointwise mutual information

This implies that for known targets the visual system should focus on
locations with features having the most mutual information with the target
class. This is very useful for detecting objects such as faces and cars (Ullman,
Vidal-Naquet, & Sali, 2002). This combination reflects SUN’s predictions
about how appearance information should be incorporated into overall
saliency, and is the focus of the present paper. SUN states that appearance-
driven attention should be directed to combinations of features closely
resembling the target but that are rare in the environment. Assuming targets
are relatively rare, a common feature is likely caused by any number of
nontargets, decreasing the feature’s utility. SUN looks for regions of the
image most likely to contain the target, and this is best achieved by
maximizing the pointwise mutual information between features and the
target class.

In the special case of searching for a single target class, as will be the case
in the experiments we are trying to model, p(C"1) is simply a constant. We
can then extract it from the mutual information, thus:

log
p(F " fz;C " 1)

p(F " fz)p(C " 1)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pointwise mutual information

" log
p(F " fz;C " 1)

p(F " fz)
#log p(C"1)

" log p(C"1½F"fz; )#log p(C"1)
" logp(C"1½F"fz; )$const:

Hence, what we have left can be implemented using any classifier that
returns probabilities.

In summary, SUN’s framework is based on calculating the probability of
a target at each point in the visual field and leads naturally to a model of
saliency with components that correspond to bottom-up saliency, target
appearance, and target location. In the free-viewing condition, when there is
no specific target, saliency reduces to the self-information of a feature. This
implies when one’s attention is directed only by bottom-up saliency, moving
one’s eyes to the most salient points in an image can be regarded as
maximizing information sampling, which is consistent with the basic
assumption of Bruce and Tsotsos (2006). When a particular target is being
searched for, as in the current experiments, our model implies the best
features to attend to are those having the most pointwise mutual informa-
tion, which can be modelled by a classifier. Each component of SUN
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functionally corresponds to probabilities we think the brain is computing.
We do not know precisely how the brain implements these calculations, but
as a functional model, SUN invites investigators to use the probabilistic
algorithm of their choice to test their hypotheses.

EXPERIMENT

When searching for a target in a scene, eye movements are influenced by
both the target’s visual appearance and the context, or gist, of the scene
(Chun & Jiang, 1998). In either case the pattern of fixations differs
significantly compared to when a person is engaged in free-viewing.
Although the development of robust models of object appearance is
complicated by the number of scales, orientations, nonrigid transformations,
and partial occlusions that come into play when viewing objects in the real
world, even simple models of object appearance have been more successful
than bottom-up approaches in predicting human fixations during a search
task (Zelinsky, Zhang, Yu, Chen, & Samaras, 2006). These issues can be
evaded to some extent through the use of contextual guidance. Many forms
of context can be used to guide gaze ranging from a quick holistic
representation of scene content, to correlations of the objects present in
an image, to a deeper understanding of a scene.

Here we examine SUN’s appearance-driven model p(C"1jF"fz),
denoted p(C"1jF) hereafter with other terms abbreviated similarly, and
the Contextual Guidance model described by Torralba et al. (2006). Our
appearance model leaves out many of the considerations listed previously,
but nevertheless it can predict human eye movements in task-driven visual
search with a high level of accuracy. The Contextual Guidance model forms
a holistic representation of the scene and uses this information to guide
attention instead of relying on object appearance.

METHODS

Human data

We used the human data described in Torralba et al. (2006), which is available
for public download on Torralba’s website (http://people.csail.mit.edu/
torralba/GlobalFeaturesAndAttention/). For completeness, we give a brief
description of their experiment. Twenty-four Michigan State University
undergraduateswere assigned to one of three tasks:Counting people, counting
paintings, or counting cups and mugs. In the cup- and painting-counting
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groups, subjectswere shown 36 indoor images (the same for both tasks), and in
the people-counting groups, subjectswere shown36outdoor images. In eachof
them, targetswere either present or absent, with up to six instances of the target
appearing in the present condition. Images were shown until the subject
respondedwith an object count or for 10 s, whichever came first. Images were
displayed on an NEC Multisync P750 monitor with a refresh rate of 143 Hz
and subtended 15.88%11.98. Eyetracking was performed using a Generation
5.5 SRI Dual Purkinje Image Eyetracker with a refresh rate of 1000 Hz,
tracking the right eye.

Stimuli used in simulations

The training of top-down components was performed on a subset of the
LabelMe dataset (Russell, Torralba, Murphy, & Freeman, 2008), excluding
the set used in the human experiments and the data from video sequences.
We trained on a set of 329 images with cups/mugs, and 284 with paintings,
and 669 with people in street scenes. Testing was performed using the set of
stimuli shown to human subjects.

Contextual Guidance model and implementation

Torralba et al. (2006) present their Contextual Guidance model, which is a
Bayesian formulation of visual saliency incorporating the top-down
influences of global scene context. Their model is

p(C"1; L½F;G)"p(F ½G)#1p(F ½C"1; L; G)p(L½C"1;G)p(C"1½G)

where G represents a scene’s global features, a set of features that captures a
holistic representation or gist of an image. F, C, and L are defined as before.
Global features are calculated by forming a low dimensional representation
of a scene by pooling the low-level features (the same composing F) over
large portions of the image and using principal component analysis (PCA)
to reduce the dimensionality further. The p(F jG)#1 term is their bottom-up
saliency model and the authors approximate this conditional distribution
with p(F)#1, using the statistics of the current image (a comparison of this
form of bottom-up saliency with SUN’s was performed in (Zhang et al.,
2008)). The remaining terms are concerned with top-down influences on
attention. The second term, p(F jC"1,L,G), enhances features of the
attended location L that are likely to belong to class in the current global
context. The contextual prior term p(L jC"1,G) provides information
about where salient regions are in an image when the task is to find targets
from class C. The fourth and final term p(C"1 jG) indicates the probability
of class being present within the scene given its gist. In their implementation
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both p(F jC"1,L,G) and p(C"1 jG) are omitted from the final model. The
model that remains is p(C"1,L jF,G):p(F)#1p(L jC"1,G), which com-
bines the bottom-up saliency term with the contextual priors in order to
determine the most salient regions in the image for finding objects of class .
To avoid having saliency consistently dominated by one of the two terms,
Torralba et al. apply an exponent to the local saliency term: p(C"
1,L jF,G):p(F)#gp(L jC"1,G), where g is tuned using a validation set.

Our use of Bayes’ rule to derive saliency is reminiscent of the Contextual
Guidance model’s approach, which contains components roughly analogous
to SUN’s bottom-up, target appearance, and location terms. However, aside
from some semantic differences in how overall salience is defined, the
conditioning of each component on a coarse description of the scene,
the global gist, separates the two models considerably. SUN focuses on the
use of natural statistics learned from experience to guide human fixations to
areas of the scene having an appearance similar to previously observed
instances of the target, whereas the Contextual Guidance model guides
attention to locations where the object has been previously observed using
the scene’s gist. Although both probabilistic models rely on learning the
statistics of the natural world from previous experience, the differences
between the formulations affect the meaning of each term, from the source
of statistics used in calculating bottom-up saliency to how location
information is calculated.

As was done in Torralba et al. (2006), we train the gist model p(L jC"
1,G) on a set formed by randomly cropping each annotated training image
20 times, creating a larger training set with a more uniform distribution of
object locations. One difference from Torralba et al. is that we use a
nonparametric bottom-up salience model provided to us by Torralba that
performs comparably to the original, but is faster to compute. Otherwise, we
attempted to be faithful to the model described in Torralba et al. For our
data, the optimal g was 0.20, which is different than what was used in
Torralba et al., but is within the range that they found had good
performance. Our reimplementation of the Contextual Guidance model
performs on par with their reported results; we found no significant
differences in the performance measures.

SUN implementation

Recall when looking for a specific target, guidance by target appearance is
performed using the sum of the self-information of the features and the log-
likelihood of the features given a class. Although we developed efficient ways
of estimating the self-information of features in earlier work (Zhang et al.,
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2008), accurately modelling log p(F jC"1) or p(F, C"1) for high dimen-
sional feature spaces and many object classes is difficult. Instead, as
described earlier, we extract the log p(C"1) term (equations repeated here
for convenience), which results in a formulation easily implementable as a
probabilistic classifier:

log
p(F;C " 1)

p(F)p(C " 1)
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pointwise mutual information

" log
p(F;C " 1)

p(F)
# log p(C"1)

" log p(C"1½F)# log p(C"1)
" log p(C"1½F)$const:

The probabilistic classifier we use is a support vector machine (SVM)
modified to give probability estimates (Chih-Chung & Chih-Jen, 2001).
SVMs were chosen for their generally good performance with relatively low
computational requirements. An SVM is simply a neural network with
predefined hidden unit features that feed into a particularly well-trained
perceptron. The bottom-up saliency term, #log p(F), is still implicitly
contained in this model. For the remainder of the paper, we omit the logs for
brevity since as a monotonic transform it does not influence saliency.

The first step in our algorithm for p(C"1 jF) is to learn a series of
biologically inspired filters that serve as the algorithm’s features. In SUN’s
bottom-up implementation (Zhang et al., 2008), we used two different types
of features to model p(F)#1: Difference of Gaussians at multiple scales and
filters learned from natural images using independent component analysis
(ICA; Bell & Sejnowski, 1995; Hyvärinen & Oja, 1997). Quantitatively, the
ICA features were superior, and we use them again here. When ICA is
applied to natural images, it yields filters qualitatively resembling those
found in visual cortex (Bell & Sejnowski, 1997; Olshausen & Field, 1996).
The FastICA algorithm2 (Hyvärinen & Oja, 1997) was applied to 11-pixel/%
11-pixel colour natural image patches drawn from the Kyoto image dataset
(Wachtler, Doi, Lee, & Sejnowski, 2007). This window size is a compromise
between the total number of features and the amount of detail captured. We
used the standard implementation of FastICA with its default parameters.
These patches are treated as 363 (11%11%3) dimensional feature vectors
normalized to have zero mean. After all of the patches are extracted, they are
whitened using PCA, where each principal component is normalized to unit
length. This removes one dimension due to mean subtraction, resulting in
362 ICA filters of size 11%11%3. When used this way, ICA permits us to
learn the statistical structure of the visual world. This approach has been
used in biologically inspired models of both face and object recognition

2 Software available at http://www.cis.hut.fi/projects/ica/fastica/
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(Shan & Cottrell, 2008) and visual attention (Bruce & Tsotsos, 2006; Zhang
et al., 2008).

To learn p(C"1 jF), we find images from the LabelMe dataset (Russell
et al., 2008) containing the current class of interest, either people, cups, or
paintings. Each image is normalized to have zero mean and unit standard
deviation. Using the target masks in the annotation data, d%d%3 square
training patches centred on the object are cropped from the images, with
each patch’s size d chosen to ensure the patch contains the entire object.
Random square patches of the same size are also collected from the same
images, which serve as negative, background examples for C"0. These came
from the same images used to train the Contextual Guidance model. In
selecting positive training example patches from the image set, our algorithm
ignored objects that consumed over 50% of the training image (permitting
negative examples to be taken from the same image) or less than 0.2% of the
image (which are too small to extract reliable appearance features). Given
the large number of images containing people in street scenes, we chose 800
patches of people randomly from those available. This resulted in 800
patches of people (533 negative examples3), 385 patches of mugs (385
negative examples), and 226 patches of paintings (226 negative examples).

We apply our filters to the set of patches, resizing the filters to each
patch’s size to produce one response from each filter per patch. We multiply
each response by 112/d2 to make the responses invariant to d’s value and then
take the absolute value to obtain its magnitude. The dimensionality of these
responses was reduced using PCA to 94 dimensions, a number chosen by
cross-validation as explained next.

Three probabilistic SVMs (Chih-Chung & Chih-Jen, 2001) were trained,
using the n-SVC algorithm (Scholkopf, Smola, Williamson, & Bartlett, 2000)
with a Gaussian kernel, to discriminate between people/background,
paintings/background, and mugs/background. The number of principal
components, the same for each SVM, and the kernel and n parameters for
each of the SVMs were chosen using five-fold cross-validation using the
training data. The number of principal components was chosen to maximize
the combined accuracy of the three classifiers. The kernel and n parameters
of the three SVMs were independently selected for a given number of
principal components. We did not tune the classifiers’ parameters to match
the human data. Even though our appearance-based features are quite
simple, the average cross-validation accuracy across the three classifiers on
the training patches was 89%.

Since the scale at which objects appear varies greatly, there is no single
optimal scale to use when applying our classifier to novel images. However,

3 Due to the limited memory capacity of the development machine, the number of
background examples for each class was chosen to be at most "800(2=3)#"533 per object class.

SUN 11

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
2
3
:
0
4
 
6
 
M
a
y
 
2
0
0
9



objects do tend to appear at certain sizes in the images. Recall that we resized
the filters based on the patch size, which was in turn based on the masks
people placed on the objects. Hence, we have a scale factor for each training
example. Histogramming these showed that there were clusters of scales that
differed between the three classes of objects. To take advantage of this
information and speed up classification, we clustered the resizing factors by
training a one-dimensional Gaussian mixture model (GMM) with three
Gaussians using the Expectation-Maximization algorithm (Dempster, Laird,
& Rubin, 1977). The cluster centres were initialized using the k-Means$$
algorithm (Arthur & Vassilvitskii, 2007). The three cluster centres found for
each class are used to resize the filters when computing p(C"1 jF). By
learning which scales are useful for object recognition, we introduce an
adaptive approach to scale invariance, rather than the standard approach of
using an image pyramid at multiple octaves. This lets us avoid excessive false
positives that could arise in the multiple octave approach. For example, at a
very coarse scale, a large filter applied to an image of a person visiting an
ancient Greek temple would probably not find the person salient, but might
instead find a column that looks person-like.

To calculate p(C"1 jF), for a test image I, we preprocess the image in the
same way as the training images. First, we normalize I to have zero mean and
unit variance, then we apply the three scale factors indicated by the cluster
centres in the GMM for the object class. For each of our three scales, we
enlarge the ICA filter according to the cluster’s mean and normalize
appropriately. We convolve each of these filters with the image and take the
absolute value of the ICA feature response. These responses are projected
onto the previously learned principal components to produce a 94
dimensional feature vector. The SVM for class C provides an estimate of
p(C"1 jF, S"s) for each scale s. This procedure is repeated across the
image for all three scales. Each of the maps at scale s is then smoothed using
a Gaussian kernel with a half-amplitude spatial width of 18 of visual angle,
the same procedure that Torralba et al. (2006) used to smooth their maps in
order to approximate the perceptual capabilities of their human subjects.
Combining the probability estimates from the three scales at each location is
done by averaging the three estimates and smoothing the combined map
again using the same Gaussian kernel. This helps ensure the three maps are
blended smoothly. Smoothing also provides a local centre of mass, which
accounts for the finding that when two targets are in close proximity
saccades are made to a point between the two salient targets, putting both in
view (Deubel, Wolf, & Hauske, 1984; Findlay, 1983). The same SVM
classifier is used for each of the three scales.

12 KANAN ET AL.
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RESULTS

In order to compare the ability of SUN’s appearance-based saliency model
and the Contextual Guidance model of Torralba et al. (2006) to predict
human fixations, we have adopted two different performance measures. Our
first measure is the same as used in Torralba et al.: It evaluates the
percentage of human fixations being made to the top 20% most salient
regions of the saliency map for each subject’s first five fixations. Our second
measure of performance is the area under the ROC curve (AUC). It
eliminates the arbitrary nature of the 20% threshold evaluation, assessing the
entire range of saliency values and revealing the robustness of a particular
approach. With this metric, pixels are predicted to be attended or
unattended based on whether they are above or below the current saliency
threshold; plotting the hit and false alarm rates through all thresholds
creates an ROC curve, with the area under the ROC curve being a measure
of a model’s ability to predict human fixations (Bruce & Tsotsos, 2006;
Tatler, Baddeley, & Gilchrist, 2005). However, the patterns of performance
with this second metric remained the same as with the first, so we focus on
the first in our discussion (see Figure 3b for AUC data).

Due to the tendency of people to fixate near the centre of the screen in
free-viewing experiments, it is frequently the case that a Gaussian (or other
function decreasing with eccentricity) tuned to the distribution of human

Figure 1. The three Gaussian mixture model densities learned from the size of the objects in the

training data. When searching for a particular object, the cluster centres, indicated by filled circles, are

used to select the scales of the ICA filters used to extract features from the image. Note that since the

inverse values are clustered a value of 0.1 corresponds to enlarging the original ICA filters to 110%
110%3 while a value of 0.8 only enlarges the filter slightly to 14%14%3: To view this figure in colour,

please see the online issue of the Journal.
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Figure 2. Gaussians fit to the eye movements of subjects viewing these scenes while performing these

tasks. Data for eye movements came directly from the test set. By treating these as saliency masks, we

can assess the performance of a model that solely makes use of the kinds of eye movements people

make performing these tasks.

Figure 3. Overall performance in predicting human gaze, across all images and tasks. See the text for

a description of the models. (a) Performance assessed by looking at the percentage of fixations falling

within the top 20% most salient regions of each image. (b) Performance assessed by looking at the area

under the ROC curve. To view this figure in colour, please see the online issue of the Journal.
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fixations will outperform state-of-the-art bottom-up saliency algorithms (Le
Meur, Le Callet, & Barba, 2007; Tatler, 2007; Tatler et al., 2005; Zhang et al.,
2008). Instead of compensating for these biases as was done in Tatler et al.
(2005) and Zhang et al. (2008), we instead assessed whether performance was
greater than what could be achieved by merely exploiting them. We
examined the performance of a Gaussian fit to all of the human fixations
in the test data for each task. Each Gaussian was treated as a saliency map
and used to predict the fixations of each subject. Since this includes the
current image, this may be a slight overestimate of the actual performance of
such a Gaussian. As shown in Figure 3a, there is no significant difference
between our implementation of Torralba et al.’s bottom-up saliency and the
Gaussian blob, t(107)"1.391, p".0835. Furthermore, all methods incor-
porating top-down knowledge outperformed the static Gaussian, t(107)"
5.149276, pB.00001 for contextual guidance, t(107)"6.356567, pB.0001
for appearance.

To evaluate how consistent the fixations are among subjects, we
determined how well the fixations of seven of the subjects can predict the
fixations of the eighth using the procedure of Torralba et al. (2006). This was
done by creating a mixture of Gaussians, with a Gaussian of 18 of visual
angle placed at each point of fixation for first five fixations from seven of the
subjects, to create a map used to predict where the eighth will fixate. We use
the same performance measure described earlier. Figures 3 and 4 include
these results and Figures 5!8 include subject consistency maps made using
this approach.

Figure 4. Performance of each model by task and condition. The condition refers to whether or not

at least one instance of the target was present. The three tasks were counting people, paintings, and

cups. The text provides a description for the six models presented. The performance scores indicate

what percentage of fixations fell within the top 20 most salient regions for each image. To view this

figure in colour, please see the online issue of the Journal.
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We find appearance provides a better match to the human data, with the
overall performance of SUN’s appearance model outperforming the con-
textual-guidance model when their performance on each task-image pair is
compared, t(107)"2.07, pB.05. Surprisingly, even though the two models
of task-based saliency differ considerably in the kind of information they use
they both perform similarly overall, with most differences losing statistical
significance when a smaller number of images are used in finer levels of
analysis (e.g., over tasks or individual fixations).

However, great insight can be gained on the strengths and weaknesses of
the two approaches by examining the kinds of saliency maps they produce in
greater detail. In order to examine this question, we computed the Euclidean
distance between the salience map for each image and task between the
Contextual Guidance model, p(L jC,G) p(F jG)#1, and SUN, p(C jF). In

Figure 5. The human fixations and saliency maps produced during a search for paintings. Light grey

(yellow), grey (green), and dark grey (blue) correspond to the top 10, 20, and 30% most salient regions

respectively. Note that the horizontal guidance provided by contextual guidance is particularly ill-

suited to this image, as the attention of both the human subjects and the appearance model is focused

on the vertical strip of painting-like wallpaper between the two windows. This figure was selected by

identifying images where the Contextual Guidance model and SUN most differed. To view this figure

in colour, please see the online issue of the Journal.
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Figures 5 and 6, we show two of the maps where the disagreement is large.
As can be seen from these images, in these cases, the gist model tends to
select single horizontal bands (it is restricted to modelling L along the
vertical dimension only) making it difficult to model human fixations that
stretch along the vertical dimension, or are bimodal in the vertical
dimension. Our appearance model has no such restriction and performs
well in these situations. However, these are both limitations of the
Contextual Guidance model as implemented, and not necessarily with the
concept of contextual guidance itself.

In Figure 7, we show a case of maximal agreement. Here, the images tend
to be ‘‘canonical’’ in that the objects of interest are well-described by a
horizontal band, and hence both models can capture the salient regions.

Figure 6. The human fixations and saliency maps produced during a search for cups. Contextual

guidance outperformed appearance modelling on this image, although it does not capture the two

distinct regions where cups seem most likely two appear. Note than both human subjects and the

attention-guidance system are drawn to the cup-like objects above the fireplace. As in Figure 5, light

grey (yellow), grey (green), and dark grey (blue) correspond to the top 10, 20, and 30% most salient

regions respectively, and this figure was also selected by identifying images where the Contextual

Guidance model and SUN most differed. To view this figure in colour, please see the online issue of the

Journal.
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Furthermore, most of the interesting textures are confined to a small region
of the scene, so even purely bottom-up methods perform comparably.

The predictions of the Contextual Guidance and our appearance model
generally coincide quite well with the human data, but some differences are

Figure 7. The human fixations and saliency maps produced during a search for people. Here the

various models largely agree upon the most salient region of the image. This figure was selected by

identifying the image where the Contextual Guidance model and SUN are most similar. As in Figures

5 and 6, light grey (yellow), grey (green), and dark grey (blue) correspond to the top 10, 20, and 30%

most salient regions respectively. To view this figure in colour, please see the online issue of the

Journal.

Figure 8. When instructed to find paintings and shown this image, the subjects fixate the television

embedded in the cabinet, since it qualitatively looks very much like a painting. SUN makes a similar

mistake. To view this figure in colour, please see the online issue of the Journal.
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visually apparent when comparing the maps. This is partially due to
thresholding them for display purposes*black regions are not expected to
be devoid of fixations, but the models do predict that other regions are more
likely to be attended. Additionally, the images in Figures 5 and 6 were
chosen as examples where appearance and context differed most, suggesting
that these images may be particularly interesting or challenging. However,
the subject consistency results in Figures 3 and 4 demonstrate that both
models are far from sufficient and must be improved considerably before a
complete understanding of fixational eye movements is achieved.

The images in Figures 6 and 8 show the appearance model’s ‘‘hallucina-
tions’’ of potential targets. In Figure 6, there are several objects that might
be interpreted as cups and attract gaze during a cup search. In Figure 8, the
model confuses the television embedded in the cabinet with a painting,
which is the same mistake the subjects make. Torralba et al. (2006) predicted
appearance will play a secondary role when the target is small, as is the case
here where targets averaged 18 visual angle for people and cups. In support
of this prediction, they evaluated the target masks as a salience model, and
found the target’s location was not a good indicator of eye fixations. What
was missing from this analysis is that an appearance model can capture
fixations that would be considered false alarms under the ‘‘fixate the target’’
goal assumed by using the target’s locations. Both our model and the
subjects’ visual attention are attracted by objects that appear similar to the
target. In this experiment, appearance seemed to play a large role in guiding
humans fixations, even during early saccades (we report averages over the
first five) and the target absent condition.

We also evaluated how well the task-based models compare to purely
bottom-up models. The appearance model of SUN and the Contextual
Guidance model both perform significantly better than the Torralba et al.
(2006) bottom-up saliency model, t(107)"#6.440620, pB.0001 for con-
textual guidance, t(107)"#7.336285, pB.0001 for appearance. The top-
down models also perform significantly better than SUN’s bottom-up
saliency model, which was outlined in the Framework section. Since the two
bottom-up models perform comparably on this task, t(107)"#1.240, p"
.109, and SUN’s bottom-up component is not of particular interest in the
current work, we use the bottom-up component of the Contextual Guidance
model in our comparison. See Zhang et al. (2008) for a discussion of how
these two models of saliency relate.

Finally, we evaluated how the full SUN model would perform when the
location term was included. The LabelMe set provides an object mask
indicating the location of each object. We fit a Gaussian with a diagonal
covariance matrix to each relevant mask and then averaged the Gaussian
responses at each location, after adjusting appropriately to the scale of a
given image. The resulting masks provide an estimation of p(LjC). The term
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p(CjL) is simply p(LjC)%p(C)/p(L), which is constant over an image and
does not affect overall salience. We see that its inclusion improves our overall
performance significantly, t(107)"5.105662, pB.0001. We intend to explore
these findings further in future work.

DISCUSSION

The experiments we conducted were designed to elucidate the similarities
and differences between two models of visual saliency that are both capable
of modelling human gaze in a visual search task involving finding and
counting targets. Our results support previous findings showing models of
bottom-up attention are not sufficient for visual search (Einhäuser et al.,
2008; Henderson et al., 2007), and that when top-down knowledge is used,
gaze can be better predicted (Torralba et al., 2006; Zelinsky et al., 2006).
Although SUN performs significantly better than our reimplementation of
the Contextual Guidance model, the differences are small, and both models
can assuredly be improved. This coincides well with the results reported by
Ehinger et al. (this issue 2009). It is still unclear which plays a larger role
when performing visual search in images of real world scenes, appearance or
contextual information; presumably, a combination of both could be better
than either alone.

We provide computational evidence rejecting the assertion of Torralba
et al. (2006) that appearance plays little role in the first few fixations when
the target is very small. Their claim was based partly on the limitations of the
human visual system to detect small objects, particularly in the periphery. In
support of this hypothesis, they found using the labelled regions (e.g., the
area labelled ‘‘painting’’) as the salience model does not completely predict
where people look. What their analysis overlooks is that the regions of the
image containing targets cannot predict fixations in regions of the image that
look like targets. Our coarse features capture the kind of similarity that could
be computed by peripheral vision, resulting in the assignment of high
salience to regions having an appearance similar to the target object class,
allowing an appearance model to predict eye movements accurately even in
the target-absent condition. The most recent version of the Contextual
Guidance model (Ehinger et al., this issue 2009) incorporates object
appearance (their target-feature model), and they find its performance is
about the same as bottom-up saliency in the target absent condition using a
dataset consisting of pedestrians in outdoor scenes. This may be because
they used a sophisticated pedestrian detection algorithm in contrast to our
coarse features, but a deeper investigation is needed.

In this work, we did not use the standard image pyramid with scales being
separated by octaves, which has been the standard approach for over
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20 years (Adelson, Anderson, Bergen, Burt, & Ogden, 1984). However, an
image pyramid does not seem appropriate in our model since an object’s
representation is encoded as a vector of filter responses. Besides wasting
computational resources, using arbitrary scales can also lead to almost
meaningless features during classification since the test-input is so different
from the input the classifier was trained with. Instead, we learned which
scales objects appear at from the training data. Torralba and Sinha (2001)
use a similar approach to learn which scales should be used, except their
model performs a regression using scene context to select a single scale for a
target class. SUN’s scale selection may have been impaired since the
distribution of object sizes in the training set is not the same as in the test
set, which generally contains smaller objects. However, remedying this by
screening the training data would be contrary to the importance we place on
learning natural statistics.

Both SUN’s appearance model and the Contextual Guidance model
suffer from several noticeable flaws. In both models a separate module is
learned for each object class. This is especially a problem for SUN. Humans
have the ability to rule out objects after fixating them because they can be
identified. Our classifiers are only aware of how the object class they are
trained on differs from the background. Hence, when searching for mugs, the
mug model has not learned to discriminate paintings from mugs, and so it
may produce false alarms on paintings. The use of a single classifier for all
classes would remedy this problem; however, current state-of-the-art
approaches in machine learning (e.g., SVMs) are not necessarily well suited
for learning a large number of object classes. A one-layer neural network
with softmax outputs trained on all the classes may be a feasible alternative,
as its parameters scale linearly with the number of classes.

In future work, we intend to investigate how different types of top-down
(and bottom-up) knowledge can be combined in a principled way. In
Torralba et al. (2006), a fixed weighting parameter is used between bottom-
up and top-down knowledge, but it seems unlikely that different types of
top-down knowledge should be always weighted the same way. If searching
for a target with an unreliable appearance but a consistent location, it seems
reasonable to weight the location information higher. A method of
dynamically selecting the weight depending on the task, visual conditions,
and other constraints is likely to significantly improve visual saliency models.

Another important enhancement needed by many saliency models is the
explicit incorporation of a retina to model scanpaths in scenes. This has been
investigated a few times in models using artificial stimuli (Najemnik &
Geisler, 2005; Renninger, Coughlan, Verghese, & Malik, 2005; Renninger,
Verghese, & Coughlan, 2007) with each fixation selected to maximize the
amount of information gained. Currently SUN produces a static saliency
map, with equal knowledge of all parts of the image. Incorporating foveated
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vision would better model the conditions under which we make eye
movements. Likewise, using experiments freed of the monitor would increase
the realism of the experimental environment (e.g., Einhäuser et al., 2007);
currently our findings are restricted to images displayed on a screen, and it is
unclear how well they will generalize.

In conclusion, we have described and evaluated two distinct top-down
visual attention models which both excel at modelling task-driven human
eye movements, especially compared to solely bottom-up approaches, even
though the type of top-down information each uses is considerably different.
However, comparing the modelling results with human data it is clear that
there is much room for improvement. Integrating appearance, location, and
other pieces of top-down information is likely to further improve our ability
to predict and understand human eye movements. The probabilistic frame-
works we examined are powerful tools in these investigations, allowing
investigators to develop models with tightly controlled information access
and clearly stated assumptions permitting hypotheses about the information
contributing to eye movement control and visual attention to be readily
evaluated.
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