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Abstract

Existing scene understanding datasets contain only a

limited set of views of a place, and they lack representations

of complete 3D spaces. In this paper, we introduce SUN3D,

a large-scale RGB-D video database with camera pose and

object labels, capturing the full 3D extent of many places.

The tasks that go into constructing such a dataset are diffi-

cult in isolation – hand-labeling videos is painstaking, and

structure from motion (SfM) is unreliable for large spaces.

But if we combine them together, we make the dataset con-

struction task much easier. First, we introduce an intuitive

labeling tool that uses a partial reconstruction to propa-

gate labels from one frame to another. Then we use the

object labels to fix errors in the reconstruction. For this, we

introduce a generalization of bundle adjustment that incor-

porates object-to-object correspondences. This algorithm

works by constraining points for the same object from dif-

ferent frames to lie inside a fixed-size bounding box, pa-

rameterized by its rotation and translation. The SUN3D

database, the source code for the generalized bundle adjust-

ment, and the web-based 3D annotation tool are all avail-

able at http://sun3d.cs.princeton.edu.

The popularity of the Microsoft Kinect and other depth-

capturing devices has led to a renewed interest in 3D for

recognition. Researchers have extended traditional object

and scene recognition datasets to incorporate 3D. For ex-

ample, UW RGB-D object dataset is an evolution of pop-

ular 2D object datasets such as Caltech 101 to 3D objects

captured by an RGB-D camera. The NYU Depth dataset

and others go beyond objects by capturing RGB-D videos

of scenes and labeling the objects within. However, these

3D datasets inherit many of the limitations of traditional 2D

datasets: they contain a sample of views from the world,

but the physical relationship between these views and the

structure of the space containing them is mostly missing.

What we desire is a dataset that is place-centric rather

than view-based, containing full 3D models of spaces (e.g.

entire apartments) instead of a limited set of views (Fig.

1). Such a database would allow us to ask questions like:

“what does this object look like from behind?” or “what can
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Figure 1. View-based vs. place-centric. This example shows the

difference between a view-based scene representation and a place-

centric scene representation. SUN database contains a view of a

living room. SUN3D database contains an RGB-D video for the

whole apartment and 3D models with camera poses.

apartment conference room conference hall restroom classroom dorm hotel room lab lounge office
57 m2 47 m2 130 m2 23 m2 109 m2 33 m2 41 m2 55 m2 124 m2 49 m2

Figure 2. SUN3D database. Each column contains examples from

a place category. The numbers are the median coverage areas.

we expect the space to look like beyond the available field

of view?” Such a database would be useful for learning

complete 3D context models to be used for scene parsing

(e.g. learning that there is always a bed in a bedroom); for

obtaining an integrated understanding of a space instead of

individual disconnected snapshots; and for reasoning about

intuitive physics, functionality and human activity.

With this goal in mind, we introduce SUN3D, a place-

centric database (see Figure 2). The items in our database

are full 3D models with semantics: RGB-D images, cam-

era poses, object segmentations, and point clouds registered

into a global coordinate frame.

This database requires camera poses, but estimating

them reliably for large space from an RGB-D video is a

difficult problem. And despite recent progress in RGB-
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Figure 3. Main idea. Semantic object labeling as a way to correct

pose estimation errors.
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Figure 4. 3D label propagation. Annotation of each frame is au-

tomatically populated from nearby key frames.
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Figure 5. Generalized bundle adjustment. The object-to-object

correspondence constraint essentially pulls a set of points belong-

ing to the same object so that they fit into one 3D bounding box

for that object. Together with constraints from other objects and

key-points, the camera pose can be estimated more reliably.

D structure-from-motion (SfM), existing automatic recon-

struction methods are not reliable enough for our purposes.

Additionally, we desire a semantic segmentation, but label-

ing every frame in a full video is a painstaking task – for this

reason, existing RGB-D video databases (e.g. NYU Depth)

have semantic annotations only for a sparse keyframes.

To address this, we design our 3D reconstruction and ob-

ject labeling tasks so that they mutually support one another

(see Figure 3). Our approach is based on the idea that if the

3D reconstruction were perfect, then object labeling would

be easy – one would merely need to label an object in one

frame, and the reconstruction could be used to propagate

these annotations to the rest of the images. On the other

Figure 6. Annotation and reconstruction correction result. The

point cloud is colored based on semantic object categories.
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Figure 7. Comparision of depth improvement algorithms. The

cross-bilateral filtering introduces large artifacts, e.g. it smooths

over occlusion boundaries, as the 3D point cloud shows.

hand, if objects were annotated in every frame, then recon-

struction would improve dramatically since consistencies

between frames could be used as constraints in optimiza-

tion. By combining the two tasks, we (a) produce better 3D

reconstructions, and (b) provide an object annotation tool

that makes it easy to label long RGB-D videos.

To produce better reconstructions, we incorporate object

labels into our structure-from-motion algorithm and solve

jointly for object locations and camera poses (see Figure 5).

The resulting algorithm is based on standard bundle adjust-

ment, and the addition of object labels helps to avoid errors

due to drift and loop-closing failures, establishing “long-

range” connections between frames that may be very far

apart in a video but that nevertheless contain the same ob-

ject instances.

Additionally, we use the 3D reconstruction to help with

object annotation, creating a tool that speeds up the process

of labeling a long video. A user labels an object in one

frame, and the partially completed reconstruction is used to

propagate object labels to other frames (see Figure 4).

Figure 6 shows an example of the corrected reconstruc-

tion and semantic segmentation of the 3D point cloud. With

the camera pose, we also propose a way to improve the raw

depth map from multiple frames. The raw depth maps are

usually noisy, with many holes. To fill in the holes, cross-

bilateral filtering is typically used to produce a visually

pleasing depth map, but it introduces many artifacts (Figure

7). Instead, we improve the depth map using a Truncated

Signed Distance Function (TSDF) to voxelize the space, ac-

cumulating the depth map from nearby frames (e.g. 40 clos-

est frames) using the camera poses obtained above. Finally,

we use ray casting to get a reliable depth map.


