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ABSTRACT

Daylight harvesting is the use of natural sunlight to reduce
the need for artificial lighting in buildings. The key challenge
of daylight harvesting is to provide stable indoor lighting lev-
els even though natural sunlight is not a stable light source.
In this paper, we present a new technique called SunCast
that improves lighting stability by predicting changes in fu-
ture sunlight levels. The system has two parts: 1) it learns
predictable sunlight patterns due to trees, nearby buildings,
or other environmental factors, and 2) it controls the win-
dow transparency based on a quadratic optimization over
predicted sunlight levels. To evaluate the system, we record
daylight levels at 39 different windows for up to 12 weeks at
a time, and apply our control algorithm on the data traces.
Our results indicate that SunCast can reduce glare by over
59% over a baseline approach with only a marginal increase
in artificial lighting energy.
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1. INTRODUCTION
Artificial lighting is the single largest energy consumer

in commercial buildings, accounting for 26% of their total
energy usage [1]. Daylight harvesting is the approach of us-
ing natural sunlight inside a building in order to reduce the
electricity demand of artificial lighting. This approach holds
particular promise for commercial buildings because they are
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primarily occupied during daylight hours. The key challenge
is to provide stable levels of illumination (typically 500± 250
lux) even though natural sunlight is not a stable light source.
An office should have enough light to read and work but not
so much that it causes glare and discomfort, despite the fact
that sunlight levels can change from 100 lux to 1000 lux or
more in a matter of minutes due to passing shadows from
clouds, trees, and nearby buildings. An emerging approach
is to use electrochromic glass, also called smart glass [2],
or motorized window blinds [3] to automatically adjust the
transparency of a window. When the natural light source is
too bright, the window transparency is decreased. When it
is too dim, the window transparency is increased and supple-
mental artificial lighting may be used. Daylight harvesting
has been demonstrated to reduce lighting energy by up to
40% in offices that have significant amounts of daylight [4, 5].
In addition, natural light is more pleasant and comfortable
than artificial light and has been shown to increase employee
productivity [6].

Despite the potential benefits, current daylight harvest-
ing installations have achieved limited effectiveness. A re-
cent study shows that 50% of existing photo-controlled day-
light harvesting systems are disabled by the users and the
other 50% operate at 50% of their intended performance [7].
One reason is that natural lighting levels can change very
quickly but window transparency can only be changed rela-
tively slowly. Rapid changes to window transparency cause
confusion and annoyance to building occupants [8], and some
windowing systems also have a physical limit on the rate of
transparency change [9]. Any difference between the maxi-
mum window change speed and the rate of change in natural
daylight either introduces glare (people disable the system)
or causes energy waste (poor performance).

In this paper, we address the problem of minimizing both
glare and energy usage, given that window transparency
is subject to a maximum switching speed: the maximum
instantaneous rate at which the window transparency can
be changed. A daylight harvesting system has two forms
of lighting actuation that offer different points in the en-
ergy/speed trade off: window transparency changes slowly
but consumes little to no energy, whereas electric lighting
can change quickly but consumes significant energy. Impor-
tantly, electric lighting offers only one-directional actuation:
it can increase illumination, but cannot reduce illumination.
Therefore, bright sunlight can only be addressed by a re-
duction in window transparency but, being slow, this can-
not prevent a temporary glare spike if natural lighting levels
increase suddenly. To address this problem, a daylight har-



vesting system must predict glare before it happens so that
it can reduce window transparency in advance, using electric
lighting to compensate as necessary until the natural light-
ing levels increase. By predicting rapid increases in natural
lighting, the system can provide constant lighting levels by
converting temporary glare spikes into negative spikes that
can be addressed through additional energy consumption.
However, these daylight predictions must be fairly precise in
terms of both the timing and magnitude of daylight changes:
a rise in sunlight levels that is later or smaller than predicted
will result in energy waste, whereas those that are earlier to
larger than predicted will result in a glare spike. Thus, a key
challenge of daylight harvesting is to adjust window trans-
parency in anticipation of future changes in sunlight levels.
We present a new technique called SunCast that improves

daylight harvesting performance by using fine-grained pre-
diction of natural sunlight levels. SunCast is an on-line sys-
tem that makes a new prediction and issues a new control
command at every moment in time. It has two parts: a
sunlight prediction algorithm and a control algorithm. To
predict sunlight values, it first defines the similarity between
sunlight values observed on previous days and those ob-
served up until the current time on the current day. Then,
it defines the distribution of future sunlight levels to be
a weighted combination of historical sunlight levels at the
same times of day, weighted by the previous days’ similar-
ity values. For example, by 10:00 AM one day, SunCast
observes sunlight patterns typical of a sunny day. Of all
historical data traces that exhibited similar patterns, some
remained sunny while others became cloudy. Of those days
that remained sunny, all days exhibited a trough from 11 to
11:30 AM due to a shadow from a nearby tree or building.
SunCast combines all of these historical traces to produce
a distribution of predicted sunlight values at every time in
the future. Thus, instead of making an explicit model of
a node’s environment, SunCast uses a purely data-driven
approach to create empirical distributions over both pre-
dictable and unpredictable features of sunlight time series.
Weather predictions, day of year, or other explicit informa-
tion about the environment can be integrated into SunCast
by including it in the function used to match with historical
traces.
In contrast to prior techniques that predict average sun-

light levels over a time period, SunCast predicts the actual
sunlight values for every minute in a future time window,
which allows the daylight harvesting system to set a specific
window transparency level for each minute. Furthermore,
SunCast predicts a distribution of sunlight levels, instead
of predicting just a point estimate. This allows the day-
light harvesting system to calculate the expected glare and
energy usage for any given transparency level at any point
in time, weighted by the probability distribution over the
predicted light values. These distributions allow the system
to identify predictable sunlight patterns such as sunrise or
shadows from trees and nearby buildings, and to distinguish
these from unpredictable patterns such as cloud movement.
To control the window transparency, SunCast uses a form

of predictive control. Given a set of sunlight predictions, it
uses quadratic optimization to choose a complete sequence
of future window transparencies to minimize expected glare
and energy, subject to switching speed constraints. It issues
the first transparency value in that sequence as a control
signal to the window. Every minute, a new light value is ob-

served, the distributions and optimized values are updated,
and a new control signal is issued. We evaluate this ap-
proach by deploying light sensors in 39 different locations
for up to 12 weeks at a time, and applying the control al-
gorithm on the data traces. Our results indicate that Sun-
Cast can reduce glare by over 59% over a baseline approach
with only a marginal energy penalty. We conclude that
SunCast helps solar energy harvesting technologies exploit
predictable, large-scale, short-duration fluctuations in solar
energy levels to substantially reduce glare and improve the
comfort levels produced by existing energy harvesting sys-
tems.

2. BACKGROUND AND RELATEDWORK
Solar radiation accounts for most of the renewable energy

on Earth, with total solar irradiance measuring roughly 1.3
kW/m2 [10]. Artificial lighting constitutes a large fraction
of energy usage in commercial buildings, despite the fact
that they are occupied primarily during daylight hours. The
reasons for this energy usage are plentiful, and daylight har-
vesting cannot address all of these reasons. For example,
lights are often left on at night for security reasons, and
many buildings have a wide footprint so light from windows
cannot reach the center of the building. However, daylight
harvesting systems have gradually gained popularity in mod-
ern buildings and have been shown to have the potential for
up to 40% energy savings [4, 11, 12]. Many new buildings
are being designed with natural lighting in mind, and build-
ing codes in some countries as well as some LEED certifica-
tion levels require all rooms to have natural lighting. The
Lawrence Berkeley National Laboratory (LBNL) recently
deployed a well-known daylight harvesting system in the
new New York Times Headquarters Building [13] along with
a field study that enhances the understanding of daylight-
ing controls. Other daylight harvesting systems have been
developed to minimize energy consumption, balance diverse
user lighting preferences, and increases facilities managers’
satisfaction [14]. In such systems, window shading tech-
nologies such as electrochromic windows [2] and motorized
blinds [3] are widely used. However, the switching speed of
electrochromic windows sometimes range from several min-
utes to up to two hours, depending on window size and out-
door temperature [9]. Even mechanical blinds have a max-
imum switching speed because rapid changes to the blind
position has been shown to cause confusion to the user [8].
Furthermore, changing window transparency consumes en-
ergy. Limits on maximum switching speed can cause lighting
errors and reduce user comfort, which ultimately leads to en-
ergy waste if users disable the system or configure it to be
less aggressive in order to reduce glare [7].

The Illuminating Engineering Society of North America
(IESNA) recommends 500 lux as the standard task illumi-
nance for office workers performing regular tasks [15]. How-
ever, visual comfort depends on task requirements and in-
dividual user preferences. The upper limit on lighting de-
pends on glare requirements, and is different for reading pa-
per documents versus reading a back lit computer screen.
The lower limit is usually discussed in terms of detectable
vs. acceptable illuminance: 10-15% is generally within the
undetectable range for most people assuming base levels of
500 lux [16], and up to 40% may be acceptable depending
on how slowly the light is dimmed [17].
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Figure 1: SunCast uses a similarity metric to identify historical data traces with patterns most similar to the
current day. In this example, the most similar day changes over time.

Many sunlight prediction techniques have previously been
developed, primarily in the context of solar energy harvest-
ing with solar panels, and each techniques makes predictions
based on different information and over a different period of
time. Weather forecasts today are based on vast sensing
infrastructure and advanced computer simulations [18, 19].
Sharma et al. explore the use of weather forecasts to im-
prove energy harvesting prediction [20]. Forecasts can help
predict cloudiness levels in the sky, but do not predict the ef-
fect of shadows and reflections at a particular location on the
ground, which depends on the proximity to nearby buildings,
the presence of leaves on trees, time of day, and seasonal
changes in the azimuth of the sun. These factors affect solar
energy levels as much haze, clouds, and precipitation. To-
day, websites provide hourly predictions of cloudiness levels,
but even more fine-grained information is needed for control
of window transparency. Classical time series analysis would
suggest using auto-regression techniques [21], but any such
model would change rapidly throughout the day and would
depend on many external, unobserved variables.
Recently, several new approaches have been developed to

predict the solar energy levels at a single point, most of
which have focused on solar-powered sensing [22]. Some of
these techniques choose a fixed sensor sampling rate based
on long-term expected sunlight levels [23, 24, 25], while
others make near-term predictions, e.g. 3-72 hours in ad-
vance [26, 27]. Other techniques use an EWMA over previ-
ous days [28, 29] or statistical correlations based on weather
predictions [30, ?]. However, solar energy harvesting is very
different from daylight harvesting because solar energy can
be stored in a capacitor or battery, whereas sunlight cannot
be stored. Therefore, fine-grained prediction is not as essen-
tial for solar energy harvesting: the storage unit acts as a
buffer and delays the impact of sunlight changes, giving the
system more time to adapt by, e.g. changing the sampling
rate. Unless storage is extremely limited, therefore, solar-
powered sensing applications can suffice with predictions of
average sunlight levels. In contrast, daylight harvesting sys-

tems have no buffer to delay a glare spike, and must therefore
use fine-grained prediction to accomodate rapid changes in
sunlight levels.

Wireless sensor networks (WSNs) have previously been
used for light sensing and actuation to achieve cost effec-
tiveness, energy efficiency, and user comfort. For example,
Singhvi et al. proposed and demonstrated a lighting control
system with wireless sensors and a combination of incan-
descent desk lamps and wall lamps actuated by the X10
system [31]. In addition to office lighting applications, Park
et al. designed and implemented Illuminator, an intelligent
lighting control system for entertainment and media produc-
tion [32]. High fidelity wireless light sensors were developed
and implemented to form a sensor network for collecting
stage lighting information [33]. The SunCast daylight har-
vesting system also senses and controls light values, but the
goal different: to achieve stable task lighting despite unsta-
ble natural sunlight levels.

3. PREDICTING SUNLIGHT VALUES
SunCast uses a three-stage process to generate fine-grained,

continuous distributions of predicted sunlight values. First,
the system calculates the similarity between the real-time
data stream and historical data traces (Section 3.1). Second,
it uses a regression analysis to map the trends in the histori-
cal traces to more closely match patterns of the current day
(Section 3.2). Third, the system combines the weighted his-
torical traces to predict the distribution of sunlight in the
near future (Section 3.3).

3.1 Finding Similar Days in History
SunCast calculates the similarity of the current sunlight

levels with all historical data traces previously observed.
Calculating the similarity has two steps. First, we calculate
the squared error between the real-time data stream and the
historical data stream, for a time window of n readings in the
recent past. The current data stream in the sliding window
between t1 and tn is defined as DS = {xt1 , xt2 , ..., xtn}, and
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Figure 2: SunCast uses regression to improve the
mapping between today (solid) and a historical day
(dashed) to improve future the predictions based on
that historical day (dashed-dot).

the data stream of historical trace j is defined as DS
′

j =

{x
′

t1,j
, x

′

t2,j
, ..., x

′

tn,j}. The difference d between these two
days is calculated as:

d(DS,DS
′

j) =
n
∑

i=1

(xti − x
′

ti,j
)2 (1)

Second, we define a relative ranking among all the h his-
torical traces by normalizing the difference values. Thus,
the similarity sj of historical trace j among h history days
is defined as:

sj = 1−
d(DS,DS

′

j)
h
∑

k=1

d(DS,DS
′

k)

(2)

These normalized values are used as weights to find the
traces most similar to the current data, while still taking
the entire historical data set into consideration.
Figure 1 illustrates the similarity metric for an example

day with three historical traces using a 15-minute sliding
window during the period from 6:00 AM to 10:00 AM. The
example day has clear weather and 3 historical days that are
hazy, partially cloudy, and sunny but becoming overcast, re-
spectively. This particular sensor has direct sunlight around
8:50 AM, followed by a shadow due to a tree, and direct
sunlight again around 9:10 AM. Early in the morning, His-
tory Day 3 is most similar, but once History Day 3 becomes
overcast during the periods of direct sunlight, the hazy day
becomes most similar. This example illustrates the bene-
fits of a relative ordering rather than an absolute metric of
similarity.

3.2 Mapping to Current Conditions
In the example above, the most similar historical trace was

from a hazy day. This trace contained trends and patterns
that are pertinent for predicting today’s sunlight values, but
the values are offset by a constant factor due to the level of
haze. Similar effects are also produced by seasonal changes
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Figure 3: SunCast uses a weighted combination of
historical data traces to create a distribution of pre-
dicted light values, depicted here by the weighted
dashed lines.

in sunlight intensity or other factors, and SunCast uses lin-
ear regression analysis to map the patterns in a historical
trace to the conditions of the current day. The regression is
formulated as Y = bj + ajXj , where Y is the current data
stream {yt1 , yt2 , ..., ytn} and Xj is the jth historical trace

{x
′

t1,j
, x

′

t2,j
, ..., x

′

tn,j}. After solving for aj and bj , we use
the linear regression model to predict the future sunlight
values for today, based on the historical traces patterns: for
a prediction length l, the predicted data based on history
day j is

Y ∗

j = bj + ajX
∗

j (3)

where Y ∗

j is the predicted data {y∗

tn+1,j
, y∗

tn+2,j
, ..., y∗

tn+l,j
}

and X∗

j is the historical trace {x
′

tn+1,j
, x

′

tn+2,j
, ..., x

′

tn+l,j
}.

Figure 2 illustrates how this mapping process works. In
the example, the current clock time is 8:00 AM and our sys-
tem applies regression between the current data and a his-
torical trace over the prior one-hour time window between
7:00 AM and 8:00 AM. Then, the model learned is applied
to the next time one-hour time window between 8:00 AM
and 9:00 AM to predict the future values today based on
the historical trace. As the figure illustrates, the regression
analysis preserves patterns in the historical trace while cor-
recting for constant differences in the slope and bias between
the two days.

3.3 Creating a Prediction Distribution
After applying regression analysis to all h historical traces,

we apply the regression model to the future time window to
produce h predictions of length l. These are combined into
a h-by-l matrix. The similarity values can be multiplied
against the prediction distribution to produce the prediction
distribution x̂, as shown in Equation 4, where x̂tn+i,h ∈ x̂
is the weighted sunlight prediction for time n + i based on
historical day h.
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Figure 4: To evaluate SunCast, we deployed light sensors at 39 locations for up to 12 weeks at a time.
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Figure 3 illustrates an example of prediction distribution
using the same example day above and ten historical traces.
Each dashed-dotted line represents the expected sunlight
based on the prediction of one historical trace, and the thick-
ness of the line indicates the similarity between the current
day and that history day. As the figure shows, SunCast
produces a fairly wide distribution for the time between
8:00 AM and 8:50 AM, due to varying levels of haze that
might be encountered. However, given that the data be-
tween 7:00 AM and 8:00 AM is fairly indicative of a clear
day, the most heavily weighted predictions all have a peak
in sunlight around 8:50 AM when direct sunlight first hits
this node and before the shadow of a tree. Two predictions
of a cloudy day (thin lines at the bottom) remain in the
prediction distribution, but both have very low weights.

4. SETTINGWINDOW TRANSPARENCY
In this section, we present a mathematical formulation of

the daylight harvesting problem to illustrate how the Sun-
Cast prediction distributions can be used for on-line window
control. We define window transparency wt to be the per-
centage of incoming daylight that penetrates the window:
the window is fully closed at 0% transparency and fully
open at 100%. The setpoint is the desirable lighting level
for task illumination: too much harvested light will cause
glare, while too little will increase energy consumption of
artificial lighting. The window switching speed wSpeed is
the maximum percent change in window transparency al-
lowed per minute. A daylight harvesting system does not
need to predict far into the future because values in the far
future do not affect current control parameters. We define

a maximum prediction window len to be

len =
max(100%− wt,wt− 0%)

wSpeed
(5)

This window size ensures that the system predicts far
enough that it is always able to respond to predicted values;
larger values of wSpeed lead to smaller prediction windows.
Then, the system finds a series of window transparency val-
ues that minimize the expected lighting error for the entire
prediction window with k historical traces: predDistk,len.
The objective function is

minimize
k

∑

j=1

n+len
∑

i=n+1

|wtti × x̂ti,j − setpoint| (6)

subject to limits on both window transparency and switch-
ing speed

0% 6 wtti 6 100% (7)

|wtti+1
− wtti | 6 wSpeed (8)

Once the optimization function is solved, the system up-
dates the current window transparency to the first value
from the solution derived: wt∗tn+1

. All other transparency
values from the solution are discarded, and were only calcu-
lated to ensure that target transparency values for the future
could still be achieved given switching speed constraints.
This entire process is repeated every time step when a new
light reading is measured.

4.1 Balancing Prediction and Reaction
The algorithm described above is a pure prediction al-

gorithm, which is ideal for preparing in advance for pre-
dictable rapid changes in sunlight, such as sunrise, sunset,
or a shadow. However, during periods of stable sunlight,
such as mid-day, predictions from historical traces will ac-
tually hinder performance because current conditions are a
better predictor of future values than any historical trace.
In such cases, better performance is achieved by a reactive
algorithm that sets the window transparency based on the
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Figure 5: The light sensors we deployed were subject
to a wide range of environmental influencers that
caused shadows and reflections throughout the day.

current sunlight values, without making any predictions. In
order to accommodate this condition, SunCast introduces
a hybrid scheme that switches smoothly between prediction
and reaction: it uses a purely reactive scheme on each histor-
ical trace j and, if the the lighting error is below a threshold
β, then all values in the row j of x̂ are replaced with the
current light reading. The basic rationale is that if a his-
torical trace is stable enough that pure reaction performs
sufficiently well, then the trace is not providing any use-
ful prediction information. In fact, it can even be harmful
to performance because window transparency will be deter-
mined by small peaks and troughs from that day that are
not likely to re-occur today. Therefore, the trace is only
used if it indicates a rapid change in sunlight that cannot
be accommodated to the switching speed limitations. The
user can tune the balance between prediction and reaction
by changing the parameter β.

4.2 Balancing Energy and Glare
Daylight harvesting systems must balance energy usage

and glare when responding to predictions about future sun-
light. Being too aggressive about energy conservation will
introduce glare if there are rapid peaks in sunlight, but be-
ing too conservative will cause energy usage if sunlight levels
are not as high as expected. In SunCast, we allow the user
to customize the balance between energy and glare by intro-
ducing a new control variable called daylight weight, which
tunes the maximum percentage of lighting that can be pro-
vided by natural daylight. If the daylight weight is 0%, then
the system uses purely electric lighting without any concern
about glare. If the daylight weight is 100%, then the sys-
tem maximize the opportunity to harvest natural sunlight,
but risks suffering from more glare. One alternative to this
scheme is to define a different penalty function for glare or
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Figure 6: The two algorithms based on SunCast,
prediction & hybrid(100), offer a more desirable
trade-off between glare and energy usage than the
reactive scheme, and begin to approach the perfor-
mance of oracle and optimal schemes.

energy usage, which would allow the system to achieve a
more subtle trade off between energy and glare. However,
such a scheme could no longer be formulated as a quadratic
optimization, and we believe that users will find it easier to
set a single linear knob rather than to create a customized
penalty function.

5. EXPERIMENTAL SETUP
Daylight intensity and distribution are deeply dependent

on geographic location, building orientation, sky conditions
and nearby surroundings. Therefore, in order to evaluate
SunCast in a realistic environment, we deployed two testbeds
in different buildings: one in a residential house and an-
other of deployment on university campus, as shown in Fig-
ures 4(a) and 4(b). The testbeds consist of 12 and 27 U012-
12 Hobo data loggers designed by Onset, as shown in Fig-
ure 5(a). These nodes can monitor the environment with the
built-in light, temperature, and humidity sensors. At each
window, a node facing the outside measures the incoming
daylight. Some nodes are deployed at windows with open
views while others are located behind a blocking tree out-
side. Several examples of deployment are shown in Figure 5.

We collected the light sensor data from the testbed at
a sampling rate of once per minute, and the duration of
the sensor deployment lasted for 4 weeks at the house and
12 weeks on campus. During the deployment period, we
observed a wide variety of weather patterns, including sunny,
cloudy, rain, fog and snow storm. All the data were stored in
the data loggers and are manually read out from the nodes
every week. The system presented in this paper does not
require communication among nodes, but these data loggers
could be replaced with wireless sensors for convenience.
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Figure 7: As the switching time (minimum time to go from completely transparent to opaque) increases, the
predictive scheme increasingly outperforms reactive in terms of glare and is a constant factor worse in terms
of energy usage. For very short switching times, prediction does not help.

6. EVALUATION
In this section, we evaluate how SunCast predictions af-

fect the performance of daylight harvesting. We evaluate
the system on both campus and house testbeds. Due to
space limitations, we present only the results of the campus
testbed. The results from the residential testbed produced
nearly identical trends.

6.1 Baseline and Optimal Algorithms
As a baseline for comparison, we use a purely reactive

scheme that uses closed-loop feedback control to set the win-
dow transparency: it periodically measures the current day-
light and sets window transparency to come as close to the
target setpoint as possible, subject to the switching speed
constraints.
We introduce another baseline scheme called weather, which

uses the same optimization formulated in Section 4, except
that it operates on the subset of history days that have the
same cloudiness level as the current day. We classify the
history days with the daily cloudiness levels based on the
weather reports from local airports. This scheme provides
insight on the impact of selecting history days on the system
performance.
We upper bound the benefits of prediction using another

scheme that we call oracle, which uses the same optimization
formulated in Section 4, except that it operates on the actual
future light values instead of predicted values. This scheme
provides the best performance possible with the control al-
gorithm used in our analysis, assuming perfect daylight pre-
diction.
Finally, we upper bound daylight harvesting performance

using an optimal algorithm that always uses the window
transparency that minimizes both energy and glare. This
scheme is not subject to switching speed constraints, and
provides the theoretical upper bound on energy and glare
for any control scheme. If daylight levels are high enough, it
will produce no glare and no energy usage. Electric lighting

will only be used when daylight levels are below the target
setpoint.

6.2 Evaluation Metrics
We evaluate the performance of the daylight harvesting

system in terms of two evaluation metrics: energy and glare.
Energy is defined as the amount of artificial lighting used by
the scheme to maintain the setpoint at the window, mea-
sured in lux per window per day. We did not evaluate the
energy in kilowatt hours, because that depends on the type
of light bulb assumed. The values can easily be converted
by assuming a particular type of light bulb. Glare is defined
as the amount of the harvested light above the target set-
point, also measured in lux per daylight harvesting window
per day.

6.3 Experimental Results
We evaluate our system against the baseline and optimal

algorithms in a trace-based simulator that replays the em-
pirical data traces from the campus testbed and executes the
algorithm described in Section 4. The simulator allows the
control scheme to adjust window transparency and measures
both glare and electric lighting usage. In our experiments,
we use 2,000 lux as the setpoint at the window, which is cho-
sen to produce lighting levels in the interior spaces close to
the industry standard of 500 lux. The control loops repeat
every 1 minute, which is the sampling rate with which the
light data was collected. We test a range of daylight weights
from 0% to 100% for all the control schemes, and investi-
gate the effect of balancing between prediction and reaction
at the daylight weight of 100%. In the hybrid scheme, we
set error thresholds varying from 0% to 100% of the setpoint
at the window.

The experimental results of daylight harvesting are shown
in Figure 6, where each line represents a different control
scheme and the points on the line indicate the average en-
ergy and glare results as the daylight weight. All points on
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Figure 8: The south-east facing windows suffer the most glare because the window is completely transparent
right before sunrise. The predictive scheme reduces this glare substantially. Energy usage is dominated by
dusk and dawn, and is therefore not sensitive to orientation.

the hybrid(100) line use 100% daylight weight, and instead
the points represent the energy/glare performance for vary-
ing values of the β threshold that switches between reaction
and prediction. If the daylight weight and the β threshold
are integrated into a single user-controlled knob, the pre-
dictive and hybrid(100) schemes form a single curve that
represents the range of SunCast performance. This curve
provides the user with a much more desirable balance be-
tween glare and energy usage than the reactive scheme, and
approximately halves the distance between reactive and or-
acle performance. For total glare levels of about 10,000 lux
per day, the predictive scheme consumes about 20% less en-
ergy than the reactive scheme. Similarly, at artificial lighting
levels of 200 kilolux per day, the predictive scheme produces
more than 45% less glare than the reactive scheme. In con-
trast, the approach based on weather classification reduces
only 3.7% energy and 18.6% glare over the reactive scheme.

7. ANALYSIS
In this section, we analyze the degree to which fine-grained

prediction contributes to achieving stable task lighting under
different scenarios. We also discuss the impact of window
switching speeds, window orientations, and cloudiness levels
on the performance of daylight harvesting.

7.1 Sensitivity to Switching Speed
To investigate the impact of switching speed on the sys-

tem performance, we run the same control schemes with a
range of switching times varying from 10 minutes to 100
minutes: these are the minimum times required to make
a full transition from transparent to opaque. These values
represent an estimated range of comfortable speed changes,
as well as the physical limits of some electrochromic win-
dows [9]. For a fair comparison, all of these experiments
use 100% daylight weight. Figure 7 shows the energy and
glare levels of all algorithms as the switching time is varied.
Figure 7(b) shows that the predictive scheme always wastes

slightly more energy than the reactive scheme, for a given
switching time, but Figure 7(a) shows that the predictive
scheme outperforms reactive in terms of glare. Predictive
performs best when the minimum switching time is long: at
the switching time of 100 minutes, it achieves 59% less glare
than the reactive scheme. As the minimum switching time
gets smaller, prediction into the future is no longer beneficial
and even hinders performance. At the same time, the reac-
tive scheme approaches the oracle scheme, and at switching
times of less than about 15 minutes, reactive begins to out-
perform predictive.

7.2 Sensitivity to Window Orientation
Figure 8 shows the results of energy and glare broken

down by the direction that the sensors are facing on the
campus testbed. These results indicate that windows facing
the southeast have the highest level of glare. This is because
the window is in the fully transparent state at dawn and is
suddenly subject to bright, direct sunlight after sunrise. The
predictive scheme anticipates the sunrise and reduces glare
by over 50%. The northwest windows consumes the largest
amount of energy because there the least direct sunlight from
that direction. However, energy usage is dominated by dawn
and dusk and therefore does not change substantially with
window direction. This analysis does not illustrate the ef-
fects of predicting rapid changes due to trees, windows, or
other predictable shadows, since these factors are different
for each window and are averaged out over all windows fac-
ing each cardinal direction.

7.3 Sensitivity to Cloudiness Level
Figure 9 illustrates the system performance of the con-

trol schemes on the four example days that represent typi-
cal cloudiness levels: clear, partly cloudy, most cloudy, and
overcast. The diagrams show detailed traces of: 1) sun-
light levels during the day; 2) harvested daylight of control
schemes; and 3) window transparency adjusted by control
schemes. For all control schemes, the daylight weight is
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Figure 9: The predictive scheme based on SunCast is most advantageous over reactive on sunny and overcast
days because the sunlight patterns are most predictable. On partially cloudy days, unpredictability causes
both glare and energy waste.



100% and the window switching speed is 1%/min. The re-
sults show that the predictive scheme approaches the opti-
mal window control on a clear or overcast day. This is be-
cause sunlight levels are relatively stable on a clear or over-
cast day, so sunlight patterns are more predictable. Cloudy
days are less predictable. For example, the predictive scheme
produces high glare between 9:00 AM and 10:00 AM on a
partly cloudy day. This is caused by the sudden sunlight
increase around 9:00 AM, which is not predicted by the his-
torical traces: in the early morning, the sunlight levels re-
sembled a cloudy day, but shortly after sunrise the levels
approached that of a hazy day. As the sunlight variability
becomes smaller, the predictive scheme has better perfor-
mance on the mostly cloudy day.

7.4 Predictability Analysis
We analyze the times at which SunCast has the largest ef-

fect on task lighting stability: the variance of indoor lighting
levels, as compared with the task lighting setpoint. Lower
variance levels indicate that task lighting is more stable. For
a fair comparison, all experiments use 100% daylight weight
and the window switching speed of 1%/min.
Figure 10 illustrates the system performance of the con-

trol schemes on four example windows. Each window has
a different predictable feature: morning light, a building
shadow, a tree shadow, and blocked view. The diagrams
show detailed traces of improvements in the task lighting
stability due to both the predictive and the weather-based
control schemes. The results show that prediction creates
a large improvement in task lighting stability during pre-
dictable periods of lighting variability. At other times when
the lighting values are not as predictable, the SunCast con-
trol algorithm achieves the same task lighting stability as a
simple reactive scheme. This analysis demonstrates that the
probability distributions created by SunCast help to accu-
rately differentiate predictable and unpredictable patterns,
allowing the system to exploit predictable patterns without
paying a penalty during unpredictable periods.

8. LIMITATIONS AND FUTUREWORK
The results of this study demonstrate that a data-driven

approach can effectively predict natural daylight levels in
a way that can improve daylight harvesting effectiveness.
However, Section 7.4 illustrates that this approach is limited
to sunrise, sunset, trees, nearby buildings, and other rela-
tively predictable environmental factors. Many rapid day-
light changes such as those caused by passing clouds are still
unpredictable. Our system is designed to revert to a reactive
approach during unpredictable periods, as explained in Sec-
tion 4.1, but in current work we are exploring ways to merge
data traces from multiple light sensors deployed throughout
a building or a group of buildings to predict cloud bound-
aries. This group estimation approach can also be used to
help improve the distribution over future light levels, even
for predictable changes. For example, an east-facing window
may be best able to predict the intensity of the glare spike
at a south-facing window, as the sun rounds the corner of a
building. An important challenge of this approach is that it
requires communication and coordination between a group
of geographically distributed nodes. Therefore, the advan-
tage in terms of daylight harvesting will need to be balanced
with the communication and energy demands of the sensor
devices.

In addition to daylight harvesting, SunCast can also be
used for other applications that would benefit from sunlight
prediction. We are currently developing new control algo-
rithms for solar-powered sensing systems that employ pho-
tovoltaics to harvest solar energy for perpetually-powered
sensing. These systems are typically coupled with recharge-
able energy storage such as batteries or fuel cells that pre-
clude the need for fine-grained sunlight prediction. However,
storage capacity may be limited by cost, size, or weight. For
example, a 9-cubic millimeter solar-powered sensing system
recently developed uses a 12µAh battery [34]. Many existing
approaches to solar-powered sensing choose a fixed sampling
rate that minimizes the chance of fully depleting the energy
supply, based on long-term predictions of solar energy lev-
els. However, these approaches lose the ability to exploit
the small peaks and troughs typical of natural daylight. For
example, opportunities for energy harvesting are lost when
sunlight levels rise suddenly but the battery is already fully
charged. Similarly, data can be lost if the battery is de-
pleted in order to harvest more energy, but sunlight levels
unexpectedly drop.

9. CONCLUSIONS
In this paper, we present a new sunlight prediction frame-

work called SunCast that produces a distribution of pre-
dicted sunlight values in the near future. SunCast is an
improvement over existing sunlight prediction schemes in
two ways: 1) continuous predictions over time enable ex-
ploitation of predicable, large, and short-duration peaks and
troughs in sunlight levels, and 2) a distribution of predic-
tions at each time point enables managing the risks and
rewards, weighted by the probability that there will be too
much or too little sunlight. We present a predictive con-
trol scheme based on quadratic optimization that performs
daylight harvesting based on these predictions, and eval-
uate using data traces collected from 39 light sensors de-
ployed in different windows. Our results demonstrate that
SunCast can produce substantial performance improvements
for daylight harvesting, reducing glare by 59% with only a
marginal increase in electric lighting usage. The reduction
in glare should will improve the total energy savings from
daylight harvesting systems because fewer people will dis-
able the system due to unacceptable lighting comfort. The
SunCast prediction and control algorithms can be incorpo-
rated into existing daylight harvesting algorithms simply by
changing the control algorithm, adding storage for historical
data traces, and configuring the parameters: wSpeed, day-
light ratio, and β. In addition to daylight harvesting applica-
tion explored in this paper, SunCast can be applied to other
problems that would benefit from fine-grained, short-term
sunlight prediction. Furthermore, the empirical data-driven
techniques could possibly be extended to predict of any data
stream that exhibits daily or periodic trends that results
from a large number of factors, such as highway traffic pat-
terns, city pollution levels, or office building occupancy.
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(d) Northwest View with Multiple Trees

Figure 10: SunCast improves lighting stability over the reactive scheme at different times of day for each
window, depending on the environmental factors that cause glare. During unpredictable periods, it performs
no worse than reactive. The weather based scheme is much less effective at dawn.
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