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Abstract. Sundance is a package in the Trilinos suite designed to provide high-level components for the development of high-

performance PDE simulators with built-in capabilities for PDE-constrained optimization. We review the implications of PDE-

constrained optimization on simulator design requirements, then survey the architecture of the Sundance problem specification

components. These components allow immediate extension of a forward simulator for use in an optimization context. We show

examples of the use of these components to develop full-space and reduced-space codes for linear and nonlinear PDE-constrained

inverse problems.
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1. Introduction

Numerical optimization has become an essential

tool for mathematicians, scientists and engineers. Man-

ufacturers seek to maximize efficiency in their produc-

tion operations. Aerodynamicists try to minimize drag

of airplane wings while maximizing lift characteristics.

Geophysicists strive to determine material properties

in subsurface structures. In each case, a “model” can

be identified that drives the underlying state or dynam-

ics of the system. For shape optimization of a wing,

the underlying model consists of the compressible fluid

flow equations, whereas in the case of determining sub-

surface material properties, the model consists of the

wave equation. These problems can be formulated as

a minimization or maximization of a function subject

to a model as constraints on its variables. This can be
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expressed mathematically as:

min
α

J (u(α), α), (1)

s.t. c(u, α) = 0, (2)

h(u, α) � 0, (3)

where J (u(α), α) is the objective function, c(u(α),

α) = 0 represents the “model” or state equations,

α are the design variables, u are the state variables and

h are the inequality constraints. We write u(α) to indi-

cate that for any value of the design variables, we can

solve for the state variables. Our solution strategies re-

quire the knowledge of both the state (model variables)

and the design variables, and we therefore specifically

include these in the above described, general formula-

tion of the optimization problem. The inequality con-

straints (3) are often simple bounds on the design vari-

ables, but could be used more generally to ensure that

certain (nonlinear) functions of the state and/or design

variables are appropriately bounded. We refer to this

formulation as a constrained optimization problem and

a significant body of literature (a subset of which is

listed here) [3,6–9,13,17,22] deals with appropriate so-

lution methods and algorithms.

1058-9244/12/$27.50  2012 – IOS Press and the authors. All rights reserved



294 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

This paper is focused on the common and impor-

tant case in which the constraints c(u, α) = 0 are par-

tial differential equations, a class of problems known

as PDE-constrained optimization (PDECO). The size,

complexity, and infinite-dimensional nature of PDECO

problems all present significant challenges for general-

purpose optimization algorithms and require special

attention in the handling of regularization, iterative

solvers, preconditioning, globalization, management

of inexactness, sensitivity calculations, and parallel im-

plementation, all of which need tailoring to the struc-

ture of the underlying operators. PDECO methods re-

quire not only considerable information from the sim-

ulator (or model) but also require the manipulation of

various linear algebra objects that need to be embedded

in the model.

In this paper we present a software design and

code capability that elegantly and efficiently enables

PDECO algorithms. To set the stage, in Section 2 we

examine several approaches to solving the PDECO

problem (1)–(3). In Section 3 we describe such a soft-

ware system whose syntax allows a natural expression

of PDECO problems and seamless way to connect to

an optimizer. In addition, we present the use of mul-

tiple Trilinos packages ranging from linear solvers to

distributed linear object capabilities as part of our soft-

ware infrastructure. In Section 4 we give a collection

of examples that illustrate the power of our system. In

Section 5 we discuss the current state and future direc-

tions for this work.

2. PDE-constrained optimization overview

In this section, we consider two approaches for solv-

ing constrained optimization problems (1)–(3). The

first approach solves the PDE c(u, α) = 0 at each step

of the optimization process and thus the iterates are al-

ways feasible. (We refer to these methods as “feasi-

bility preserving methods”.) These methods are based

on the fact that, in some cases, one only has an ex-

isting code for solving the PDE and this code is not

easily modified, or only can be only “slightly” modi-

fied. The second approach only requires that the PDE

constraints be satisfied in the limit as the optimization

process converges. We refer to these methods as “all-

at-once” methods since we attempt to solve the opti-

mization problem and the PDE constraint at the same

time. This approach requires significant intrusion into

the PDE solver so that it can be tightly coupled to the

optimizer. Not surprisingly, each of these two strate-

gies has variants, as we discuss below.

First, however, we note that our discussion below is

predicated on the assumption that the PDECO problem

has sufficient smoothness for gradient-based methods

to be applicable; if not, then one has little choice but

to use a derivative-free method; such methods can only

be realistically considered for problems with very few

design variables and even in this case, they often con-

verge very slowly. For the remainder of this paper, we

will assume that the functions are all sufficiently dif-

ferentiable.

2.1. Feasibility-preserving methods

The methods for solving PDECO that solve the state

equation at each iteration have two main variants. The

first is the “black-box” procedure in which no modifi-

cations to the PDE solver can be made. The code can

only evaluate the state variables given an instance of

the design variables as input. They completely sepa-

rate optimization strategies from the model by com-

municating results through loosely coupled interfaces,

e.g., through the file system. Furthermore, sensitivity

information is typically unavailable from the underly-

ing dynamics equation and consequently, the objective

function gradients are acquired by finite differencing

the entire forward simulation. Although less efficient,

these methods are nevertheless able to employ some

powerful optimization methods, provided the number

of design variables is small. In addition, black-box

methods have the distinct advantage of having a very

simple interface between the optimizer and the PDE

simulator, and so are sometimes a practical choice.

As mentioned above, an implicit assumption in (1)–

(3) is that for any (reasonable) value of the design vari-

ables, the underlying model can be solved for the state

variables. Thus, ignoring the inequality constraints to

simplify the algorithmic presentation, we can perform

a nonlinear elimination on the equality constraints,

i.e., solve the equality constraints for u(α) to obtain

an unconstrained optimization problem of the form

minα J (α). A local minimizer may be obtained by ap-

plying a variant of Newton’s method (see, e.g., [17])

given by

α
k+1

= α
k − σk(Bk)−1 ∇J (αk),

where the superscripts denote the iteration number,

B is an approximation to the Hessian of the objec-

tive function evaluated at the kth iterate, and σk is a
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step length parameter appropriately chosen. The con-

vergence theory for such methods is well developed.

As noted above, the primary disadvantage of this ap-

proach is in its inability to consider large number of

optimization variables and guarantee accuracy. If there

are n design variables, then n forward simulations are

required for each finite difference gradient calculation

and this must be done at each iteration. For n large,

e.g., a design variable at each point of the computa-

tional domain, the finite difference method becomes

computationally intractable. Furthermore, even when

n is small the accuracy of finite difference deriva-

tives may be low because the forward simulations are

themselves subject to discretization errors and inexact

solves,whose effect is amplified by differencing.

We conclude this part by providing two alternatives

to finite differencing that, although much more effi-

cient, are still not as efficient as the all-at-once methods

described below. These are the direct sensitivity and

adjoint methods. Note that both require some intrusion

into the state-equation solver.

We again use just the equality constrained version

to simplify the presentation. Applying the chain rule to

the objective function, we have

∇J =
∂J

∂u

∂u

∂α
+

∂J

∂α
(4)

for the reduced gradient ∇J . Similarly, for c(u(α),

α) = 0 we have

∂c

∂u

∂u

∂α
+

∂c

∂α
= 0. (5)

Since ∂c
∂u

is invertible, we combine (4) and (5) to obtain

∇J = −
∂J

∂u

∂c

∂u

−1 ∂c

∂α
+

∂J

∂α
. (6)

The “direct sensitivity matrix” ∂u
∂α

=
∂c
∂u

−1 ∂c
∂α

re-

quires the solution of the state Jacobian against a right

hand side with multiple columns equal to the number

of optimization variables. Although the direct sensi-

tivity matrix offers more efficient and exact gradient

calculations, if the number of optimization variables is

sufficiently large this method also becomes computa-

tionally intractable. Fortunately, a simple transforma-

tion is possible to avoid the computational expense as-

sociated with the dependence of the optimization vari-

able. By shifting ∂J
∂u

∂c
∂u

−1
and taking the transpose,

the dependence on the multiple right hand sides is

now avoided. This transformation is termed the “ad-

joint based sensitivity” method and the gradient is cal-

culated as:

∇J =
∂c

∂u

−T ∂J

∂u

∂c

∂α
+

∂J

∂α
. (7)

Note that we already have ∂c
∂u

since it is needed to solve

the constraint. Indeed, in the case of a linear constraint,

it is just the linear operator. Often, the other deriva-

tives are not hard to obtain. The implementation of ad-

joint based sensitivities provides the primary prerequi-

site towards solving PDECO problems with large de-

sign variables. In the following section, we discuss all-

at-once methods which rely on adjoints and offer addi-

tional computational improvements.

2.2. The all-at-once approach

The methods described here offer further computa-

tional improvements by tightly coupling the conver-

gence of the state and optimization calculations. That

is, there is no need to solve the nonlinear PDEs exactly

until the optimization converges. The classical way to

approach this problem is to introduce Lagrange multi-

plier fields, λ, known as the adjoint states or costate

variables, and form a Lagrangian functional L that in-

corporates the PDE constraints via an inner product

with λ. In particular, let c be the PDE constraint and

assume that the initial conditions are included. Then

we can write the Lagrangian as

L(α, u, λ) = J (u, α) + 〈λ, c〉.

One then requires stationarity of L with respect to the

state variables (u), decision variables (α), and adjoint

variables (λ). Taking variations, the following system

of equations is derived, representing the first-order nec-

essary conditions for optimality:

Lλ(α, u, λ) = c(u, α) = 0

state equation, (8)

Lu(α, u, λ) = Ju(û, α) + cu(u, α) = 0

adjoint equation, (9)

Lα(α, u, λ) = Jα(u, α) + cα(u, α) = 0

decision equation, (10)

where the subscripts denote taking variations of the

particular functional with respect to the subscript.
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When appropriately discretized on the current grid

level, the dimension of each of u, λ is equal to the

number of grid points Ng multiplied by number of time

steps (in time-dependent problems) Nt, α is of dimen-

sion Ng , and thus the system (8)–(10) is of dimen-

sion NgNt + Ng . This can be very large for problems

of interest – for example, in numerical problems pre-

sented in [1], the system contains 3.4 × 109 unknowns.

The time dimension cannot be “hidden” with the usual

time-stepping procedures, since (8)–(10) couples the

initial and final value problems through the decision

equation. This is not shown here, but the optimality

system is thus a boundary value-problem in 4D space–

time.

If one considers (8)–(10) as a nonlinear system of

equations to be solved by Newton’s method, one will

have to solve a linearized system at each iteration.

It has been noted that the linearized system corre-

sponds to a constrained optimization problem that is a

quadratic approximation to the objective function with

linearized constraints. In the optimization literature,

this goes by the name sequential quadratic program-

ming or SQP. See [4] for a discussion of SQP methods

in finite dimensions. The system (8)–(10) is known in

the optimization literature as the Karush–Kuhn–Tucker

(KKT) conditions.

Since the coupled optimality system can be formida-

ble to solve simultaneously, a popular alternative is to

eliminate state and adjoint variables and thereby reduc-

ing the system to a manageable one in just the deci-

sion variable. Methods of this type are known as re-

duced space methods. A nonlinear elimination or non-

linear Gauss–Seidel variant of a reduced space method

proceeds as follows for the KKT system. Given α at

some iteration, solve the state equation for the state

variable u. Knowing the state then permits solution

of the adjoint equation for the adjoint variables λ

and p̂. Finally, with the state and adjoint known, the

decision variable α is updated via an appropriate lin-

earization of the decision equation. This loop is then

repeated until convergence. This procedure is demon-

strated as a solution mechanism in our numerical re-

sult section. Historically, reduced space methods have

been attractive because solving the subsets of equa-

tions in sequence exploits the state/adjoint/decision

structure of the optimality system and capitalizes on

well-established methods and software for solving the

state equation. In addition, adjoint PDE solvers are be-

coming more popular, due to their role in goal-oriented

error estimation and efficient sensitivity computation,

so they can be exploited as well.

In contrast to reduced space methods, full space

methods solve for the state, decision, and adjoint vari-
ables simultaneously. For large-scale problems, this is
typically effected via Newton–Krylov iteration. That
is, the linear system arising from the KKT systems
at each Newton iteration is solved using a Krylov it-
erative method. The difficulty of this approach is the
complex structure, indefiniteness and ill-conditioning
of the KKT system, which in turn requires effective
preconditioning. Similar to the reduced space methods,
our software accommodates full space methods with
similar ease as shown in the numerical results section.

2.3. Discussion

Numerical evidence suggests that for steady-state
PDE-constrained optimization problems, full-space
methods can outperform reduced space methods by a
wide margin. For optimization of systems governed
by time-dependent PDEs, the answer is not as clear.
The nonlinearities within each time step of a time-
dependent PDE solve are usually much milder than for
the corresponding stationary PDEs, so amortizing the
nonlinear PDE solve over the optimization iterations
is less advantageous. Moreover, time dependence re-
sults in large storage requirements for full-space meth-
ods, since the full space optimality system becomes
a boundary value problem in the space–time cylinder.
For such problems, reduced space methods are often
preferable.

In their survey of approaches to PDECO, van Bloe-
men Waanders et al. [21] laid out a hierarchy of meth-
ods ranging from a black-box approaches to the all-
at-once approaches describe above. They found that
for more than ≈5–10 design variables the more intru-
sive algorithms become more efficient than black-box
by many orders of magnitude. Despite this clear per-
formance advantage, intrusive algorithms present sev-
eral difficulties for the prospective user. First, one must
compute certain operators not usually available from
off-the-shelf simulators. Second, the PDE solver and
the optimizer must interact directly, often in ways more
complex than the simple master-slave relationship used
in a black-box method. Given the advantages of the
more intrusive approaches for very large problems, we
now consider the software implications and introduce
Sundance.

3. Sundance

In their survey of PDECO methods, [21] a high level
software vision was outlined for specifying and solv-
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Fig. 1. Schematic of relationship between Sundance and other Trilinos packages. The grey box delimits the “universe” of Trilinos packages.

Sundance is a single Trilinos package, and is shown at the top. The four packages shown in dark grey (Playa, Teuchos, Intrepid, and SEACAS)

are those Trilinos packages with which Sundance interacts directly. Interaction with other packages, for example, the NOX nonlinear solvers and

the Epetra distributed linear algebra infrastructure, is indirect and mediated by the Playa high-level solver interface. Interaction with third parties

is indirect and mediated by Teuchos, SEACAS and Epetra.

ing PDECO problems; a draft version of that software

was described in [21] and in [2]. The outgrowth of that

work was a full-featured finite-element toolkit called

Sundance, designed from the ground up with the inten-

tion that it be used in the context of embedded algo-

rithms for PDECO and uncertainty quantification. Sun-

dance is implemented in C++, with 3D capabilities,

fully parallel, and is built upon tools and solver com-

ponents of the Trilinos library [10]. An overview of

Sundance can be found in the foundational paper [15].

There are a number of similar efforts that produce

high-performance simulators from high-level specifi-

cation or PDEs. See [14] and [15] for literature sur-

veys.

3.1. Interoperation with other Trilinos packages

In its role as a simulation development toolkit, the

Sundance package must interoperate with many dif-

ferent Trilinos packages that provide services for con-

crete parallel linear algebra representations, linear and

nonlinear solvers, and preconditioners. As Trilinos is

a growing and changing system, we expect that the

packages used by Sundance will change; for example,

as Epetra is phased out in favor of Tpetra, Sundance

will have to be at least partially templatized. To keep

the interaction manageable and extensible, Sundance is

interfaced directly with only a small number of Trili-

nos packages: the Teuchos utilities, the Intrepid low

level finite element package, the SEACAS mesh I/O

utilities, and the Playa high-level linear and nonlinear

algebra objects. The current state of the interface is

shown in Fig. 1. Centrally important to Sundance’s in-

teroperation with other Trilinos packages is one pack-

age, Playa [11], which provides Sundance with a single

point of contact for the various vector, operator, and

solver types available through Trilinos.

3.2. Differentiation as a unifying principle

The central idea behind the design of Sundance is

the realization that differentiation makes plain the as-

sociation between coefficient expressions and basis

functions. Differentiation thereby enables the binding

of computational kernels for coefficients with com-

putational kernels for basis functions and integration.

This is the case even in the context of a linear for-

ward PDE, for which one does not ordinarily consider

derivative computation to be necessary; in Sundance,

automatic differentiation is used in the discretization of
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every PDE. This system enables runtime coordination

of very efficient matrix and vector assembly starting

from a high-level specification of the problem’s weak

form, using in-place automatic differentiation to com-

pute the required derivatives. By “in-place” automatic

differentiation we mean that derivatives are evaluated

concurrently with function values during traversal of

an untransformed expression graph; this should not

be confused with symbolic differentiation or with au-

tomatic differentiation by source transformation. This

concept and a high-level view of its implementation

are described more fully in [15]. In that same paper,

performance results are presented which indicate that

the runtime assembly algorithms used by Sundance in

fact often outperform both hand-tuned simulators and

simulators based on code generation.

Most pertinent to this paper is the central, and uni-

fying, role of differentiation in the design of Sundance.

Because Sundance uses differentiation to process ev-

ery weak form, the tools necessary for computation of

gradients and Hessians are built into the core design. In

the present paper we will emphasize the user-level fea-

tures through which problem specification and deriva-

tive specification are used to set up a PDECO algo-

rithm. Because the same functionality for the forward

model setup can be used to differentiate a Langrangian

in PDECO, a focus on the design of the forward prob-

lem in the next section is sufficient to explain the opti-

mization capabilities. The core design will be demon-

strated on optimization in several numerical examples.

3.3. Overview of object architecture

The entire Sundance toolkit contains many classes

and nonmember functions, about two dozen of which

might commonly appear in user-level code. To impose

some organization on that collection we will first group

the user-level objects into three categories:

• Problem specification building block objects.

These are objects out of which problem spec-

ifications are assembled. Examples include ob-

jects to deal with the meshing (Mesh), general

utility objects (Expr), objects to identify subsets

of the computational domain (CellFilter),

and a family of finite element basis functions

(BasisFamily). We can further subdivide these

objects into those relating to symbolic geometry,

discrete geometry, discretization specification and

symbolic expressions.

• Problem specification objects. These are objects

that encapsulate a problem along with instructions

for its discretization. Problem specification ob-

jects produce algorithm interface objects or per-

haps other problem specification objects.

• Algorithm interface objects. These are objects

that interact directly with solvers or optimizers.

These are actually objects from the Playa pack-

age, not the Sundance package, but we include

them in the discussion to illustrate the role of the

problem specification objects as producers of ob-

jects that interact directly with algorithms.

These categories are shown graphically in Fig. 2. In

subsequent diagrams of program flow, we will refer

back to this categorization.

The problem specification building blocks have sub-

classes. Sundance uses the reference-counted handle

idiom ([11] for discussion of this idiom in the context

of Playa) to provide polymorphism and safe memory

management along with value syntax. The actual rela-

tionship between a handle (Expr), a pointer to a base

class (ExprBase), and a derived class (CoordExpr)

is as shown in the left side of Fig. 3. Logically, how-

ever, what matters is the relationship between the han-

dle and the derived class; the presence of the base class

is an implementation detail irrelevant to the user. For

simplicity, we omit the actual base class and regard the

handle as playing the role of a base of the inheritance

diagram, as shown in the right side of Fig. 3. In some

cases, there may be intermediate derived types between

a base class and a final derived type; these are also in-

visible to an end user so we will omit such intermedi-

aries from this discussion.

All of the building block objects have two or more

subclasses; the object whose subclasses play the largest

role in our examples is class Expr, whose subclasses

represent different types of mathematical expressions,

for example, test functions, products, or coordinate

functions. A listing of several of the user-level sub-

types is shown in Fig. 4 in the form of a UML inheri-

tance diagram.

Having established a categorization of objects and

a shorthand for discussion of handled inheritance hi-

erarchies, we can now outline how these objects are

typically used to construct a sequence of objects lead-

ing ultimately to Playa objects that can be used in a

solver or optimizer. Figure 5 shows the construction

of a term in a weak form from its components that

specify the region of integration, the integrand, and the

method of quadrature. Each of these is represented by

one of the building block objects: CellFilter for
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Fig. 2. Classification of user-level Sundance classes into the categories of problem specification building blocks, problem specifications objects,

and algorithm interface objects. The problem specification building blocks are further subdivided into those relating to symbolic geometry,

discrete geometry, discretization specification, and symbolic expressions.

(a) (b)

Fig. 3. UML object diagram showing (a) the actual relationship be-

tween a handle class, a polymorphic base class, and a subclass and

(b) the logical relationship with the implementation detail of the base

class suppressed.

the region of integration, Expr for the integrand, and

QuadratureFamily for the method of quadrature.

The result is an Expr representing the term in a weak

form; because this is an Expr, it may be added to

other weak forms. Once the weak form and boundary

condition expressions are put together, a user can con-

struct a problem specification of appropriate type. Fig-

ure 6 shows the construction of a NonlinearProb-

lem object from a specification of the problem’s mesh,

weak form, essential boundary conditions, list of test

Fig. 4. UML object diagram showing several (logical) subclasses of

the Expr class.

functions, list of unknown functions, expression for

initial guess, and specification of the type of low-level

linear algebra representation to be used. Finally, Fig. 6

shows the production of Playa operator and vector ob-

jects as requested by a solver algorithm.

In some cases, a problem specification object does

not produce Playa algorithm interface objects directly,

but instead produces two or more problem specifica-

tion objects. For example, in Fig. 7 building blocks

are used to construct a Functional object. Member

functions of the Functional then produce the Non-

linearProblem or LinearProblem objects re-
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Fig. 5. Diagram indicating how the Integral non-member function accepts a symbolic geometry object (type CellFilter), a symbolic

integrand (type Expr), and a specification of quadrature method (type QuadratureFamily) to produce an object representation (type Expr)

of a weak form.

Fig. 6. Example of program flow from building block components, to problem specification object for a nonlinear PDE, to Playa linear algebra

objects that can be used in a nonlinear solver.

sulting from computing variations with respect to cer-

tain specified functions (these functions being repre-

sented as Expr objects). This example is of particular

importance in optimization, where the functional rep-

resents a Lagrangian and the nonlinear and linear prob-

lems it produces are the state and adjoint equations, re-

spectively.

3.4. Example: Constructing a nonlinear forward

problem

To place the software objects in the setting of a con-

crete problem, we show an example of setting up a sim-

ple forward problem. Let V h be a space of piecewise

linear functions on some meshing of [0, 1], and con-

sider the problem of finding u ∈ V h such that

∫ 1

0

v′u′
+ vxeu − vg(x) dx = 0 ∀v ∈ V h

(11)

with boundary condition u(0) = u(1) = 0. This is a
variant of Bratu’s problem [5] and of Toomre’s prob-
lem [20]. To produce an exactly solvable problem,
we use the method of manufactured solutions [18,19]
(MMS). Choosing the solution u(x) = x(1 − x) gives
the forcing function g(x) = xex(1−x) + 2.

The weak form requires a region of integration, and
the boundary conditions require some specification of
where they are to be applied. The CellFilter class
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Fig. 7. Example of program flow from building block components to construction of a functional, followed by taking variations with respect to

specified functions to obtain a nonlinear problem.

is used to identify geometric regions; during discretiza-

tion, a cell filter acts to select certain cells according

to some criterion, for example, all cells of a specified

dimension. Cell filters can also be specified in terms

of predicate functions; in the code fragment below, the

zero-dimensional cells are further filtered by predicate

functions that select the points at x = 0.0 and x = 1.0.

C e l l F i l t e r omega = new M a x i m a l C e l l F i l t e r ( ) ;

C e l l F i l t e r p ts = new D i m e n s i o n a l C e l l F i l t e r ( 0 ) ;

C e l l F i l t e r l e f t = pts . subset (new

Coord ina teVa lueCel lPred ica te (0 , 0 .0 ) ) ;

C e l l F i l t e r r i g h t = pts . subset (new

Coord ina teVa lueCel lPred ica te (0 , 1 .0 ) ) ;

The symbolic objects composing the integrand must

also be constructed. In the next code fragment, we de-

fine test and unknown functions v and u and specify

that they use first-order Lagrange basis functions. Ex-

pressions for the coordinate function x and the differ-

entiation operator are also defined; the argument “0”

specifies the first coordinate direction. With these com-

ponents ready, the integrand can be formed using over-

loaded operators. Finally, a quadrature rule must be

chosen; to give reasonable accuracy on the nonlinear

term we use fourth-order Gauss–Legendre quadrature.

BasisFamily basis = new Lagrange ( 1 ) ;

Expr v = new TestFunct ion ( bas is ) ;

Expr u = new UnknownFunction ( basis ) ;

Expr x = new CoordExpr ( 0 ) ;

Expr dx = new D e r i v a t i v e ( 0 ) ;

QuadratureFamily quad = new GaussianQuadrature ( 4 ) ;

Expr weakForm = I n t e g r a l (omega , ( dx∗v ) ∗ ( dx∗u ) +

v∗x∗exp ( u ) − g∗v , quad ) ;

The boundary conditions are set up in a similar man-

ner. There are a number of ways to specify Dirichlet

boundary conditions with Sundance objects. Nitsche’s

method may be used, in which case, the appropriate

expressions are formed and added to the weak form.

Here we use the simple method of “replacing” the rows

associated with boundary degrees of freedom by equa-

tions that impose the boundary conditions. That these

expressions are to replace the weak form for the spec-

ified rows is indicated by using them in an Essen-

tialBC function rather than an Integral function;

otherwise, the specification of weak forms and replace-

ment BCs is identical. Multiplication by a test function

is used to allow the user to indicate which rows are to
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be replaced. The code to define the Dirichlet boundary

conditions is shown here.

Expr bc = Essent ialBC ( l e f t + r i g h t , v∗u , quad ) ;

We have now specified the weak form and bound-

ary conditions in what one might call quasi-symbolic

form: symbolic expressions annotated by specification

of basis functions and quadrature rules. To be ready to

produce discrete objects, a mesh must be defined and

a low-level linear algebra representation must be cho-

sen. Meshes are obtained through an abstract Mesh-

Source interface, subclasses of which might do on-

the-fly building of simple meshes or reading from

mesh files. For a simple one-dimensional mesh we

build on the fly with

MeshType meshType = new BasicSimpl ic ia lMeshType ( ) ;

/ ∗ Mesh the i n t e r v a l [ 0 , 1 ] w i th 16 elements ∗ /

i n t nx = 16;

MeshSource mesher = new Par t i t ionedL ineMesher ( 0 . 0 ,

1 .0 , nx , meshType ) ;

Mesh mesh = mesher . getMesh ( ) ;

The selection of a subclass of Playa::Vector-

Type controls what type of linear algebra objects will

be built; here, we choose Epetra.

VectorType <double> vecType =

new EpetraVectorType ( ) ; / / Use Epetra ob jec ts

The next code fragment shows the construction of

the problem’s discrete space and the discrete function

that represents the initial guess for the solution.

DiscreteSpace discSpace (mesh , basis , vecType ) ;

Expr u0 = new Discre teFunc t ion ( discSpace , 0 .0 ) ;

Everything needed to define the problem is now in

place, so we construct a NonlinearProblem ob-

ject.

NonlinearProblem prob (mesh , weakForm , bc , v ,

u , u0 , vecType ) ;

The nonlinear problem class provides member func-

tions to compute the problem’s Jacobian and resid-

Fig. 8. Comparison of exact and numerical solutions to the nonlin-

ear forward problem. (Colors are visible in the online version of the

article; http://dx.doi.org/10.3233/SPR-2012-0341.)

ual, and also to obtain a vector representation of the

current state. One could use those functions to write

an adapter allowing the use of NonlinearProb-

lem with a user’s desired nonlinear solver library. Be-

cause Trilinos already provides a full-featured non-

linear solver package, NOX, NonlinearProblem

also has a solve() member function that accepts a

NOX solver object as an argument and carries out the

solve. The result is written into the discrete function

u0 that was used in the construction of the Nonlin-

earProblem. Definition of the NOX solver object

and the solution of the problem is shown in this code

fragment.

ParameterXMLFileReader reader ( " nox−amesos . xml " ) ;

ParameterL is t noxParams = reader . getParameters ( ) ;

NOXSolver non l i nSo lve r ( noxParams ) ;

prob . so lve ( non l i nSo lve r ) ;

Results are shown in Fig. 8.

3.5. The objective function interface

Once the functional has been defined, the proce-

dure of setting up and using the problems required for

a reduced-space formulation of a nonlinear PDECO

problem is largely independent of the specific form

of the functional and can be neatly encapsulated

in a further set of driver objects. These are the

LinearPDEConstrainedObj and Nonlinear-
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PDEConstrainedObj objects, which represent dif-

ferentiable objective functions in the reduced space.

These objects manage internally the sequence of solv-

ing the state and adjoint equations and then comput-

ing the gradient. These two classes implement a very

lightweight objective function interface, Playa::

ObjectiveBase that can be adapted for use with

nonlinear solvers such as NOX or gradient-based opti-

mization libraries such as MOOCHO.

3.5.1. Independent or sequential constraints

In some problems, certain of the constraint equa-

tions and their associated state variables may either

be completely decoupled, or perhaps coupled in a se-

quential way. An example of a set of uncoupled con-

straints and states arises in multifrequency inversion,

where the responses at different frequencies are mu-

tually independent. Sequential coupling arises, for ex-

ample, in passive advective transport where the equa-

tion for the velocity is independent of the concentra-

tion. In such cases, it is often more efficient to solve

the smaller systems. To enable this performance op-

timization, the constructors for the linear and nonlin-

ear PDEConstrainedObj objects allows specifica-

tion of sequences of state and adjoint variables. This

is taken as a directive that the state equations are to be

solved in the specified order, and the adjoint equations

in the reverse order.

In principle, these relationships could be deduced

automatically from the symbolic problem specifica-

tion. In the current implementation of Sundance it is

the user’s responsibility to provide the correct depen-

dency ordering; automation of this step is planned in a

future version.

4. Model problems

To illustrate the use of Sundance components to pro-

gram and solve PDE-constrained optimization prob-

lems, we develop several simple model problems. To

keep the focus on the software objects used to set up

the problems, we use very simple solution algorithms.

We show results to verify accuracy, but because we

have made no attempt to tune the solvers or optimiz-

ers, and because of the difficulty of programming these

problems without Sundance, we present no timing re-

sults. For timings of Sundance on forward problems

compared to several other codes and for parallel scala-

bility results, we refer the reader to [15].

4.1. Linear source inversion

Our first model problem is source inversion for the

Poisson equation on a washer-shaped domain. The

state, adjoint, and full KKT equations are all linear.

The goal of the problem is to select a source in order to

match a specified target function. We use the method

of manufactured solutions [18,19] to construct a prob-

lem yielding an exact solution with simple form. With

Tikhonov regularization on the design variable α, the

optimization problem is

min
u,α

f (u, α) =
1

2

∫

Ω

(u − u∗)2 dΩ

+
R

2

∫

Ω

(∇α)2 dΩ, (12)

subject to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇2u = α + g in Ω,

u = 0 on Γinner,

u = cos(θ) sin(θ)

on Γouter,
∂u

∂n
= 0

on remaining surfaces.

(13)

Here R is a regularization parameter, and u∗ and g are

functions to be defined below. Introducing a multiplier

variable λ, the problem’s Lagrangian is

L = f +

∫

Ω

[∇λ · ∇u + λ(α + g)] dΩ. (14)

The manufactured target function u∗ and exact solu-

tion u are, in cylindrical coordinates,

u∗(r, θ, z)

= [2r − 1 + ((4 − 9r)R)/r2] cos θ sin θ (15)

and

u(r, θ, z) = (2r − 1) cos(θ) sin(θ). (16)

With these the forcing function g is

g = (1/(600r2))(−100r6
+ 360r5 − 150 log(r)r4

+ (−273 + log(1024)) r4 − 3600r

+ log(1024) + 2392) cos θ sin θ. (17)

The domain and the target function are shown in Fig. 9.
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Fig. 9. Target function u∗ for the Poisson source inversion problem

on a washer-shaped region. The outer ring of the washer is labeled

Γouter, the inner ring is Γinner. (Colors are visible in the online ver-

sion of the article; http://dx.doi.org/10.3233/SPR-2012-0341.)

4.1.1. Programming the functional

The bulk of the work for the programmer is in setting

up the Functional object for the Lagrangian.

/ ∗ Choose the vec to r type ∗ /

VectorType <double> vecType =

new EpetraVectorType ( ) ;

/ ∗ Create the mesh ∗ /

MeshType meshType = new BasicSimpl ic ia lMeshType ( ) ;

MeshSource meshSrc = new ExodusMeshReader ( "

concCylinder3D −0" , meshType ) ;

Mesh mesh = meshSrc . getMesh ( ) ;

/ ∗ Create the symbol ic geometry . Mesh l a b e l s are

assumed to have been

∗ assigned by the mesher ∗ /

C e l l F i l t e r i n t e r i o r = new M a x i m a l C e l l F i l t e r ( ) ;

C e l l F i l t e r faces = new D i m e n s i o n a l C e l l F i l t e r ( 2 ) ;

C e l l F i l t e r i nne r = faces . labeledSubset ( 2 ) ;

C e l l F i l t e r ou te r = faces . labeledSubset ( 1 ) ;

/ ∗ Create the unknown f u n c t i o n s ∗ /

BasisFamily basis = new Lagrange ( 1 ) ;

Expr u = new UnknownFunction ( basis , " u " ) ;

Expr lambda = new UnknownFunction ( basis , " lambda " ) ;

Expr alpha = new UnknownFunction ( basis , " alpha " ) ;

/ ∗ Set up the symbol ic expressions ∗ /

Expr dx = new D e r i v a t i v e ( 0 ) ;

Expr dy = new D e r i v a t i v e ( 1 ) ;

Expr dz = new D e r i v a t i v e ( 2 ) ;

Expr grad = L i s t ( dx , dy , dz ) ;

Expr x = new CoordExpr ( 0 ) ;

Expr y = new CoordExpr ( 1 ) ;

Expr z = new CoordExpr ( 2 ) ;

Expr r = s q r t ( x∗x + y∗y ) ;

Expr cosT = x / r ;

Expr sinT = y / r ;

const double p i = 4.0 ∗ atan ( 1 . 0 ) ;

double R = 1.0e−2;

Expr t a r g e t = uExact+R∗ (4.0 − 9.0∗ r ) / r / r ∗cosT∗ sinT ;

Expr g = (2392−3600∗ r +360∗pow( r , 5 ) −100∗pow( r , 6 ) +

pow( r , 4 ) ∗(−273 + log (1024) ) + log (1024) −

150∗pow( r , 4 ) ∗ log ( r ) ) / (600 . ∗pow( r , 2 ) ) ;

/ ∗ Create the Lagrangian ∗ /

QuadratureFamily quad = new GaussianQuadrature ( 4 ) ;

Expr f = I n t e g r a l ( i n t e r i o r , 0.5 ∗pow( u−t a rge t ,

2 .0 ) , quad , watch ) ;

Expr reg = I n t e g r a l ( i n t e r i o r , 0.5 ∗R∗ ( grad ∗ alpha ) ∗

( grad ∗ alpha ) , quad ) ;

Expr c o n s t r a i n t = I n t e g r a l ( i n t e r i o r , ( grad ∗u ) ∗

( grad ∗lambda ) +

alpha ∗lambda +

g∗lambda , quad ) ;

Expr BC = Essent ialBC ( outer , lambda∗ ( u−cosT∗ sinT ) ,

quad ) +

Essent ialBC ( inner , lambda∗u , quad ) ;

Func t iona l L (mesh , f +reg+ cons t r a i n t , BC, vecType ) ;

With the Lagrangian encapsulated as a Func-

tional object, we can set up our choice of reduced-

space or full-space formulations.

4.1.2. Solution by the full-space method

A LinearProblem representation of the full

KKT equations is obtained by taking variations of the

Lagrangian.

DiscreteSpace discSpace (mesh , L i s t ( basis , basis ,

bas is ) , vecType ) ;

Expr w0 = new Discre teFunc t ion ( discSpace , 0 .0 ) ;

Expr dum;

LinearProblem KKT_Prob =

L . l i n e a r V a r i a t i o n a l P r o b ( L i s t ( lambda , u , alpha ) ,

w0, L i s t ( lambda , u ,

alpha ) , dum, dum) ;
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At this point, the system’s matrix and right-hand
side can be obtained as Playa LinearOperator and
Vector objects through member functions of Lin-
earProblem. Alternatively, the solve() member
function of LinearProblem can be called, with a
Playa LinearSolver argument to specify the solve
algorithm to be used.

LinearSolver <double> l i n S o l v e r =

L inea rSo l ve rBu i l de r : : c rea teSo lver ( "amesos . xml " ) ;

Expr solnFS = prob . so lve ( l i n S o l v e r ) ;

The solve() function returns the solution in the
form of a DiscreteFunction.

4.1.3. Programming an adjoint gradient method

Much of the code for this problem is identical to
that for the SAND case shown above. The princi-
pal difference is that instead of setting up a Lin-

earProblem object that encapsulates the KKT equa-
tions, we set up a Functional object representing
the Lagrangian. The linear problem is then produced
by taking variations as in the initial example above;
in this example that step is done automatically by the
LinearPDEConstrainedObj object.

DiscreteSpace ds2 (mesh , basis , vecType ) ;

Expr u0 = new Discre teFunc t ion ( ds2 , 0 .0 ) ;

Expr lambda0 = new Discre teFunc t ion ( ds2 , 0 .0 ) ;

Expr alpha0 = new Discre teFunc t ion ( ds2 , 0 .0 ) ;

RCP<PDEConstrainedObjBase> obj =

rcp (new LinearPDEConstrainedObj ( L , u , u0 ,

lambda , lambda0 , alpha , alpha0 ,

l i n S o l v e r , verb ) ) ;

The linSolver argument is used to specify the
solve algorithm used for the state and adjoint equa-
tions. This objective function object can then be used
in a gradient-based optimizer.

Notice a subtle but significant difference from the
specification of the full-space method: there, a sin-
gle discrete function w0 was defined on the full space
discSpace, but here we create three discrete func-
tions u0, lambda0, alpha0 each on the reduced
space.

4.1.4. Numerical results

We solved this problem using both the full space
and reduced space formulations. The same code for

the Lagrangian was used for both cases. We used the

KLU sparse direct solver from the Amesos package

for all linear solves arising in either formulation. The

mesh used had 15,255 elements and 3829 nodes. In

the reduced space calculations, we used a limited-

memory BFGS [16,17] (LM-BFGS) algorithm with

line search. In all calculations, the initial estimate of

the Hessian was the identity and the initial estimate

of the design variable was zero. Stopping tolerances

were 10−7 in objective function value, 10−6 in gradi-

ent norm, and 10−4 in step. When all three tolerances

have been attained the problem is considered to have

converged.

Some results are shown in Table 1. For a sample of

three different regularization parameters R, we have

computed L2 norms of the error in the solution and the

mismatch from the target, and for the reduced-space

method we have recorded the number of LM-BFGS it-

erations needed to reach the specified tolerance. As ex-

pected, as the regularization parameter is reduced the

target is matched more closely.

It is of course possible to improve on this optimiza-

tion procedure in many ways; however, the focus of

this paper is on the software infrastructure needed to

enable setting up either the full KKT system needed

for a full-space approach or the sequence of systems

needed for a reduced-space approach.

4.2. Nonlinear source inversion

In this example we consider least-squares estimation

of the source term in a nonlinear boundary value prob-

lem.

min
u,α

f (u, α) =
1

2

∫

π

0

(u − u∗)2 dΩ

+
R

2

∫

π

0

α2 dΩ, (18)

subject to

⎧

⎨

⎩

∇2u = sin(u) + α + g
in Ω,

u = 0 at x = 0, x = π.

(19)

The Lagrangian is

L = f +

∫

π

0

[∇λ · ∇u + λ sin(u) + λα + λg] dx

= 0. (20)

With the method of manufactured solutions we can
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Table 1

Error norms and iteration counts for the linear source inversion problem with several different regularization

parameters, and for both the reduced space and full space formulations

R Reduced space Full space

‖u − uexact ‖ ‖u − u∗ ‖ LM-BFGS iters ‖u − uexact ‖ ‖u − u∗ ‖

1 0.00848782 0.797512 47 0.0040405 0.797476

0.01 0.00403758 0.00673811 171 0.00403347 0.00674269

0.0001 0.00364934 0.00361768 124 0.00364973 0.00361806

Note: The error norms are L2.

construct an exactly solvable problem with

u(x) = sin(x), (21)

λ(x) = R sin2(x), (22)

α(x) = − sin2(x), (23)

u∗
= −R cos(2x) + R sin2(x)

+ sin(sin(x)) + sin(x), (24)

g(x) = sin2(x) − sin(x) − sin(sin(x)). (25)

4.2.1. Programming the functional

Here is the code to create the Lagrangian Func-

tional object.

/ ∗ Create the mesh ob jec t ∗ /

i n t nx = 512;

const double p i = 4.0 ∗ atan ( 1 . 0 ) ;

MeshType meshType = new BasicSimpl ic ia lMeshType ( ) ;

MeshSource mesher = new Par t i t ionedL ineMesher ( 0 . 0 ,

p i , nx , meshType ) ;

Mesh mesh = mesher . getMesh ( ) ;

/ ∗ Define the symbol ic geometry ∗ /

C e l l F i l t e r i n t e r i o r = new M a x i m a l C e l l F i l t e r ( ) ;

C e l l F i l t e r bdry = new Bounda ryCe l lF i l t e r ( ) ;

/ ∗ D i s c r e t i z a t i o n s p e c i f i e r s ∗ /

QuadratureFamily quad = new GaussianQuadrature ( 4 ) ;

BasisFamily basis = new Lagrange ( 1 ) ;

/ ∗ Define the unknown f u n c t i o n s ∗ /

Expr u = new UnknownFunction ( basis , " u " ) ;

Expr lambda = new UnknownFunction ( basis , " lambda " ) ;

Expr alpha = new UnknownFunction ( basis , " alpha " ) ;

DiscreteSpace discSpace (mesh , L i s t ( basis , basis ,

bas is ) , vecType ) ;

Expr w0 = new Discre teFunc t ion ( discSpace , 0 .0 ) ;

/ ∗ Regu la r i za t i on constant ( logR i s a loop

v a r i a b l e ) ∗ /

double R = pow(10 .0 , logR ) ;

/ ∗ Wri te the t a r g e t and f o r c i n g f u n c t i o n ∗ /

Expr dx = new D e r i v a t i v e ( 0 ) ;

Expr x = new CoordExpr ( 0 ) ;

Expr uExact = s in ( x ) ;

Expr sx = s in ( x ) ;

Expr cx = cos ( x ) ;

Expr ssx = s in ( sx ) ;

Expr sx2 = sx∗sx ;

Expr cx2 = cx∗cx ;

Expr g = sx2 − sx − ssx ;

Expr t a r g e t = 2.0 ∗R∗ ( sx2−cx2 ) + R∗sx2∗ ssx + sx ;

/ ∗ we can now def ine the o b j e c t i v e and

c o n s t r a i n t ∗ /

Expr f i t = I n t e g r a l ( i n t e r i o r , 0.5 ∗pow( u−t a rge t ,

2 .0 ) , quad ) ;

Expr reg = I n t e g r a l ( i n t e r i o r , 0.5 ∗R∗ ( alpha ∗ alpha ) ,

quad ) ;

Expr c o n s t r a i n t = I n t e g r a l ( i n t e r i o r ,

( grad ∗u ) ∗ ( grad ∗lambda ) + alpha ∗lambda +

g∗lambda + lambda∗ s in ( u ) , quad ) ;

Expr const ra in tBC = Essent ialBC ( bdry , lambda∗u ,

quad ) ;

/ ∗ Wri te the Lagrangian ∗ /

Expr L = f i t + reg + c o n s t r a i n t ;

Func t iona l Lagrangian (mesh , L , constra intBC ,

vecType ) ;

The next step is to set up either a full-space or
reduced-space solve.

4.2.2. Solution by the full-space method

As in the linear source inversion problem, obtaining
the full KKT system is a matter of taking variations
of the Lagrangian. The difference is that a Nonlin-



K. Long et al. / Sundance: High-level software for PDE-constrained optimization 307

earProblem is produced.

LinearSolver <double> l i n S o l v e r =

L inea rSo l ve rBu i l de r : : c rea teSo lver ( "amesos . xml " ) ;

ParameterXMLFileReader reader ( " nox−amesos . xml " ) ;

ParameterL is t noxParams = reader . getParameters ( ) ;

NOXSolver non l i nSo lve r ( noxParams ) ;

Expr dum;

Nonl inearProblem prob =

Lagrangian . non l i nea rVa r i a t i ona lP rob ( L i s t ( lambda ,

u , alpha ) , w0, L i s t ( lambda ,

u , alpha ) , w0, dum, dum) ;

prob . so lve ( non l i nSo lve r ) ;

The solution is written into the discrete function w0.

4.2.3. Programming an adjoint gradient method

The Lagrangian is used to construct a Nonlin-

earPDEConstrainedObj object.

DiscreteSpace ds2 (mesh , basis , vecType ) ;

Expr u0 = new Discre teFunc t ion ( ds2 , 0 .0 ) ;

Expr lambda0 = new Discre teFunc t ion ( ds2 , 0 .0 ) ;

Expr alpha0 = new Discre teFunc t ion ( ds2 , 0 .0 ) ;

RCP<PDEConstrainedObjBase> obj =

rcp (new NonlinearPDEConstrainedObj ( Lagrangian ,

u , u0 , lambda , lambda0 , alpha , alpha0 ,

non l inSo lver , l i n S o l v e r ) ) ;

The nonlinear and linear solver arguments specify
the solvers to be used for the state and adjoint equa-
tions, respectively. As in the linear case, three discrete
functions are used, each defined on the reduced space.

4.2.4. Numerical results

The reduced space optimizer used the same algo-
rithm and tolerances as in the linear source inversion
example above. Nonlinear solves of the full KKT sys-
tem and of the state equation were done with NOX’s
implementation of Newton’s method with line search.
Tolerance for the nonlinear solves was 10−10. The
Amesos KLU solver was used for all linear solves.

4.3. Frequency-domain conductivity inversion

Our final model problem is frequency-domain in-
version of a material’s conductivity parameter κ. The
underlying physics might be, for example, heat con-

Fig. 10. Geometry of frequency-domain conductivity inversion. The

data were generated by a forward model having the inclusion region

shown with conductivity κ2. Samples were taken at the probe loca-

tions p1 to pNp
, over a range of frequencies. Boundary conditions

are a unit sinusoidal load on Γ1 and insulation on Γ2.

duction; a slight change in problem setup would give

a model appropriate to eddy current inversion. The

problem’s geometry is sketched in Fig. 10. The time-

domain model is assumed to be

∇ · [κ∇φ] =
∂φ

∂t
, (26)

where φ is some scalar field, with insulating boundary

conditions on all surfaces except for a surface Γ1 where

a sinusoidal load is imposed,

∂φ

∂n
= e−iωt on Γ1. (27)

Assuming κ to be independent of φ and writing φ =

u(x)e−iωt, we have

∇ · [κ∇u] + iωu = 0, (28)

∂u

∂n
= 1 on Γ1, (29)

∂u

∂n
= 0 on Γ\Γ1. (30)

To ensure positive conductivity we introduce an aux-

iliary design variable α and write κ = eα. Now,

signals at different frequencies penetrate to different

skin depths (see, e.g., [12]) so one usually carries

out a frequency sweep, taking data at Nf frequen-

cies ω1, ω2, . . . , ωNf
. We assume an array of Np dis-

crete probe locations, and suppose that measurements

u∗
f (ps) have been taken at frequencies ωf and probe

locations ps. The magnitudes of the signals differ by

several orders of magnitude over the frequency range,

so in the objective function we will use relative mis-

fits rather than absolute misfits. With only Np × Nf

measurements the problem is clearly ill-posed and de-

mands regularization. We use a mollified total variation



308 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

Table 2

Error norms and iteration counts for the nonlinear source inversion problem with several different regular-

ization parameters, and for both the reduced space and full space formulations

R Reduced space Full space

‖u − uexact ‖ ‖u − u∗ ‖ LM-BFGS iters ‖u − uexact ‖ ‖u − u∗ ‖

1 0.0494592 3.08711 6 0.0494581 3.08711

0.01 0.00180347 0.0295964 14 0.00180349 0.0295963

0.0001 0.000101083 0.000325266 14 2.53442e–05 0.0002902

Note: The error norms are L2.

diminishing (TVD) regularization,

R
√

ǫ2 + h2(∇α)2, (31)

where R is a regularization coefficient, ǫ is a constant

that smooths the singularity, and h is the local cell di-

ameter. Having specified the fitting objective, regular-

ization and constraints, we can pose the PDECO prob-

lem.

min
u,α

F (u, α) =
1

2

Np
∑

s=1

Nf
∑

f=1

(

uf (ps) − u∗
f (ps)

u∗
f

(ps)

)2

+ R

∫

Ω

√

ǫ2 + (∇α)2 dΩ, (32)

subject to, for f = 1 to Nf ,
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇ · [eα∇uf ] + iωfuf = 0 in Ω,

∂uf

∂n
= 1 on Γ1,

∂uf

∂n
= 0 on Γ2.

(33)

Note that the Nf constraints are decoupled and can be

solved independently.

4.3.1. Programming the conductivity inversion

problem

For this problem we show only the code for set-

ting up the Lagrangian. As in the previous examples,

once the Lagrangian has been constructed the problem

is ready for solution by either a full space or reduced

space method. Some interesting features of this prob-

lem are the use of complex-valued expressions and the

decoupling of the states at different frequencies.

Expr I = new ComplexExpr ( 0 . 0 , 1 .0 ) ; / / \ s q r t { −1}

Array <Expr> u ( nFreq ) ;

/ / I n i t i a l i z a t i o n code omi t ted

Array <Expr> lambda ( nFreq ) ;

/ / I n i t i a l i z a t i o n code omi t ted

Expr f i t = 0 . 0 ;

Expr c o n s t r a i n t = 0 . 0 ;

Expr const ra in tBC ;

/ ∗ set up equat ion for each frequency ∗ /

double R = 0 . 1 ;

for ( i n t f =0; f <nFreq ; f ++)

{

/ ∗ Sum the squared r e s i d u a l s a t the probes ∗ /

for ( i n t p=0; p<probes . s ize ( ) ; p++)

{

f i t = f i t + I n t e g r a l ( probes [ p ] ,

0.5 ∗pow ( ( u [ f ] . imag ( )−p_i [ f ] [ p ] ) /

p_ i [ f ] [ p ] , 2 .0 ) +

0.5 ∗pow ( ( u [ f ] . r e a l ( )−p_r [ f ] [ p ] ) /

p_r [ f ] [ p ] , 2 .0 ) , quad ) ;

}

/ ∗ Wri te the PDE as a c o n s t r a i n t ∗ /

c o n s t r a i n t = c o n s t r a i n t + I n t e g r a l ( i n t e r i o r ,

exp ( kappa ) ∗ ( grad ∗lambda [ f ] ) ∗ ( grad ∗u [ f ] ) −

I ∗omega [ f ] ∗lambda [ f ] ∗u [ f ] , quad ) −

I n t e g r a l ( top , lambda [ f ] . r e a l ( ) , quad ) ;

}

/ ∗ r e g u l a r i z e for smoothness i n the

c o n d u c t i v i t y ∗ /

Expr h = new Cel lDiameterExpr ( ) ;

Expr reg = I n t e g r a l ( i n t e r i o r ,

R∗ s q r t (1 .0+h∗h∗ ( grad ∗kappa ) ∗ ( grad ∗kappa ) ) ,

quad ) ;

Expr L_eqn = f i t + reg + c o n s t r a i n t ;

Expr L_BC = const ra in tBC ;

Once the Lagrangian has been constructed it is used

to set up a NonlinearPDEConstrainedObj ob-

jective function objects as in the nonlinear source in-

version example, which is then used in an optimization

loop. In a reduced-space approach the state equations

at different frequencies decouple and can be solved in-

dependently; this is managed automatically by the ob-
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Fig. 11. Contours of recovered conductivity. As seen by compari-

son with Fig. 11 the location of the region of enhanced conductiv-

ity is determined accurately, though the conductivity there is under-

estimated. (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-2012-0341.)

jective function object. Because of the complexity of

preconditioning this problem we make no attempt to

solve this system with a full space method.

4.3.2. Numerical results

In Fig. 11 is shown the recovered conductivity pro-

file in a domain having a region of enhanced con-

ductivity. Twenty-one probes spaced evenly along the

top measured the response at ten frequencies. The fre-

quencies were chosen to give a range of skin depths
1
11 , 2

11 , . . . , 10
11 . The regularization constant was R = 1

and the mollification constant was ǫ = 1. The LM-

BFGS algorithm converged after 80 iterations. The lo-

cation of the enhanced conductivity inclusion (shown

in Fig. 12) is determined accurately, though its magni-

tude is underestimated (κ ≈ 2.5 compared to the exact

value of 10.)

4.4. Summary of model problems

We have shown how to set up and solve a vari-

ety of linear and nonlinear PDE-constrained optimiza-

tion problems using both full-space and reduced-space

methods. In each case, the same Lagrangian Func-

tional object was used to produce code for the full-

space and reduced-space formulations. Notice also that

the code for the PDE constraints is just that needed to

write a forward simulator, so it is a simple matter to

take a forward simulator programmed in Sundance and

extend it for use in PDE-constrained optimization.

Fig. 12. Exact location of the enhanced conductivity region in the

frequency-domain inversion example. The bulk conductivity is 1,

that in the enhanced region is 10. (Colors are visible in the online

version of the article; http://dx.doi.org/10.3233/SPR-2012-0341.)

5. Conclusions

PDECO is required to solve large scale inverse prob-

lems in engineering and science. However the imple-

mentation of these methods is time consuming as well

as plagued with complications. A significant obstacle

preventing PDECO from becoming a mainstream anal-

ysis tool is rooted in the practise of developing sim-

ulation codes without planning for future use in op-

timization. To overcome this obstacle, we introduce

a high-level simulation toolkit called Sundance with

which both very efficient forward and inverse prob-

lems can be programmed conveniently. Using compo-

nents provided by Sundance the finite element weak

form can be represented and a fully functional simu-

lator can be built. More importantly, the same infras-

tructure can be used to differentiate a Langragian func-

tion, thereby automatically providing a solution mech-

anism for PDECO. We demonstrate the use of Sun-

dance on several numerical examples using different

PDECO solution strategies. These examples are non-

trivial but it is apparent that this capability can be ap-

plied to more complicated applications without much

additional effort.

Sundance is available as part of the Trilinos suite.

It leverages multiple Trilinos packages for distributed

linear algebra, low-level finite element libraries, lin-

ear and nonlinear solvers, and utilities. Sundance com-

plements the low-level capabilities in Trilinos with a

unique high-level optimization-enabled simulation de-

velopment capability for Trilinos.
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