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Abstract—Image restoration is a challenging ill-posed problem
which also has been a long-standing issue. In the past few years,
the convolution neural networks (CNNs) almost dominated the
computer vision and had achieved considerable success in differ-
ent levels of vision tasks including image restoration. However, re-
cently the Swin Transformer-based model also shows impressive
performance, even surpasses the CNN-based methods to become
the state-of-the-art on high-level vision tasks. In this paper, we
proposed a restoration model called SUNet which uses the Swin
Transformer layer as our basic block and then is applied to UNet
architecture for image denoising. The source code and pre-trained
models are available at https://github.com/FanChiMao/SUNet,

Index Terms—Image denoising, image restoration, Swin Trans-
former, convolutional neural network (CNN), UNet

I. INTRODUCTION

Image restoration is an important low-level image process-
ing which could improve the performance in the high-level
vision tasks, such as object detection, image segmentation and
image classification. In the general restoration task, a corrupted
image Y could be represented as:

Y = D(X)+n, (1)

where X is a clean image, D(.) denotes the degradation
function and n means the additive noise. Some common
restoration tasks are denoising, deblurring and deblocking.
Traditional image restoration methods usually are based on
algorithms, called prior-based or model-based methods, such
as BM3D [1], WNNM [2] for denoising; deconvolution [3]],
image prior [4] for deblurring. Although most of convolution
neural network (CNN)-based methods have achieved excellent
performances [|5]—[10], the naive convolution layer has several
problems. First, the convolution kernel is content-independent
with the images. Using the same convolution kernel to restore
different image regions may not be the best solution [[11]], [12].
Second, because the convolution kernel could be regarded as a
small patch where the acquired features are local information,
in other words, the global information will be lost when we
do the long-range dependency modeling. Though in some
papers, they proposed the methods to overcome the defects
like adaptive convolution [13], [[14]], non-local convolution [[15]]
and global average pooling [16], etc., they do not effectively
solve the problems until the appearance of Swin Transformer.
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Recently, [[11] presented the new backbone based on trans-
former called Swin Transformer, and achieved the impressive
performance on image classification. In addition, in more and
more computer vision tasks including image segmentation
[11], [17]-[19], object detection [11]], inpainting [20], and
super-resolution [[12], [21], using Swin Transformer as the
backbone has surpassed the CNN-based methods to achieve
the state-of-the-art. In this paper, we also consider Swin
Transformer as our main backbone and integrate it into the
UNet architecture called SUNet for image denoising.

Overall, the main contributions of this paper can be sum-
marized as follows:

e« We proposed a Swin Transformer network based on
the image segmentation Swin-UNet model for image
denoising.

o We proposed a dual up-sample block architecture which
comprises both subpixel and bilinear up-sample methods
to prevent checkboard artifacts. The experiment results
proved that it is better than the original up-sample from
transpose convolution.

o To the best of our knowledge, our model is the first one
to incorporate Swin Transformer and UNet in denoising.

o We demonstrate the competitive results of our SUNet in
two common datasets for image denoising.

II. RELATED WORK

With the rapid development of hardware (e.g. GPU), the
learning-based methods defeat the conventional model-based
methods in both execution speed and performance. In this
section, we first are going to introduce previous works about
denoising. Then, we will describe the related works of UNet
and Swin Transformer.

A. Image Restoration

As aforementioned, traditional image restoration approaches
are based on image priors or algorithms generally called
model-based methods, such as self-similarity [1], [22], spare
coding [23]l, [24] and total variation [25]]. The performance
of these methods are acceptable on the ill-posed problem,
but they have some shortcomings, such as time-consuming,
computationally expensive, and difficult to restore complex
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Fig. 1. Proposed Swin Transformer UNet (SUNet) architecture. We first use 3 X 3 convolution to get the shallow feature. Then, they pass through the main
feature extraction UNet. We use Swin Transformer Block as the basic extraction module to replace the naive convolution layer and acquire the high-level
semantic information. For simplicity, the above figure only displays 2 layers of Swin Transformer Block, and the SUNet totally has 5 layers. Finally, 3 x 3

convolution is used to reconstruct the restored image.

image textures. Compared to conventional restoration meth-
ods, learning-based methods, especially convolution neural
networks (CNNs) have become the mainstream in the com-
puter vision field including image restoration because of the
impressive performance.

B. UNet

Nowadays, UNet [S]] is a well-known architecture in a lot
of applications of image processing since it has hierarchical
feature maps to gain the rich multi-scale contextual features.
In addition, it uses the skip connection between encoders and
decoders to enhance the reconstruction process of images.
UNet is widely used in many computer vision tasks like
segmentation, restoration [9]], [26]]. Furthermore, it has various
improved versions like Res-UNet [27]], Dense-UNet [28],
Attention UNet [29] and Non-local UNet [30]. Due to the
strong adaptive backbone, the UNet can be easily applied with
different extractive blocks to enhance the performance.

C. Swin Transformer

Transformer [[31]] model is successful in the natural language
processing (NLP) area and also has competitive performances
with CNNs especially on image classification [32[, [33].
However, the two main problems of directly using transformer
to vision tasks are: 1) The difference of scale between images
and sequences is large. The transformer has the defect of
modeling the long sequence because it needs about square
times of parameters of 1-dimension sequence. 2) Transformer
is not good at solving the dense prediction tasks like instance
segmentation which is a pixel-wise level task [34]]. However,
Swin Transformer [11]] solves the above problems with shifted-
window to decrease the parameters, and achieves the state-of-
the-art performance in lots of pixel-wise vision tasks.

ITII. PROPOSED METHOD
A. SUNet

The architecture of the proposed Swin Transformer UNet

(SUNet) is based on the image segmentation model [19] and
illustrated in Fig. [II SUNet consists of three modules: 1)
Shallow feature extraction; 2) UNet feature extraction; and
3) Reconstruction module.
Shallow feature extraction module. For a noisy input image
Y € REXWX3 where H,W are the resolution of a corrupted
image. We use single 3 x 3 convolution layer Mgprg(.) to
get the low-frequency information like color or texture of the
input image. The shallow feature Fipq100 € RT*W*C can
be represented as:

E@hallow = MSFE(Y)a (2)

where C' is the number of channels for shallow features, where
we all set to 96 in the latter experiment section.

UNet feature extraction module. Then, the shallow feature
Fhatiow Will be fed into the UNet feature extraction My pg(.)

to extract the high-level and multi-scale deep features Fieqp, €
RH X W x C:

Fdeep = MUFE(Fshallow)7 (3)

where My pp(.) is the UNet architecture with Swin Trans-
former Block, which contains 8§ Swin Transformer Layers in
single block to replace the convolutions. The Swin Trans-
former Block (STB) and Swin Transformer Layer (STL) will
be illustrated with details in next subsection.
Reconstruction module. Finally, we still use a 3 x 3 convo-
lution Mz(.) to generate the noise-free image X € RHE*Wx3
from deep features Fi.., which is formulated as:

X = Mgp(Fieep)- 4)

Note that X is obtained by taking the noisy image Y as the
input of SUNet and X is the ground-truth and clean version
of image of Y in ().



HxWxC

S»‘\_

(a) Swin Transformer Block (STB)

. Il

7 Fr

Window
MSA

Layer Norm
MLP
<
I

Layer Norm

Layer Norm
ML

Layer Norm
| Shift-Window
MSA

(b) Swin Transformer Layer (STL)

Fig. 2. (a) Swin Transformer Block (STB) which has 8 Swin Transformer
Layers in our experiments. (b) Swin Transformer Layer (STL). Here, it has
two STLs.

Loss function. We optimize our SUNet end-to-end with the
regular L1 pixel loss for image denoising:

Edenoise = ||X - X||1 (5)

B. Swin Transformer Block

In UNet extraction module, we use STB to substitute the
traditional convolution layer as shown in Fig. 2] STL [II]
is based on the original Transformer layer [31] from NLP.
The number of STL is always multiples of two, where one
is for window multi-head self-attention (W-MSA), and the
other is for shifted-window multi-head self-attention (SW-
MSA). As mentioned in Section [[I-C| there are some problems
when directly using Transformer in CV tasks. Thus, they
proposed the cyclic shift technique to decrease the computing
time and keep the characteristics of convolution, including
translation invariance, rotation invariance, and size invariance
of the relationship between the receptive field and layers. Due
to the page limits, we do not explain the principle of SW-MSA
and how much computational complexity it could decrease in
this paper. But we want to emphasize a key property of Swin
Transformer (i.e., we could control the resolution (H, W) and
channel number (C) of the output features as the same as
the convolution operation). Taking Fig. 2(b)| for example, the
whole process is represented as:

fr=W-MSALN(f*~") + 1,
f¥ = MLP(LN(f")) + f*,
FE = SW-MSA(LN(£")) + f*,
fL—H _ MLP(LN(JEL—H)) +fL+1,

(6)

where LN(.) denotes as Layer Normalization, M LP is multi-
layer perceptron which has two fully connected layers with
Gaussian Error Linear Unit (GELU) activation function.

C. Resizing module

Since UNet has different scales of feature maps, the resizing
modules (e.g., down-sample and up-sample) are necessary. In
our SUNet, we use patch merging and proposed dual up-
sample as the down-sample and up-sample module, respec-
tively.

Patch merging. For down-sampling module, we follow [11]],
[19] to concatenate the input features of each group of 2 x 2
neighboring patches, and then use the linear layer to obtain the
specified channel number of output features. We could also see
this as the first step of doing the convolution operation, which
is to unfold the input feature maps.

Dual up-sample. As for up-sample, the original Swin-UNet
[19] uses patch expanding method which is equivalent to
transpose convolution in the up-sampling module. However,
the transpose convolution is easy to face the block effects.
Here, we propose a new module called dual up-sample which
comprises two existing up-sample methods (i.e., Bilinear and
PixelShuffle [35]) to prevent checkerboard artifacts. The ar-
chitecture of the proposed up-sampling module is shown in

Fig. 3]
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Fig. 3. Proposed dual up-sample module with Bilinear and Sub-pixel up-
sampling methods.

1V. EXPERIMENTS
A. Experiment Setup

Implementation Details. Our SUNet is an end-to-end train-
able model without any pretrained networks and implemented
by PyTorch 1.8.0 with single NVIDIA GTX 1080Ti GPU.
Evaluation Metrics. For the quantitative comparisons, we
consider the Peak Signal-to-Noise Ratio (PSNR) and Structure
Similarity (SSIM) Index metrics. Note that both PSNR and
SSIM values are all the higher the better, and the unit of PSNR
is decibel (dB).

B. Experiment Datasets

Training Set. Using the same experimental setups of image
denoising [8]], [9, we train our model on image super-
resolution DIV2K [10] dataset which has 800 and 100 high-
quality (the average resolution is about 1920 x 1080) images



TABLE 1
IMAGE DENOISING RESULTS ON CBSD68 DATASET [36]] AND KODAK24 DATASET [[37]]. BEST AND SECOND BEST SCORES ARE HIGHLIGHTED AND
UNDERLINE, RESPECTIVELY. ALL OF SCORES ARE THE AVERAGE VALUES OF THE WHOLE DATASET. LAST COLUMN OF FLOATING-POINT OPERATIONS
PER SECOND (FLOPS) IS CONDUCTED ON 256 X 256 COLOR IMAGES.

CBSD68 Kodak24
Methods o=10 o =230 o =250 o=10 o =230 o =250 Parms  FLOPs
PSNR SSIM PSNR SSIM PSNR SSIM || PSNR SSIM PSNR SSIM PSNR SSIM
2487 0711 | 2057 0535 | 15.03 0307 || 2827 0796 | 1897 0412 | 1491  0.256 - -
35.89 0951 | 29.71 0843 | 2736 0763 || 3332 0943 | 2775 0.773 | 25.60  0.686 - -
3539 0948 | 2974 0849 | 2735 0771 || 3589 0939 | 3055 0.845 | 28.11 0.774 17M 40G
36.12 0951 | 3032 0861 | 27.92 0.788 || 36.58 0945 | 3128 0.858 | 2894 0.792 || 558K 36G
36.06 0953 | 3022 0.861 | 27.86 0789 || 36.70 0.945 | 31.24 0.858 | 28.92 0.794 || 420K 27G
36.14 0954 | 3031 0.860 | 27.96 0.788 || 36.80 0946 | 3139 0.860 | 29.10 0.795 || 854K 18G
36.05 0953 | 30.12 0858 | 27.71 0.787 || 37.30 0.951 | 31.98 0.874 | 29.72 0.817 || 168M  1019G
36.48 0951 | 3072 0.872 | 2838 0.807 || 3729 0901 | 3197 0.874 | 29.72 0818 || 166M 807G
SUNet (Ours) || 35.94 0.958 | 3028 0.870 | 27.85 0799 || 36.79 0953 | 31.82 0.899 | 29.54 0810 || 99M 30G

Noisy

14.82/0.214 20.72/0.417
Noisy Image FFDNet

4.80/0.299

20.57/0.475 21.23/0.435 24.97/0.694 20.58/0.393
CBM3D [38] U-Net[5]  DnCNN [6] ItCNN

27.48/0.812  26.24/0.812  27.55/0.811  PSNR/SSIM
DHDN RDUNet [9]  SUNet (Ours) GT

Fig. 4. Visual comparisons for image denoising on image *126007 from CBSD68 dataset corrupted by AWGN with o = 50. The PSNR and SSIM

values below the subfigures are calculated by patches.

for training and testing, respectively. We randomly crop 100
patches with size of 256 x 256 for each training image and
randomly add AWGN to the patches with noise level from
o = 5 to o = 50 for 800 training images. As for validation,
we directly use the testing set containing 100 images and add
AWGN with three different noise levels o = 10, o = 30, and
o =50.

Testing Set. For the evaluation, we choose CBSD68 dataset
which has 68 color images with the resolution of 768 x
512, and Kodak24 dataset consisting of 24 images with
the image size of 321 x 481.

C. Image Denoising Performance

We compare our SUNet with the prioir-based method (e.g.
CBM3D [38]]), CNN-based methods (e.g. DnCNN [6]], IrCNN
[10], FFDNet [7]) and UNet-based methods (e.g. UNet [3],
DHDN (8], RDUNet [9]). Fig. @ illustrates visual comparison
1391, results for image denoising. In Table [, we conduct
objective quality evaluation [41]|-[43] of denoised image and
observe the following three things: 1) Our SUNet has compet-
itive SSIM values because Swin-Transformer is based on the
global information which makes the denoised images more

perceptually faithful. 2) Compared to UNet-based methods
(DHDN, RDUNet), the proposed SUNet has less parameters
({ 60%) and FLOPs (] 3%) among the three models, and still
keeps good scores on both PSNR and SSIM. 3) Compared
with the CNN-based methods (DnCNN, IrCNN, FFDNet), we
have the best PSNR and SSIM results among them along with
almost the same FLOPs. Though the parameters of our model
are the most (99M), it is caused by the self-attention operation
which is not able to share the weights of kernels. However, it
is more reasonable that features in different layers should use
different kernel values as we discussed in Section [Il

V. CONCLUSION

In this paper, we present the SUNet architecture which is
based on the new backbone of Swin Transformer and achieve
the competitive results on denoising. Furthermore, we propose
the dual up-sample module to avoid the checkerboard artifacts.
It is too early to say the Swin Transformer can replace the
convolution. However, the potential of Swin Transformer still
deserves to be expected in the future. Our future works are
going to attempt more complex restoration tasks, such as real-



world noise and real-world blur, while the model is still based
on Swin-Transformer Layers.
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