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1. Introduction

Communication satellites use multiple beam antennas pro-
viding downlink and uplink coverages over a field of view
for high data rate, multimedia, or mobile personal com-
munication applications. High gain, multiple overlapping
spot beams, using both frequency and polarization reuse,
provide the needed coverage. In order to generate high gain
spot beams, electrically large antenna apertures are required.
These apertures may be generated by either reflectors or
phased arrays. Phased arrays would be a natural choice to
generate multiple beams but up to now the poor efficiency,
the high cost, and the deployment complexity of active
arrays have been their main drawbacks, limiting their use
onboard satellites. These drawbacks are mainly due to the
required distributed and tapered power amplification which
is inducing poor power efficiency.

Aperiodic arrays with equiamplitude elements permit to
mitigate these limitations and represent a valid alternative to
traditional periodic phased arrays with amplitude tapering.
Resorting to aperiodic arrays with equiamplitude fed ele-
ments is particularly effective for the design of large arrays
working in transmission. This type of antenna architecture is
considered extremely promising for achieving a multibeam
coverage on the Earth from a geostationary satellite [1–4].

Unequally spaced arrays have several interesting char-
acteristics and may offer some potential advantages with
respect to periodic arrays [2]. Firstly, aperiodic arrays allow
the reduction of the sidelobe level (SLL) without resorting
to an amplitude tapering. A second useful property of
aperiodic arrays is the possibility to reduce the number of
elements in one assigned aperture without major impact on
the beamwidth. The reduction in the number of elements,
with respect to the corresponding periodic array, depends
on the required aperture efficiency and on the field of view
where the assigned sidelobe level is imposed (based on
the desired scanning range and regulatory aspects). Thirdly,
sparse arrays can effectively be employed for spreading out
the energy that would otherwise accumulate in grating lobes
(GL) due to the wide interelement spacing.

In terms of limitations, nonperiodic arrays exhibit a
reduced aperture efficiency when identical, non-equispaced
elements are used. As a consequence, a reduced maximum
equivalent isotropically radiated power (EIRP) is obtained
if not compensated by an increase of the power radiated by
each active chain. Furthermore, implementation constraints,
as a nonregular lattice, may jeopardize the use of generic
building blocks, with consequences on the costs. This
particular drawback may be mitigated by implementing a set
of different types of subarrays to fill the whole aperture.
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Up to now, sparse and thinned arrays have been rarely
used, essentially because of the complexity of their analysis
and synthesis with a reduced knowledge, as a consequence
of their radiative properties. The main concern in the design
of sparse arrays is to find an optimal set of element spacing
to meet the array specifications, while assuming a uniform
excitation for practical convenience.

The synthesis of aperiodic arrays is a known problem in
the antenna community [5–22]. It is interesting to observe
that while in the 1960s and 1970s mainly deterministic solu-
tions have been proposed, in the last years procedures based
on statistic global optimization techniques have been mainly
presented. Recently, in [22], the simple and elegant spatial
tapering deterministic solution introduced in the papers of
Doyle [11] and Skolnik [17], and qualitatively in the work of
Willey [7], has been revisited and improved. Deterministic
solutions present two important advantages with respect to
statistical algorithms: they allow obtaining results in real time
and offer a solution with a controllable accuracy. Moreover,
the results obtained applying deterministic solutions may
be directly used or adopted as starting point for a further
optimization based on a numerical technique which can
take into account other constraints (like maximum and
minimum spacing between the radiators, etc.).

The problem of aperiodic arrays has recently gained
a renewed interest especially for the design of multibeam
satellite antennas [1–4]. Most of the techniques presented for
the design of aperiodic arrays deal with the case of linear
arrays. When approaching the planar case, the designer has
a higher number of degrees of freedom but the problem
increases also in complexity. In some papers, an aperiodic
planar lattice organized in rings has been proposed [12–
14]. Arrays organized in rings permit having a pattern
with good symmetry properties, allow the reduction and
control of GL, and their design is simplified because the
elements positions can be expressed as the product of
two functions one controlling the angular position of the
elements and one controlling the distance of the rings from
the center.

In this paper, the equiamplitude elements constituting
the aperiodic array are placed on a lattice reproducing
the positions of the sunflower seeds, opportunely adjusted
according to a desired amplitude tapering. This type of lattice
is selected essentially because it guarantees a really good
radial and azimuthal spreading in the element positions. As a
consequence, the pattern in the sidelobes and grating lobes
region tends having a plateau-like shape [9, 16], avoiding
the presence of high narrow peaks. Moreover, by adjusting
the element positions using a simple parametric equation,
a beamwidth can be selected and the SLL kept under an
assigned value.

An aperiodic planar array with the elements organized
according to a sunflower lattice has been already proposed
in [23]. However, the spatial density of the elements in
[23] is uniform. As a consequence, since the elements are
equiamplitude, the equivalent amplitude tapering is uniform
as well so that this type of array guarantees only a good
suppression of the GL, without the ability of controlling the
SLL.

The hereby proposed sunflower lattice is completely
adjustable in order to follow stringent requirements on the
beamwidth and the SLL without using any amplitude taper.
This planar array can be considered in the design of a trans-
mitting direct radiating array for a satellite communication
antenna on a geostationary satellite.

The paper now proceeds as follows. In Section 2 the
radiation pattern is introduced for a generic array, in
Section 3 the definition of the element density function
is given and discussed for the uniform case. In Section 4
a procedure to adjust the spatial density according to a
Taylor amplitude tapering is presented. In Section 5 the
requirements of a typical telecommunication multibeam
antenna are introduced. Finally, in Section 6 some numerical
results, in order to test the functionality of the proposed
configuration, are presented. Additionally, the appendixes
provide more general information on spirals and discuss the
normalized element density that is used in the course of the
element placement.

2. Array Radiation Pattern

The antenna radiation pattern of a planar array is given by

E(θ,φ) =
N∑
n=1

anFn exp
(
jk
[
xn sin(θ) cos(φ)

+ yn sin(θ) sin(φ)
])

,

(1)

where N is the total number of elements, an represents the
excitation coefficient for the nth element and Fn its radiation
pattern, xn and yn are the nth element positions in the xOy
plane, θ is the elevation angle measured from the Oz axis,
and φ is the azimuth angle measured in the xOy plane
with respect to the Ox axis. Because the variables to be
derived (xn and yn) appear inside an exponential function,
the optimization problem is not linear. Moreover, Fn, unlike
in periodic arrays, can change from element to element if a
requirement on the minimum aperture efficiency (hence on
the minimum gain) is enforced.

In the following section, a particular spiral configuration
will be introduced as a starting point before the space taper
is applied.

3. Spiral Array with Uniform Spatial Density

A well-known spiral is the Fermat one (see Figure 12) which
has the property of enclosing equal areas within each turn.
This spiral is often found in nature, as indicated in the
appendix. The elements are placed along this spiral according
to the following equations:

ρn = s

√
n

π
, for n = 1, . . . ,N + 1, (2)

φn = 2πnβ1, for n = 1, . . . ,N + 1, (3)

where ρn is the distance from the spiral center to the nth
element, the parameter β1 controls the angular displacement
φ between two consecutive elements, and the parameter s
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denotes the distance between the elements in the xOy plane.
Assume a sparse array deployed on a circular aperture of
radius Rap along the Fermat spiral, with element locations
given by (2) and (3). Note that ρN is taken to correspond
to Rap, whereas ρN+1 is a virtual element places outside the
aperture, its use is becoming obvious in what follows.

Let us now introduce a normalized element density
function:

d̃
(
ρn
)
=
(
R2
n − R2

n−1

)
min(

R2
n − R2

n−1

) , for n = 1, . . . ,N , (4)

where Rn−1 and Rn are the inner and outer radii of the
annular rings enclosing the nth element, respectively, with
R0 being always taken as zero (see the appendix) for a
justification for this choice of defining the normalized
density function). Here, a choice is made to take the radii
Rn as

R2
n =

ρ2
n+1 + ρ2

n

2
for n = 1, . . . ,N. (5)

As recognizable from (4), the normalized density function
corresponds to the current of a single element divided by the
area of the relevant annular ring.

The lattice in [23] (see Figure 1) is characterized by a
uniform density. On account of (5) and (2), it can be easily
shown that

d̃
(
ρn
)
= 2

(
R2
n − R2

n−1

)
min(

ρ2
n+1 − ρ2

n−1

) =
πR2

ap

Ns2
= 1. (6)

This property is attractive when the interest focuses on
avoiding GL only, without a control of the SLL. As for the
SLL, it remains around 17 dB, irrespective of the number
of elements in the array and the spacing factor s. This
is consistent with the element distribution replicating a
uniform current distribution on a circular aperture.

It is now clear that the only possibility to control the SLL
as well is by introducing a density taper. In the following
section, it will be demonstrated how, by translating a Taylor
amplitude tapering law [24] into a corresponding spatial
density law, the SLL can be drastically reduced.

4. Spiral Array with Density Tapering

The spiral aperiodic lattice with a uniform element density
introduced in the previous section is an excellent starting
point to apply a space tapering process. The spreading of the
elements in the spiral arms guarantees an optimal behavior
in terms of GL even when the interelement spacing is larger
than λ. In order to be able to control the SLL, it is possible to
vary the elements positions with respect to the array center,
thus obtaining an effect similar to an amplitude taper.

The space taper technique presented here consists of
choosing a reference amplitude distribution whose pattern
satisfies the assigned requirements and emulates it by varying
the radiator distance from the center. Concretely, a Taylor
amplitude taper law with a certain SLL and n [24] is selected
as a reference. The locations of the elements in the sparse
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Figure 1: Distribution of the 250 elements in the uniform
sunflower array antenna, as reported in [23].
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Figure 2: Distribution of the 250 elements in the tapered sunflower
array antenna.

array are determined by means of a simple, 2 step algorithm:
firstly N circles of increasing radii ρn, n = 1, 2, . . . ,N are
selected by sequentially applying the relations

2π

∫ ρn

Rn−1

A(r)r dr = 2π

2N

∫ Rap

0
A(r)r dr, (7)

2π

∫ Rn

Rn−1

A(r)r dr = 2π

N

∫ Rap

0
A(r)r dr, (8)

starting from R0 that is taken to be 0. Here, A(r) denotes the
Taylor amplitude taper and Rap is the radius of the complete
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Figure 3: European multibeam coverage in a 1 : 4 frequency re-use
scheme from a geostationary satellite.

circular aperture. Note that (7) emulates the desired taper
by equating the surface integral over the annular ring
delimited by Rn−1 and ρn to half of the Nth part of the total
aperture excitation. Subsequently, the element positions are
determined by choosing their pertaining azimuth angle φn
according to (3). The result of this placement strategy is
illustrated in Figure 2 where a 56 λ aperture is filled with 250
elements distributed in a manner such to obtain a pattern
similar to the one achievable with a Taylor amplitude law
characterized by SLL = 32 dB and n = 4. A total number
N = 250 is selected as a good compromise between the
performance in scanning and the cost. The choice for these
values will be clearer in the following sections.

5. Typical Requirements for a Multibeam
Satellite Application

The transmitting antenna considered in this study is operat-
ing in Ka-band (19.7–20.2 GHz) and may have a maximum
diameter of 1.3 m. The starting point considers the circular
direct radiating array with dimensions deemed as sufficient
to provide the required maximum gain and beamwidth. The
array must generate 64 spot beams. The total frequency band
is divided into 4 subbands, and each of them being assigned
to a set of beams so that there are no adjacent pencil beams
using the same resource. Figure 3 shows the footprint on the
Earth of the 64 pencil beams.

In the last 3 rows of Table 1, the maximum sidelobe level
in three different regions has been specified. The value in
dBi has been preferred to the dB one as the configurations
analyzed in Section 5 have different maximum directivity
values.

In Figure 4, the array factor of the configurations pre-
sented in Figures 1 and 2, respectively, is plotted for two
different φ cuts. In both uniform and tapered sunflower
configurations, the array factor is remarkably stable in φ,
resulting in the area of interest, in practically rotationally
symmetric radiation patterns. The array factor in Figure 4(b)
is following the expected behavior until a certain θ angle
at which the effects of the first pseudograting lobe (the
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Figure 4: Array Factor, two different φ cuts (φ = 0◦ in red dotted
line and φ = 90◦ in black), for the array configuration in Figures 1
and 2, respectively.

Table 1: Mission requirements.

Number of spots 64

Spot diameter 0.65◦

Inter-spot distance 0.56◦

Rx band 29.5–30.0 GHz

Tx band 19.7–20.2 GHz

Frequency reuse 1 : 4

EOC gain 43.8 dBi

SLL in the first ∓4◦ 20 dBi

SLL in the first ∓8◦ 25 dBi

SLL in the first ∓90◦ 30 dBi

energy of which being spread over a wider θ interval due
to the nonperiodic placement) become visible. Considering
the previous example in which the maximum interelement
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Figure 5: The Voronoi tessellation consisting of the cells enclosing
the chosen phase centers.
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Figure 6: Subarray allocation and aperture subdivision corre-
sponding to the Voronoi tessellation in Figure 5.

distance Dmax = 8.43 λ, the first contribution of the grating
lobe is expected at

θGL = sin−1
(

1

Dmax

)
= 6.81◦. (9)

In fact, in Figure 4(b), the pattern starts exceeding the
imposed SLL around this θGL.
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Figure 7: Array pattern for the configuration depicted in Figure 6.
The beam is scanned to boresight. The red line corresponds to the
requirement mask.
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Figure 8: Array pattern for the configuration depicted in Figure 6.
The beam is pointing at Europe edges. The red line represents the
iso-level curves at 43.8 dBi, and the blue ones the iso-level curves at
20 dBi. The black circles represent the interfering area.

6. Validation of the Technique

The locations provided by the space taper process (see
Figure 2) have been used as phase centers of the radiators in
a planar array. Two different techniques are used to select the
radiators.

6.1. First Approach: Using the Entire Aperture. The circular
aperture with a maximum radius of 56 λ is completely filled
with patches disposed on a regular lattice. The triangular
grid is chosen because of its better performances compared
to the regular rectangular one. The analytical equations in
[25] are used to express the field of the elementary patch
antenna, radiating on a ground plane, with side lengths
equaling 0.42 λ and a rectangular cell surrounding it with
side lengths 0.8 λ × 0.85 λ. In order to cover the complete
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Figure 9: Hexagonal subarray positions and dimension after
postprocessing.

aperture, with this patch choice, more than 15 thousands
patches are required. These patches are then collected into
subarrays.

The positions of the phase centers of the subarrays
for N = 250 are derived with the formulation presented
in the previous section following a Taylor taper with SLL
= 32 dB and n = 4. The subarray positions are then
superimposed on the uniform array, as indicated in Figure 6.
Each patch center is assigned to the closest subarray center
that can be interpreted as assigning the relevant patch
to the Voronoi cell [26] corresponding to the computed
phase center. Note that the Voroni surface division (see
Figure 5) provides an optimum tessellation of the available
real estate.

To obtain the total radiation pattern, each radiation
pattern of the subarray Fn has been calculated and multiplied
by the exponential that takes into account the positions of the
phase center of that subarray given in (1).

Since the Voronoi cell shapes are close to circular
ones, the subarray patterns result to be almost rotationally
symmetric. This is an important property when the beam is
scanned.

In Figure 7, the pattern for the beam pointing at
boresight is plotted for 360 φ cuts (one at every degree). The
red line in this figure indicates the mask requirements given
in Table 1. Figure 8 represents the radiation pattern when the
beam is pointed at the Europe’s edges: the blue and red lines
are iso-level curves at 20 dBi and 43.8 dBi, respectively, while
the black circles enclose the regions of the coverage in which
the same resource is used. As it can be seen from Figure 8,
even when the beam is pointed at the Europe’s edges, the
pattern remains complaint with the requirements given in
[1].
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Figure 10: Array pattern for the configuration depicted in Figure 9.
The beam is scanned to boresight. The red line corresponds to the
requirement mask.

2

4

6

8
θ

90

120

150

180

210

240

270
300

330

0

φ

30

60

Figure 11: Array pattern for the configuration depicted in Figure 9.
The beam is pointing at Europe edges. The red line represents the
iso-level curves at 43.8 dBi, and the blue ones the iso-level curves at
20 dBi. The black circles represent the interfering area.

With this method, the entire surface available is used
maintaining at the same time a very small number of controls
(one for each subarray).

6.2. Second Approach: 4 Different Types of Subarrays. In this
case, a more technology-oriented approach is considered:
the aperture is filled as much as possible with predefined
hexagonal subarrays. A limited number of these subarrays
is selected as a compromise in order to keep the complexity
and the cost limited while offering good performances.
Four subarrays with different sizes have been selected and
used to fill the array aperture. All the subarrays have a
hexagonal shape and consist of 2, 3, 4, or 5 rings of elements
surrounding the central one on a regular triangular lattice.
The patches used in the subarrays are the same as the ones
described in the previous subsection.
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Figure 12: The Fermat spiral and its associated coordinate system.

The procedure consists of computing for each cell the
radius of the maximum circle that can be inscribed in it.
According to this value, the best hexagonal sub-array among
the four available is selected and placed in the cell (see
Figure 9). After this first step, a postprocessing is carried out
in which every subarray is replaced by its larger version if
no overlapping with its neighbor occurs. In the following
case, 117 of the 250 subarrays were substituted during the
postprocessing and this is the reason why the subarray
placement in the array is not clearly divided into annular
areas around the array center enclosing the same type of
subarrays. The postprocessing allows increasing the aperture
filling from 44.4% up to 60.9%.

In Figure 9, the subarrays have been plotted in different
colors depending on their size. Since the element placement
is more dense in the center, smaller subarray dimensions
are needed in the array middle while at the periphery larger
hexagonal subarray can be accommodated improving the
directivity but, depending on the maximum dimension,
allowing for a limited beam scan only.

With the first approach, the results were exceeding the
requirements but the physical implementation of the array
would be too demanding since every subarray is different
and has to be designed and tested individually. With the
second approach proposed here, only 4 subarrays need to
be generated and moreover, the feeding network will be
easier to implement. The boresight radiation pattern for this
configuration is depicted in Figure 10. As it can be noticed,
the SLL is still within the specifications; the maximum gain
drops by approximately 2 dB but the EOC gain is enforced.
As a drawback, the array performance is optimal only when
the beam is pointing at boresight. When the beam is scanned
to the Europe edges, it is possible to maintain the SLL
under the prescribed value in the area of interest but the
requirement on the EOC gain cannot be reached as shown
in Figure 11.
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Figure 13: Sunflower array configuration: the elements are num-
bered starting from the center. In this case, 5 clockwise Fibonacci
spirals appear, red line, and 8 anticlockwise, in blue line. The
interval of identificative numbers between elements on the same
Fibonacci spiral is always equal to the number of spirals occurring,
in this figure notice 22− 14 = 14− 6 = 8 and 24− 19 = 19− 14 = 5.

7. Conclusions

A deterministic procedure to design aperiodic planar arrays
which guarantees the control of SLL, GL, and beamwidth
without using any amplitude tapering has been introduced.
Starting from an array characterized by a uniform spatial
density of the elements, the density function has been
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modified in order to fit a reference amplitude tapering.
The design technique has been applied for the preliminary
design of a Direct Radiating Array for a multibeam satellite
communication mission.

Appendices

A. Fibonacci Spirals

Spirals are one of the most common regular shapes in nature:
from the snail shell to the sunflower seed placement, to
the Milky way arms. Different kinds of spirals are known
in literature. Using a spiral placement for the elements of
a planar array guarantees a good spreading of the energy
associated to the side and grating lobes. Furthermore, a
spiral lattice permits obtaining a quite uniform filling of a
given aperture compared to other planar lattices like the ones
organized in rings. A well-known spiral is the Fermat spiral
(Figure 12) which has the property of enclosing equal areas
within every turn. Its equation can be expressed in polar
coordinates as

ρ = a
√
φ, (A.1)

where ρ is the distance from the spiral center, and φ is the
angle that identifies the point position respect to the x axis;
the parameter a controls the distance between the spiral
turns.

This spiral is quite often found in nature. In particular,
there are leafs and seeds whose positions can be obtained by
sampling a Fermat spiral equation, that is,

ρ =
√
nb,

φ = 2πn

c
,

(A.2)

and when it is important having a uniform subdivision of the
space the parameters b and c are closely related to the Golden
Ratio, also known as Fibonacci number since it represents the
solution of the Fibonacci quadratic equation. For instance,
the leaves around a stem use this positioning to share in an
optimal way the space and the light [27].

The Fibonacci sequence is known since 1202 d.C., thanks
to Leonardo son of Bonaccio from Pisa and his book
Liber Abaci. This sequence has been widely analyzed and
applied in different fields: from the description of particular
plants to computer science, from crystallography to electrical
engineering. By solving the Fibonacci quadratic equation
[28]:

β2An = βAn + An, (A.3)

the following two roots are obtained:

β1 =
√

5 + 1

2
= τ,

β2 =
1−

√
5

2
= −1

τ
.

(A.4)

In most of the applications, the first value has been used,
but to characterize the spiral, both of them are usable. The
divergence angle, also referred to as the golden angle, is
defined as

golden angle = 360◦

β2
1

= 360◦ − 360◦

β2
2

. (A.5)

Because this value is irrational, it is impossible to have two
or more elements in the spiral array characterized by the
same φ angle. The element packing results to be efficient.
Interesting Fermat spirals could be also the ones with other
irrational coefficients like

√
2. In the patent [23], β1 is used

for the element disposition along the spiral according to the
formulation presented in (2) and (3). As it can be easily
noticed, the positions of the elements in the sunflower array
depend only on n via a trivial equation.

The second type of spirals employed in this study is
the Fibonacci one, namely, a particular kind of logarithmic
spiral, where the ratio between radii evaluated at each 90◦ is
related to the golden ratio number. It is interesting to note
that in a sunflower array configuration, when the elements
are placed on a Fermat spiral at every β1 degrees, the elements
form sets of clockwise and anticlockwise Fibonacci spirals.
The number of spirals in each set are two consecutive terms
of the Fibonacci series as it can be seen in Figures 13(a) and
13(b). Another particular characteristic of this configuration
is that in order to obtain for example the 5 clockwise spirals,
it is sufficient to connect the elements on the Fermat spiral
whose numbers difference is exactly 5.

B. Normalized Element Density Function

Assume the case when a continuous, strictly positive,
rotationally symmetric, normalized current amplitude dis-
tribution A(r) on a circular aperture of radius Rap needs
to be mimicked by means of N equiamplitude elements
located at monotonically increasing distances ρn, n = 1, . . . ,N .
(All distances r or radii R employed in this appendix are
considered with respect to the aperture center.) Let Rn (n =
0, . . . ,N) be N + 1 radii chosen such that Rn−1 < ρn < Rn

for n = 1, . . . ,N , with R0 being taken to be zero. Note that
for reasons that will be elaborated upon later, RN may be,
and in most cases is, taken to be (slightly) larger than Rap.
The monotonic increasing of the values ρn combined with
the choice for the radii Rn ensures that inside in each annular
ring of inner radius Rn−1 and outer radius Rn there is only
one radiator. With these prerequisites, an equivalent discrete
amplitude density function can be defined by means of the
expression

d
(
ρn
)
= K

π
(
R2
n − R2

n−1

) , for n = 1, . . . ,N , (B.1)

where the K denotes the constant excitation of each of the
N elements. In view of ensuring the consistency of this
definition, the radii Rn−1 and Rn are chosen such that

∫ Rn

Rn−1

A(r)r dr = K , for n = 1, . . . ,N. (B.2)
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Furthermore, in view of ensuring identical aggregate excita-
tion over the aperture, the constant K is adopted as

K = 1

N

∫ Rap

0
A(r)r dr. (B.3)

By now invoking the mean function theorem, the area of
the annular ring in the denominator of (B.1) can be rewritten
as

π
(
R2
n − R2

n−1

)
= 1

A

(
ξn
)∫ Rn

Rn−1

A(r)r dr

= K

A

(
ξn
)
, for n = 1, . . . ,N ,

(B.4)

with ξn (n = 1, . . . ,N) being an unspecified point in the
intervals [Rn−1,Rn]. Substituting (B.4) in (B.1) then yields

d
(
ρn
)
= A

(
ξn
)
, for n = 1, . . . ,N. (B.5)

Due to the choice for ρn and ξn, the distance |ρn − ξn| is
bounded above by Rn − Rn−1, which, in view of complying
to (B.3) and of the continuity of A(ρ), becomes arbitrarily
small for arbitrarily large N-s. Consequently, the (discrete)
amplitude density function can be made to approximate with
arbitrary accuracy of the original current density.

In order to prevent possible above unit values of the
discrete amplitude density d(ρn) that may occur in the case
when N is small, this quantity is now normalized to its largest
value. By accounting for the fact that max[d(ρn)]|n=1,...,N

corresponds to the minimum R2
n−R2

n−1 difference, it is found
that

d̃
(
ρn
)
=

min
(
R2
n − R2

n−1

)
|n=1,...,N

R2
n − R2

n−1

, for n = 1, . . . ,N ,

(B.6)

which is the expression that was used in Section 3.
Some remarks are due with respect to the hereby dis-

cussed choice for a (normalized) discrete amplitude density
function. Firstly, in view of the correspondence between ρn
and Rn, it is obvious that RN exceeds ρN . In many cases,
the aperture will be construed as the area effectively covered
by individual radiators, a choice that allows mapping the
beamwidth requirement on a maximum element to center
spacing. In that case, ρN = Rap and, thus, RN > Rap,
as anticipated above. This fact does not conflict with the
definition of the density function, the continuous A(ρ)
being amenable to extrapolation beyond Rap, while the

normalization in (B.6) recalibrates the maximum d̃(ρn) to 1.
Secondly, the determination of the radii Rn according to

the condition to yield equal surface integrals of A(ρ) over
the relevant annular rings can be easily carried out when the
amplitude density is known, as demonstrated in Section 4.
However, the handling of the converse situation, when the
location of the elements is known and the (equivalent)
amplitude density needs being calculated is less evident.
To circumvent this difficulty, the radii Rn were chosen in
Section 3 based on the intrinsic properties of the Fermat
spiral, a choice that eventually allowed verifying that the

amplitude density function d̃(ρn) is, indeed, constant.
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