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Abstract: Photocatalytic conversion of CO2 to solar fuels is considered an alternative 

approach for simultaneously mitigating the greenhouse effect and solving energy 

shortage. The efficient light harvesting and the thermochemical conversion has been 

a demanding quest in photocatalysis due to the relatively low solar energy utilization 

efficiency. In this work, oxygen vacancies are induced in MoO3 for improving 

photo-thermal CO2 reduction efficiency by capturing near-infrared (NIR) photons. 

The localized surface plasmon resonance (LSPR) of MoO3-x triggered by oxygen 

vacancies endows the effcient capture of NIR photons. Additionally, oxygen vacancies 

can promote the carrier separation, improve CO2 adsorption on the defective surface 

and lower the barrier of CO2 hydrogenation during the conversion process. As a 

result, MoO3-x displayed dramatically enhanced photo-thermal synergistic CO2 

reduction under simulated sunlight (UV-Vis-IR) irradiation than that of MoO3. The 

amount of CO produced by MoO3-x can reach 10.3 μmol·g-1
·h-1, which is 20 times 

higher than that of MoO3 (0.52 μmol·g-1
·h-1). And the CH4 production of MoO3-x can 

reach 2.08 μmol·g-1
·h-1, which is 52 times higher than that of MoO3 (0.04 

μmol·g-1
·h-1). In-situ FT–IR and theoretical calculation also proved the enhanced 

activity of MoO3-x. This work highlights the significance of defect engineering for 

improving the photo-thermal catalytic conversion of CO2. 
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1 Introduction 

In modern society, the extensive consumption of fossil fuels will not only cause a 

the global energy crisis in future, but also gives rise to the climate change by the 

large amount of carbon dioxide (CO2) emission.[1] CO2 is a primary greenhouse gas, 

and natural photofixation of CO2 by plants is far from converting sufficient amounts 

of CO2. Therefore, seeking sustainable and green ways to realize the effective 

conversion of CO2 is extremely urgent. The photocatalytic conversion of CO2 to 

hydrocarbon fuels has been reported as an effective, environmentally friendly route 

for addressing the potential energy and environment crisis simultaneously.[2,3] It 

offers advantages over the traditional CO2 conversion technology, such as thermal 

catalysis[4] and electrocatalysis,[5-8] which need high energy consumption. However, 

the relatively low efficiency of photocatalytic CO2 conversion is obtained based on 

photoexcitation reactions. Recently, photo-thermal synergistic catalysis combining 

thermochemical and photochemical conversion appeared as a promising method for 

improving the efficiency.[9,10] Sunlight can be divided into three parts: ultraviolet (UV) 

light (λ < 400 nm), visible (Vis) light (400 nm < λ < 800 nm) and infrared (IR) light (λ > 

800 nm). UV-Vis and IR light can induce photocatalytic and thermocatalytic reactions, 

respectively. Hence, photo-thermal synergistic catalytic CO2 conversion can be 

achieved under full spectrum (UV-Vis-IR). However, there are very few catalysts for 

sunlight induced photo-thermal synergistic catalysis. 

To date, a variety of photocatalysts has been developed. At the same time, most 

photocatalysts cannot capture IR photons for sunlight induced photo-thermal 

synergistic catalysis. Therefore, various groups are pursuing advanced photocatalytic 

materials for IR light response. At present, the IR light response materials are mainly 

noble metal nanomaterials (such as Ag, Au, Ru)[11-13], few heavily doped oxide 

semiconductors (such as W18O49, WO3-x, MoO3-x)[14-17], narrow gap semiconductors 

(such as CuS,[18] Bi2S3,[19] black phosphorus) and nano-carbon materials (such as 

carbon quantum dots, graphene, carbon nanotubes).[20-23] Among them, heavily 

doped oxide semiconductor materials were employed for the sunlight induced 

photo-thermal synergistic catalytic CO2 conversion. And the reasons are following. (1) 

They show strong localized surface plasmon resonance (LSPR) phenomena, which 

can enhance IR light absorption to improve the photo-thermal conversion.[24-26] and 
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(2) more defect sites, which can enhance the adsorption of substrate molecules. At 

the same time, defect sites also decrease the CO2 reduction barrier, thus, enhancing 

the performance of photocatalytic conversion of CO2 [27] due to photogenerated 

electrons that determine the reduction reactions. Inspired by these results, we 

believe that photocatalysts with LSPR effect and vacancies are desirable for achieving 

higher photo-thermal CO2 conversion.[28,29] 

Compared to the traditional precious metal and other semiconductor oxide 

photocatalysts, MoO3 is a potential candidate as photothermocatalyst owing to its 

powerful oxidation properties, non-toxicity, low cost and versatility.[30-33] But the 

defect-free MoO3 shows low photocatalytic reduction performance due to the 

limited light harvesting, fast hole-electron recombination and small specific surface 

area. Here, defect engineering is applied to extend the light adsorption, induce the 

LSPR effect and large specific surface area. The obtained MoO3-x display high activity 

for photo-thermal synergistic CO2 reduction under UV-Vis-IR irradiation. The 

mechanism is studied experimentally by electrochemical characterization and in-situ 

FT–IR, and theoretical calculations. 

Results and Discussion 

Experimental sections are described in Supporting Material. Figure 1a shows 

the X-ray diffraction (XRD) patterns of MoO3 and MoO3-x, which are indexed as the 

orthorhombic phases of MoO3 (JCPDS No. 01-076-1003) and MoO3-x (JCPDS No. 

01-070-0615), respectively.[28,29] Comparing the (020), (040) and (060) peaks of MoO3 

and MoO3-x, it can be found that MoO3 exposed more {010} facets. It may result from 

the calcination under oxygen atmosphere to fill up the defect on {010} facets of 

MoO3-x. The microstructures of MoO3 and MoO3-x were further analyzed by scanning 

electron microscopy (SEM), as shown in Figure S1.[29,34,35] MoO3 forms elongated 

single crystals (Figure S1a) with a length of about 50-60 μm, and the width and 

thickness is about 5 μm and 300 nm, respectively (Figure S1c). MoO3-x is crystallized 

as elliptical nanosheets (Figure S1b) with a length of about 2 μm, and the width and 

thickness is about 0.5 um and 20 nm (Figure S1d). It can be seen that the 

morphology of MoO3 and MoO3-x nanosheets is extremely different. The MoO3-x 

nanosheets are much smaller and thinner compared with the MoO3 nanosheets. 

Figure S1d reveals that MoO3-x crystal aggregates are piled up by several layers of 
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thin nanosheets compared with single pieces of MoO3 (Figure S1a). Furthermore, the 

edges of MoO3-x are not flat compared with those of MoO3. The crystal morphologies 

of MoO3-x and MoO3 were studied in more detail by transmission electron 

microscopy (TEM, Figure 1b-1e). Figure 1c exhibits clear perpendicular lattice fringes 

with interplanar spacings of about 0.20 and 0.18 nm, corresponding to the 

theoretical values of the (100) and (002) atomic planes of tetragonal MoO3, 

respectively. The corresponding selected area electron diffraction (SAED) pattern 

shown in Figure S2a reveals a 90° angle between the (002) and (100) planes of MoO3, 

suggesting that the exposed crystal face is along the (010) plane. Careful observation 

of the HRTEM images in Figure 1e reveals that the pinstripes are much more 

disordered than those outside the circle marks. The lattice fringes are discontinuous, 

and some are distorted indicating the presence of crystallographic defects in MoO3-x. 

The results are consistent with the XRD measurements. HRTEM images furthermore 

reveal continuous crystal lattice in MoO3-x. The inter-fringe distances are 0.2 and 0.18 

nm, corresponding to the (100) and (002) planes of hexagonal MoO3-x, respectively. 

The corresponding SAED pattern in Figure S2b also reveals a 90° angle between the 

(002) and (100) planes of MoO3-x, suggesting that the exposed crystal face is along 

the (010). 



6 
 

 

Figure 1. Crystal structure of MoO3-x and MoO3: (a) XRD patterns, (b) TEM of the 

MoO3, (c) TEM of the MoO3-x, (d) HRTEM of the MoO3 and (e) HRTEM of the MoO3-x. 
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Figure 2. UV-Vis-NIR diffuse reflectance spectra (a), calculated band structure (b), 

XPS spectra of Mo 3d (c), and ESR spectra (d) of MoO3-x and MoO3. 

Figure 2a shows the UV-Vis-NIR spectra of MoO3-x and MoO3. The absorption 

band edge of MoO3 is at about 443 nm, which corresponds to its wide band gap (ca. 

2.80 eV). Thus indicates that MoO3 can only be excited by UV-Vis light and it may not 

display sunlight induced photo-thermal synergistic catalytic activity for CO2 

conversion. In contrast, MoO3-x exhibits a strong absorption peak at approximately 

700 nm associated with the LSPR of MoO3-x due to the presence of oxygen 

defects.[28,29] On the other hand, the colors of MoO3-x and MoO3 are dark blue and 

pure white, respectively. This also proves that MoO3-x can absorb in the full sunlight 

spectrum due to the LSPR effect induced by oxygen defects. To understand the 

oxygen defect-induced LSPR effect, we simulated the energy band structure of 

MoO3-x. As shown in Figure 2b, after the introduction of an oxygen vacancy, the 

impurity level is generated. And the narrow energy gap results in the full spectrum 

absorption. Furthermore, from Figure S3 and S4, the same phenomenon can be seen 

in the Density of States (DOS).[36] The oxygen defects change the distribution of 

HOMO and LUMO. The distribution of HOMO and LUMO on the two layers of MoO3-x 

restricts the recombination of photo-generated electrons and holes, resulting in the 

oxygen defect-induced LSPR effect of MoO3-x. The oxygen defect formation was 
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confirmed by X-ray photoelectron spectroscopy (XPS), electronic spin resonance 

(ESR), and Raman spectroscopy. Figure 2c displays the Mo 3d XPS spectra of MoO3-x 

and MoO3. It can be seen that only Mo6+ (233.1 eV: 3d5/2; 236.3 eV: 3d3/2) exists in 

MoO3. In contrast, both Mo6+ and Mo5+ (231.9 eV: 3d5/2; 235.0 eV: 3d3/2) exist in 

MoO3-x. According to the XPS peak area, Mo5+ and Mo6+ were about 35% and 65% for 

total Mo states in the MoO3-x, respectively. The average oxidation state of Mo is thus 

determined to be mixed-valence state at 5.65, which implies the existence of oxygen 

defects.[29] The O1s XPS peak shift also implies the existence of oxygen defects. As 

shown in Figure S5, the lower binding energy of MoO3-x (530.7 eV) compared with 

that of MoO3 (531.0 eV) indicates different chemical environments. For MoO3-x, there 

is a new peak at higher binding energy of 532.0 eV, which is caused by surface 

adsorbed oxygen species.[36,37] This implies that MoO3-x provides many defects for the 

adsorption of oxygen species. Figure 2d shows the ESR spectra of MoO3 and MoO3-x. 

MoO3-x exhibits an ESR peak at g = 2.001, which is a typical signal of oxygen defects 

and is absent in the MoO3 spectrum.[37] This proves that MoO3 forms perfect crystals 

without oxygen defects, which is consistent with previous results. In addition, the 

Raman spectrum (Figure S6) also provides evidence of oxygen defects. Compared 

with MoO3, the peak intensity of MoO3-x is significantly reduced, and some peaks are 

merged or even absent, demonstrating the existence of oxygen vacancies in 

MoO3-x.[30,38,39] 
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Figure 3. (a) XANES and (b) Fourier-transformed (FT) k2-weighted EXAFS spectra 

(uncorrected for the phase shift) of the MoO3-x and MoO3 with the commercial Mo, 

MoO2 and MoO3 reference spectra. 

For directly proving the presence of oxygen defects, X-ray absorption spectra in 

terms of X-ray Absorption Near Edge Structure (XANES) and Extended X-ray 

Absorption Fine Structure (EXAFS) are showed in Figure 3. The XANES spectrum of 

the MoO3-x sample is very similar to MoO3 and commercial MoO3 reference spectra 

suggesting the same structure. However, these spectra exhibit two main differences. 

First, the intensity of the pre-edge at approx. 20007 eV is decreased. This pre-edge is 

assigned to 1s→4d electronic transition in systems with tetragonal symmetry such as 

MoO3 (it is not observed in MoO2, in which Mo is coordinated by regular 

octahedrons).[40] The decrease in the pre-edge intensity could result from a partial 

loss of tetrahedral symmetry due to oxygen defects formation but also due to higher 

disorder/partial amorphisation of in MoO3-x.[40] The second difference between the 

MoO3-x and commercial MoO3 XANES spectra is the shift of the second peak after the 

absorption maximum (at approx. 20040 eV) to lower energy. Previously, a spectrum 

with a similar shift and the decreased pre-edge intensity was attributed to Mo4O11 
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phase.[41] Quantification of the average oxidation state is possible using the precise 

position of the second peak after the absorption edge.[42] This yields a stoichiometry 

of approximately MoO2.7, which is consistent with the formation of the Mo4O11 phase, 

as mentioned earlier. Fourier transformed EXAFS (Figure 3b) shows somewhat lower 

backscattering at r = 1.2 Å not corrected for phase shift which may be attributed to 

lower average number of oxygen neighbors in the first coordination shell and much 

lower scattering by the further shells (r between 3 and 4 Å), this is due to the small 

particle size (nanocrystalline nature) of the MoO3-x. In summary, the material consists 

of nanocrystalline MoO3-x with high amount of oxygen defects. 

 

Figure 4. Catalytic CO (a) and CH4 (b) generation over MoO3-x and MoO3 under 

UV-vis-IR light irradiation for 4 h; Rates comparison of CO (c) and CH4 (d) conversion 

over MoO3-x and MoO3 under UV-Vis-IR, UV-Vis, and IR light irradiation for 1 h. 

The introduction of oxygen vacancies triggers the LSPR phenomenon of MoO3-x, 

which darkens the color of the material and extends the light absorption range to the 

infrared region. Therefore, MoO3-x may display sunlight induced photo-thermal 

synergistic catalytic activity for CO2 conversion. As shown in Figures 4a and 4b, it can 

be clearly seen that MoO3 and MoO3-x have no catalytic activity without light 

irradiation. After 4 h UV-Vis-IR light illumination, the amount of CO produced by 

MoO3-x can reach 41.2 μmol·g-1, which is 20 times higher than that of MoO3 (2.1 

μmol·g-1). And the CH4 production of MoO3-x can reach 8.3 μmol·g-1, which is 49 
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times higher than that of MoO3 (0.17 μmol·g-1). The catalytic results indicate that the 

introduction of oxygen defects greatly improves the catalytic performance for CO2 

reduction to CO and CH4. In order to better study the sunlight induced photo-thermal 

synergistic catalytic CO2 conversion over MoO3-x, the photocatalytic properties of 

different wavelength ranges of sunlight were studied. Figure 4c,d shows the CO and 

CH4 production rates for illumination with UV-Vis-IR, UV-Vis, IR, and UV-Vis-IR light 

with cooling. Upon illumination with light of all these wavelength ranges, MoO3 

showed negligible activities. In contrast, MoO3-x displayed significant activities for 

CO2 reduction to CO and CH4 upon light illumination in all these wavelength ranges. 

Comparing the different light wavelength ranges, it can be found that the order of 

light induced activity of CO and CH4 production is UV-Vis-IR > IR > UV-Vis. Obviously, 

this order is follows the temperature order (UV-Vis-IR (160 °C) > IR (120 °C) > UV-Vis 

(105 °C)). And this order of light induced activity is consistent with that of thermal 

catalysis (Figure S7). It implies that thermal catalysis is very important for CO2 

reduction. In order to confirm it, we used different wavelength LED light sources 

which did not cause heating (Figure S8). It can be seen that the catalytic 

performance is significantly reduced, which also proves the significance of thermal 

catalysis induced by light. On the other hand, it also found that the activity of low 

temperature (101 °C) CO2 reduction with UV-Vis-IR light irradiation is higher than 

that of IR (120 °C) light. And UV-Vis-IR induced activity (160 °C) is also higher than 

the thermal catalytic activity at same temperature of 160 °C. This indicates that 

thermal catalysis is not the sole cause for the improved activity of MoO3-x, and 

photocatalys also plays an important role for CO2 conversion. Based on the above 

catalytic results, we can summarize that MoO3-x showed sunlight induced 

photo-thermal synergistic catalytic performance for CO2 conversion. In addition, the 

sunlight induced photo-thermal synergistic catalytic activity in CO2 conversion is also 

affected by the concentration of oxygen vacancies. As shown in Figures S9 and S10, 

higher number of oxygen vacancies results in higher activity of MoO3-x. 
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Figure 5. (a) Photocurrent responses, (b) PL spectra, of the MoO3-x and MoO3, (c) and 

(d) time-resolved PL spectra of the MoO3 and MoO3-x. 

Photocurrent response, steady-state and transient photoluminescence (PL) 

spectra and time-resolved PL were investigated to analyze the separation and 

transfer of photo-generated electrons and holes in the MoO3-x and MoO3 samples. As 

shown in Figure 5a, the photocurrent response was detected when the light is on, 

and the photocurrent density of MoO3-x is about two times higher than that of MoO3. 

It confirms the high separation efficiency of photo-induced electron-hole pairs for 

MoO3-x. The photoluminescence spectra of the MoO3-x and MoO3 are shown in Figure 

5b. The main emission peaks are observed at 396 and 422 nm, which are intrinsic 

excitation of MoO3 and MoO3-x, respectively. Compared to MoO3, the emission 

intensity of the MoO3-x decreased after introduction of oxygen vacancies.[33] In 

addition, the kinetics of charge separation in the photocatalysts was detected with 

time-resolved fluorescence decay spectra as shown in Figures 5c and 5d. The 

lifetimes (τ) were 2.89 ns (MoO3) and 2.26 ns (MoO3-x), indicating that the 

photogenerated carriers of MoO3-x are more rapidly separates, and thus, are able to 

drive redox reactions.[43,44] They further confirm that oxygen defects promote 

interfacial charge transfer, separation and migration of photo-induced charge carriers. 

On the other hand, oxygen defects also elevate the conduction band (CB) position, 

which is useful for photocatalytic CO2 reduction reaction. As shown in Figure S11, the 

VB-XPS spectrum shows that the VB position of MoO3 and MoO3-x are 3.23 and 0.23 

eV, respectively. Because of the same intrinsic band gap of 2.8 eV, the CB position of 

MoO3 and MoO3-x are 0.43 and -2.57 eV, respectively. This may be at the origin that 
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MoO3-x displayed higher activity than MoO3 for CO2 reduction. 

 

Figure 6 (a) BET and corresponding pore size distribution curves, and (b) TPD of CO2 

from MoO3-x and MoO3. 

For heterogeneous gas-solid carbon dioxide conversion reaction, the adsorption 

properties of the material greatly affect the performance. Figure 6a shows BET plots 

and pore size distribution curves of MoO3-x and MoO3, revealing that the specific 

surface area of MoO3-x is larger than that of MoO3. Based on the type of hysteresis 

loop, the pores of MnO3-x should be wedge-shaped. In addition, the pore size 

distribution of MoO3-x has a mean value of 2.4 nm with a mean pore volume of 0.073 

cm3 g-1. In contrast, MoO3 showed ultra-low specific surface area and pore volume. It 

is also consistent with the foregoing morphology analysis. Figure S12 shows the 

adsorption of CO2 on the two materials, revealing that the amount of CO2 adsorbed 

on MoO3-x is larger than on MoO3. Figure 6b shows the CO2 temperature 

programmed desorption (TPD) of MoO3-x and MoO3. Two strong peaks at 513 and 

625 °C are found in MoO3-x while only one weak peak at 513 °C appears in the TPD 

profile of MoO3. It indicates that MoO3-x can adsorb more CO2 molecules, and the 

adsorption strength is also stronger than MoO3, which is better associated with 
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BET.[45,46] Therefore, MoO3-x displays better catalytic activity for CO2 reduction. After 

normalization by specific surface area, the activity of MoO3-x (0.55 μmol·m-2·h-1) is 

still greater than MoO3 (0.19 μmol·m-2·h-1), indicating that the specific surface area is 

only one of the factors affecting the reduction performance of carbon dioxide. 

 

Figure 7 In-situ FT–IR spectra of the reaction of CO2 and H2O on MoO3-x: (1) without 

CO2 gas and irradiation; (2) with flowing CO2 gas for 30 min without irradiation; and 

with irradiation for (3) 30 min, (4) 60 min, (5) 90 min, and (6) 120 min. 

In-situ FT–IR measurements on MoO3-x were carried out to study the 

mechanism of the photocatalytic CO2 reduction. As shown in Figure 7, after 

introducing water-containing CO2 gas into the system without light irradiation, no 

peaks appeared. However, after turning on the light, monodentate carbonate 

(m–CO3
2−; 1316, 1340, 1458, and 1518 cm−1), bidentate carbonate (b–CO3

2−; 1264, 

and 1541 cm−1), polydentate carbonate (p–CO3
2−; 1395 cm−1), carboxylate (CO2

−; 

1681 cm−1), bicarbonate (HCO3
−; 1422 and 1649 cm−1), formate (1385, 1619, and 

1743 cm−1) and surface formic acid (HCOOH, at 1701 cm−1) appeared. [47–51] And with 

prolonged light illumination all peaks gained intensity. It illustrates that CO2 

molecules were firstly adsorbed on the surface of MoO3-x composite. And then the 

light induced the enhancement of CO2 adsorption. At end, CO2 molecules were 

transformed into various intermediate products. 
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Figure 8 Reaction pathways for CO2 reduction to CO and CH4 on (a) MoO3 and (b) 

MoO3-x surfaces. 

In order to gain deeper understanding of the mechanism of CO2 reduction on 

MoO3 and MoO3-x catalysts, DFT calculations were carried out. All details of the CO2 

reduction pathways to CO and CH4 on the MoO3 and MoO3-x surfaces are shown in 

Figure 8. The reaction includes an eight-electron transfer process, and the most 

stable product in each of these steps could be clearly identified. The initial step of 

CO2 hydrogenation reduction is formation the COOH*. Subsequently, the CO, HCO, 

H2CO, H3CO, H3COH and CH4 are formed from COOH*. Meanwhile, structures of all 

calculated intermediates in CO2 reduction on the MoO3 and MoO3-x surfaces are 

shown in Figure S13 and S14. The energy barriers of CO2 hydrogenation reduction to 

COOH are 3.77 and 2.52 eV on the MoO3 and MoO3-x surfaces, respectively, while the 

COOH dissociation is 4.43 and 0.97 eV. Meanwhile, the energy of barriers on the 

MoO3 and MoO3-x surface are, respectively: 1.74 and 0.98 eV of CO hydrogenation, 

0.55 and 0.04 eV of HCO hydrogenation, 1.89 and 2.28 eV of H2CO hydrogenation, 

0.37 and 0.35 eV of H3CO hydrogenation, 2.84 and 2.31 eV of H3COH dehydroxylation 

and 0.53 and 0.90 eV of CH3 hydrogenation. As shown in the Figure 8, MoO3-x has a 

lower barrier than MoO3 for the CO2 reduction to CH4. Therefore, MoO3-x showed the 
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enhanced activity for sunlight induced photo-thermal synergistic catalytic CO2 

conversion. 

Conclusions 

Oxygen-deficient MoO3-x has been successfully synthesized in this work. The 

LSPR effect induced by oxygen vacancies has narrowed the band gap of MoO3 and 

extended the absorption range to the infrared region. The IR absorption endows 

strong thermal effect in MoO3-x and larger specific surface area provides more active 

sites. Besides, the introduction of oxygen vacancies decreased the barrier for CO2 

hydrogenation and recombination of photogenerated electrons and holes. Finally, 

effective photothermal CO2 conversion efficiency under UV-Vis-IR light is obtained on 

MoO3-x. This present study proves that introducing oxygen vacancies is a feasible 

approach for achieving highly efficient UV-Vis-IR driven photo-thermal catalysts. 
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