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Original article

Sunlit soil surface extraction from remotely sensed
imagery of perennial, discontinuous crop areas; 

the case of Mediterranean vineyards
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Abstract – In the Mediterranean wine producing region, soil surface remote sensing for hydrological modelling is hampered by the
discontinuous canopy of the perennial vine stocks. Very high spatial resolution imagery allows the recording of ground resolution
elements that comprise only soil in between vine stocks. To enable the comparison of the resolution element's spectral properties
with known bi-directional properties of different types of soil surface, pixels representing the pure and sunlit soil surface have first to
be extracted from the imagery. Multi-scale analysis proved to provide a robust and satisfactory segmentation method. Conditional
per-field adjustment of a multi-scale image mask allows the extraction of the image segments corresponding to the sunlit soil surface,
whatever its state or composition. Moreover, the vegetation cover can be estimated with an error of at most 10% if the geometric con-
figuration is taken into account.

remote sensing / soil / vine / segmentation / multi-scale analysis

Résumé – Extraction de la surface du sol éclairée dans des images de télédétection de cultures pérennes et discontinues ; le
cas du vignoble méditerranéen. En région méditerranéenne viticole, l'estimation des états de surface du sol par télédétection est
perturbée par la présence d’un couvert végétal pérenne et discontinu. L'imagerie à très haute résolution spatiale permet d'obtenir des
pixels constitués uniquement de la surface du sol. Pour comparer la radiométrie de ces pixels aux propriétés bidirectionnelles
connues de différents types de surface, on cherche à isoler les pixels correspondant à la surface du sol éclairée. L'analyse multi-échel-
le fournit une approche de segmentation robuste et satisfaisante. L'ajustement conditionnel par parcelle d'un masque obtenu par ana-
lyse multi-échelle permet d'accéder à la surface du sol éclairée, indépendamment de son état ou de sa composition. De plus on peut
estimer le couvert végétal de la vigne avec une marge d'erreur de 10 % si la configuration géométrique est prise en compte.

télédétection / sol / vigne / segmentation / analyse multi-échelle
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1. INTRODUCTION

Hydrological catchment studies have demonstrated
the dominant influence of soil surface features and field
structure on land surface flow [2, 18, 19] and pesticide
transport [21] in the Mediterranean vineyard environ-
ment. Measuring soil surface feature variables at the
scale of one or more catchments is required by spatially
distributed hydrological models that help to understand
and describe flooding events, agricultural pollution and
water resource management.

For agricultural areas with spatially continuous crops,
remote sensing has proven to provide such information
for various surface feature variables. Reviews like
Blanchard et al. [5] and Van de Griend and Engman [31]
summarise the results obtained over the last twenty years
in remote sensing for hydrological modelling, mostly
concerning progress in the detection of surface rough-
ness, humidity and soil organic matter.

On the contrary, little effort has been directed to the
analysis of discontinuous crops such as vineyards using
remote sensing. Most studies applied to vineyards are
focusing on the crop rather than on the underlying soil
surface. They generally exploit the spectral features of
the radiometric signal, ignoring the influence of the spa-
tial discontinuity [6, 16, 24, 30, using Landsat TM, 33]. 

Few studies have assessed the soil surface signal
under vineyards. Hill et al. [14] used AVIRIS data in an
environmental study to estimate the soil erosion risk of
Mediterranean vineyards using spectral unmixing tech-
niques at a spatial resolution of 20 m. Company et al. [8,
9] used airborne SAR and ERS data to describe soil sur-
face roughness under Mediterranean vines. They were
severely hampered by the effect of vine rows and their
compass orientation on radar backscatter. It follows from
these studies that satisfactory results may only be expect-
ed by directly assessing the soil surface signal.

In the following an automated method is proposed to
extract for vineyard fields the sunlit soil surface in
between the vine stocks during the growing season on
the basis of very high spatial resolution images.

2. STUDY AREA

The experiment took place within the lower La Peyne
catchment (43°30'N, 3°20'E). La Peyne river is a tribu-
tary of the coastal river Hérault and located in the
Hérault province, Southern France, about 60 km west of
Montpellier. This catchment of about 70 km2, strongly
dominated by vine cultivation (about 70% of the total
surface), is representative of the French Mediterranean
coastal plain with respect to geology, geomorphology,

agricultural practices, vineyard management and vine
species. The sites studied (four sites of about 1.5 km2

each) cover the variability in physical characteristics and
cultural practices.

Vineyard fields in the coastal plain range in size from
0.05 ha to about 3 ha, where the small ones occupy most
of the surface. Every field is subject to different agricul-
tural practices due to its location, water availability, ori-
entation, vine species and variety, site quality, farmer's
conviction and many social and economic factors. This
variety of practices includes within fields heterogeneity:
rows can be grouped into blocks, and soil in-between
rows in ploughed fields can selectively be left
untouched.

This leads to an important variation of soil surface
spectral properties between and often also within fields.
Other factors not related to human activity still increase
this variation: pedological and geological variations can
have an impact on surface reflectance; between and
within fields, weeds can be at different stages of coloni-
sation.

The vine training mode also varies between fields.
Champagnol [7] recognises nine main types of vine
geometry, four of which are common to the
Mediterranean region. From a hydrological point of
view, three of these (cylinder, reversed cone and hemi-
sphere) can be regrouped under the common name of
“goblet”, i.e. individual plants distributed over a square
grid pattern without any guiding support. This is the tra-
ditional training mode throughout the Mediterranean
region. The other common spatial training mode is called
“wire-trained”, i.e. rows of plants growing along two or
more horizontal metal wires, their shoots providing a
continuous cover along the wire (Fig. 1).

Apart from vine, some continuous crops like winter
wheat and rape can be found. Fallow fields are frequently

sunlit soil  surface shaded soil  surface vine vegetation

0 1 2 3 m

N

Figure 1. Schematic vertical view of a goblet (left) and wire-
trained (right) vineyard, showing the three main objects of the
image. Solar azimuth south-west.
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encountered, but more and more replanted with vine. A
few orchards can also be found. These types of land
cover have been identified in the images as being differ-
ent from vine thanks to a per-field frequency analysis
[32] and will not be considered in this paper.

3. MATERIALS AND METHODS

The choice of the spatial resolution is critical, because
we need to spatially distinguish vine plants from the
underlying shaded or sunlit soil (Fig. 1). The spatial reso-
lution has to be consistent with the spatial frequency of
the terrain [10]. As we know what frequencies we are
looking for, statistical methods as proposed by Atkinson
and Curran [3] have not been considered. To assure full
contrast in the measurements in the image, the sampling
theorem states that a resolution-cell size lower than half
the size of the objects in the scene is necessary [35].
During the growing season, vine rows are roughly 0.5 to
1 m wide. To distinguish accurately the sunlit soil sur-
face under all geometric illumination and view condi-
tions, the optimal spatial resolution was therefore taken
to be about 0.25 × 0.25 m. This pixel size is lower than
0.8 m, i.e. the highest spatial resolution currently avail-
able from commercial space sensors [1, 4, 28]. Therefore
aerial photography has been used. This choice of the spa-
tial resolution also compromises between the resolving
power of the film and the scanning resolution on one
side, and on the swath to be covered (1.5 by 1.0 km per
picture) on the other side.

The aerial photography limits the spectral information
to three relatively broad bands. True colour was pre-
ferred to infrared film colour films for its high resolving
power. Moreover near infrared was not used because it
was not expected to help the sunlit soil segmentation as
discussed later, and the indirect illumination of the soil
surface by the vine vegetation was expected to hamper
analysis in later stages.

Orthogonal photographs were taken from a Hughes
300 helicopter at an altitude of about 1100 m by a Canon
EOS 500 camera with 35 mm lens (∅ 58 mm), using
Fujichrome Provia 100 RDP II colour film. The pictures
were scanned by a Nikon LS-1000 slide scanner at maxi-
mum resolution (2700 dpi, i.e. a pixel size at ground of
20 to 25 cm), radiometrically-corrected by the empirical
line method [20], and geometrically corrected and
assembled. For validation purposes, even higher spatial
resolution images (a few centimetres) were taken at
about 300 m altitude over a range of fields with varying
soil surface state and geometric configuration. The
images were processed using IDL/ENVI (Research
Systems Inc., Boulder, Colorado) software package.

Digitised land register maps were used in the automat-
ic per-field analysis procedure. Comparison with the pre-
cise digital geographic database of IGN (French National
Geographic Institute) showed that field limits of these
maps were of sufficient quality to allow their use for the
extraction of the fields image information.

4. PROPOSED IMAGE PROCESSING STRATEGY

4.1. Requirements to be fulfilled by the method

The method to be developed to extract accurately the
sunlit soil fraction from the images described above
under all conditions encountered, needs to fulfil a num-
ber of requirements:

1. it must be independent of the absolute reflectance val-
ues because soil surface resolution elements can have
similar spectral response with respect to vine resolu-
tion elements and because soil surface and vine
reflectance vary between and within vineyards 
(Fig. 2);

2. the procedure to be selected needs to be contrast
invariant as shown by Figure 2; 

3. the result's quality should be independent of the plan-
tation structure's orientation. The procedure should
therefore be rotation invariant;

4. the method should be shape invariant to work both on
goblet and on wire-trained vineyards; 

5. it should be invariant to translation;

6. the method should accurately extract the part of the
image corresponding to the sunlit soil surface, irre-
spective of the relative fractions covered by sunlit and
shaded soil and vine. This distribution varies rapidly
in time and space as a function of vine development
and geometric configuration.

4.2. Selection of spectral input

From the three fractions considered (sunlit soil sur-
face, shaded soil surface and vine vegetation), the first
has to be isolated. Band ratios like vegetation indices
[20] are unsuitable because they can be similar for vine
and green grass-covered sunlit soil. Figure 3 shows that
the reflectance intensity in the red channel provides the
best input, irrespective of the spectral information avail-
able: with respect to the near infrared reflectance in the
standard case as represented by this figure, i.e. a “naked”
non-vegetated mineral soil-surface between the vine
stocks, we note that the shaded side vine reflectance is
lower than the sunlit side. In turn the sunlit side
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reflectance may not be significantly higher than the
response of a bright, crusted mineral soil, because of a
possibly important fraction of shade between leaves
within a sunlit vine pixel. Therefore the response of the
near infrared channel is considered to be unsuitable as a
discriminator, which justifies the use of the regular
colour film as stated earlier. The response in the green

band will be comparable between the shaded vine and
shaded soil, and also between the sunlit vine and sunlit
soil. Therefore, masking based on the green band would
be shifted from the actual sunlit soil, resulting in a conta-
minated sunlit soil surface portion. The red reflectance
of vine is low, even on the sunlit side, and does not
exceed the sunlit soil surface reflectance even where the
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Figure 2. Between and within field reflectance variation. The image sample shows the red (650 nm) reflectance in May 1998 for a
few pixels of two juxtaposed vineyards, the one on the left (A) with mainly bare calcareous soil, and the one on the right (B) covered
with weeds. Shadowed surfaces have not been considered in this illustration. From the pixel reflectance values (graph on the right) it
can be seen that neither a general, nor a field specific threshold allows us to distinguish between the objects sunlit soil and vine.

N.I.R.0

1

0

1

0

1

RED

GREEN

orthogonal  photographic  plane (pixel size of 0.25m) 0.25m

SHADE SHADE

in
c

o
m

in
g

 li
g

h
t
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last one is covered by grasses or crop residues. This
information has therefore been selected as input for the
method developed.

4.3. Selection of segmentation approach

The requirements specified in paragraph 4.1 clearly
show that traditional spectral thresholding does not pro-
vide an adequate solution to the problem. Even results
from adaptive thresholding [15] techniques are not satis-
factory: local histograms do not allow for robust deter-
mination of a threshold because of the relatively impor-
tant transitional zones between the objects; these
techniques are not contrast invariant and may mix up
vine and grass covered soil. A spatial segmentation oper-
ation is required. Two traditional approaches exist [25,
34]: detection of edges and growing regions from seed
points. Edge detection techniques have important draw-
backs that are incompatible with our requirements: they
are very sensitive to thresholds [34] and often detected
boundaries are not closed [11]. Spectral variations within
the sunlit soil surface would surely lead to many false
edges. The same applies for region growing techniques,
their results depending to a large extent on the seed point
selection. 

Other categories of textural image segmentation
approaches exist, like image pyramids and random fields
[26]. Innumerable other (hybrid-)techniques have been
developed. One might think that for example local mini-
ma detection might help us out, but again a lack of
robustness is found. To obtain satisfactory results, an
image texture model approach is required, because it
allows to incorporate the concept of “object” [23]. This
excludes the use of statistical texture analysis techniques
as proposed by Haralick [13]. 

The texture model here is easily obtained by combin-
ing Figures 1 and 3. A “top-down” [26] definition can be
given, claiming that there is a basic texture element,
called a texel, and a placement rule. There are only two
objects of interest: the sunlit soil surface, and the vine
with its shadow. The sunlit soil surface is expected to be
always at least slightly brighter than vine and/or shadow
pixels. The object “vine with shadow”, of variable but
very limited size (size criteria Csize of the model: about 2
to 5 pixels wide and undetermined length) and very reg-
ular spacing (spacing criteria Cspacing of the model: the
centres of two identical and adjacent objects are 6 to 
10 pixels apart), is superimposed on the soil surface
background, having itself an internal variability at differ-
ent scales. In-between these two objects we find an
important fringe of mixture pixels smoothing the 
borders.

Clearly such a model as a basis for segmentation
would provide erroneous results on fields other than
vineyards, but those have been eliminated beforehand
[32].

The “vine with shadow”, object can best be isolated
from its background by a method taking profit from this
specific size and spacing, i.e. multiresolution analysis.
Belonging to the image pyramids category, multiresolu-
tion analysis [22] results from the embedded subsets
generated by interpolations at different scales. Our object
being coarser than the single pixel resolution, a smooth-
ing is required to make the object stand out [Morel, per-
sonal communication, 27]. The much coarser resolutions
on the contrary, showing the low frequency variations,
are not of interest for this problem.

4.4. Method description

4.4.1. Object identification 

A reliable identification of the object now depends on
the selected scale and smoothing approach. Over the last
decades a lot of interest has been put on obtaining the
information at different scales by wavelet transforms. In
our case however a multiresolution approach based on
the median transform as proposed by Starck et al. [29] is
expected to provide better results for a number of rea-
sons.

There are several problems related to the wavelet
transform: point objects pollute all scales, a positive
structure at a scale is surrounded by negative values
complicating the analysis, and there is no ideal wavelet
transform algorithm. Among the advantages for object
detection provided by the median filter we note: a robust
smoothing due to its nonlinearity (i.e. the effects of out-
lier pixel values are mitigated); shapes of structures in
the scales being closer to those in the input image than
would be the case with a wavelet transform; and the
results of the median filter are found to be better than
those from other morphological tools [29]. So it creates
level sets without smoothing edges and it avoids curva-
ture motion of straight sections [12].

The object “vine and shadow” can now be identified,
not by delimiting a given level set at a certain scale, but
by looking at the change in level sets upon change of
scale. The difference between the scales obtained by
smoothing with a 3 × 3 pixel and a 5 × 5 pixel median
filter (Fig. 4) appears to best delimit our object. The
smallest window, needing to be as small as possible
regarding the often small width of the object, provides
the level sets delimiting the object. The larger window
rises the level sets of the object “vine with shadow” by
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incorporating edge information in the centre of the object
and sunlit soil information near the edge of the object. At
the same time level sets of the object “sunlit soil” are
lowered by inclusion of edge information in the centre

and vine or shadow information near the edge (Figs. 5
and 6). Coarser resolutions (larger smoothing filters)
approach the object spacing and therefore may lead to
inclusion of two copies of the counter object, degrading
the object in-between. Upon further resolution decrease,
the two objects will dissolve into each other or, even
worse, will be inverted.

In short, a boolean image, indicating the location of
the objects, is obtained by the following rule:

“vine and shadow” pixel = 
where (5 × 5 median filtered image -- 3 × 3 median 

filtered image) > 0.

Such an image, still containing a few “islands” of wrong-
ly classified pixels within both objects, is cleaned by a 3
× 3 median filter, eliminating isolated pixels while pre-
serving the object's shape [29]. Other cleaning tech-
niques like combined opening-closing [27] are neglected
because they affect the object’s shape and simply
because the pixel size does not allow the definition of a
structuring element small enough to clean without dam-
aging the small objects.

4.4.2. Object delimitation

The spacing criteria (Cspacing) used by the image tex-
ture model are very stable throughout the images. The
size criteria (Csize) may however be too restrictive with

median

3×3

5×5

0.25 m

Figure 4. Schematic illustration of the result of a 3 × 3 and 
5 × 5 median filter on a red channel vine pixel (black, the
example centre pixel having a white contour). Sunlit soil is rep-
resented by white cells and the transitional fringe by light and
dark grey cells. The schematic image fragment represents part
of a theoretic red channel response on a wire-trained vineyard.
The bars show the filter pixels in an ordered manner.

original  image  sample

median filtered  image (3×3 pixels filter size )

median filtered  image (5×5 pixels  filter size )

booleanized  difference  image sunlit soil mask

White  : 

5×5 filtered  value ≤ 

3×3 filtered  value

3×3 median filtering  

of boolean image

Figure 5. Illustration of the sunlit soil recognition method on a ploughed wire-trained vineyard sample (May 1998) containing a non-
ploughed inter-row. The white line in the original image sample (red band) presents the location of the cross section of Figure 6.
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respect to the variety of situations encountered in the
image, due to the dependency upon the geometric con-
figuration (slope, row orientation, viewing and sun
angles). The now located objects have to be more care-
fully delimited, so as to avoid as much as possible a con-
tamination of the sunlit soil surface signal by vine or
shadow. We therefore apply a “conditional erosion/dila-
tion” (Fig. 7): the “vine with shadow” mask obtained is
deliberately eroded (Minkowski substraction) and dilated
(Minkowski addition) [27], and the situation with the
highest radiometric contrast between the underlying
pixel populations of the two objects is selected as being
the best delimiting mask. If this implies a change, the
procedure is repeated in that direction, until the maxi-
mum contrast has been found. A few remarks have to be
made with respect to this conditional erosion/dilation.

4.4.2.1. Structuring element

Even the smallest, non-orientation selective, structur-
ing element will lead to a two pixel reduction (one on
each side), i.e. 0.5 m, of the row width upon erosion.
This is an important change of the object's width. To
somewhat reduce this change step a “shapeless” structur-
ing element is introduced: its shape adjusts to the shape
of the edge and only if its total size (any 7 cells out of
the 9 cells of a 3 × 3 window) does not fit in, the central
pixel is eroded. This change in structuring element, with
respect to the smallest possible fixed shape element, has
no effect on straight or convex edge sections, but avoids

erosion at concave sections, i.e. where the blobs are
thinnest and less “in need” of an erosion (Fig. 7). The
dilation is obtained in the opposite way.

4.4.2.2. Contrast change

Many different statistical descriptors could be applied
here, but the simple measure of the change in difference
between the median values of the two populations
appeared satisfactory. The contrast is expected to be
highest when both objects include part of the border pix-
els, i.e. the pixels containing a fraction of sunlit soil and
a fraction of shadow and/or vine (Fig. 7). To avoid an
increase in the contamination of the “sunlit soil surface”
pixel population, the object of interest, an additional con-
dition inhibits dilation of the sunlit soil surface image
segments if this results in a significant (α = 0.10, empiri-
cally determined) increase of the internal radiometric
variation.

5. ACCURACY ASSESSMENT AND DISCUSSION

The visual qualitative inspection of the results
obtained on the image mosaics of the four study sites on
two dates (May and June 1998) shows very good perfor-
mances of the method which are independent of vine
training mode. The procedure also seems to comply with
other robustness criteria, like the independence to
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absolute radiometric values and their variation as illus-
trated by the non-ploughed inter-row in Figure 5.

Precise ground truth vegetation cover information or
highly accurate validation data sets are nearly impossible
to obtain, thereby limiting the quantitative evaluation of
the method. However, an approximation of such an accu-
racy assessment has been obtained in the following way:
some low altitude images were acquired during a special
accuracy assessment campaign (May 1999) to obtain
very high resolution images. On these scanned images
(Fig. 8), the sunlit soil was manually extracted by on-
screen digitalisation. Then the images and their manually
produced masks were spatially degraded to a 0.25 m res-
olution. After applying the automatic segmentation
method to the 0.25 m resolution images, its accuracy is
assessed by comparison with the 0.25 m resolution
degraded manually digitised mask. This assessment
results in an approximation, because the manual segmen-
tation is not perfect and its spatial degradation induces
additional error. Moreover the spatial resolution of the

very high resolution images remained limited (about 
6 cm pixel size by flying at 250 m height), because at too
low altitudes the within-field view angle variation is
incompatible with the per-field mask adjustment (vari-
able “vine and shadow” size).

Applying the method to a variety of image segments
obtained at low altitude (Fig. 9) allows for a number of
important observations. First of all we note that the
method is robust with respect to crop orientation and
training mode (goblet or wire-trained). If the manually
produced masks are considered “true”, we see that the
vine and shadow cover estimation “error” generally
remains below 10%, except for some cases where visual-
ly relatively little vine and shadow have been identified.
Most often (Fig. 9, lower right and upper row second
from left), this is related to the security built into the
method to avoid an increase of variance within the initial
sunlit soil pixel population. As the change upon morpho-
logical erosion is relatively important, the gap between
the delimitation retained and the ground truth can remain

Cero

«sunlit soil » dilation «sunlit soil » erosion

CoriCdil

fr
e
q
u
e
n
c
y


data value data value data value

Figure 7. Illustration of the object delimitation by conditional erosion/dilation. The grey (resp. white) histograms correspond to the
region covered by the white pixels (resp. black). The contrast between the two pixel populations obtained by application of the origi-
nal (Cori), the dilated (Cdil) and the eroded (Cero) mask is indicated. In this example the original mask fits best (highest contrast). The
dilated mask case shows a significant increase in variation within the “sunlit soil” pixel population.
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Figure 8. Mosaic with small parts of
12 different vine fields. The variation
between these samples represents a
large part of the between-field varia-
tion as found in the images due to
varying geometric configuration
(viewing, illumination, crop orienta-
tion), varying crop size, age and train-
ing mode, changes in soil and soil
surface state.

Spatially degraded , manually digitised mask Object  identification phase

Per- field object delimitation  phasePer-field comparison  of ground  data and  procedure  output

shortage:14.5

excess:    17.7

nnnneeeetttt::::                                 ++++3333....2222

shortage:  8.6

excess:     2.6

nnnneeeetttt::::                                     ----6666....0000

shortage:  5.2

excess:     7.4

nnnneeeettttÊÊÊÊ::::                             ++++2222....2222

shortage: 29.1

excess:     1.9

nnnneeeetttt::::                              ----22227777....2222

shortage:17.3

excess:   14.3

nnnneeeetttt::::                                 ++++7777....0000

shortage:  5.9

excess:     5.3

nnnneeeetttt::::                                      ----0000....6666

shortage:  3.5

excess:   11.3

nnnneeeetttt::::                                 ++++7777....8888

shortage:  6.2

excess:     9.5

nnnneeeetttt::::                                 ++++3333....3333

shortage:13.0

excess:   13.0

net:         +0.0

shortage: 25.2

excess:     3.6

nnnneeeetttt::::                              ---- 22221111....6666

shortage:13.5

excess:     5.5

nnnneeeetttt::::                                     ---- 8888....0000

shortage:13.1

excess:     2.0

nnnneeeetttt::::                            ---- 11111111....1111

Figure 9. The appli-
cation of the two
steps of the proce-
dure (see Figs. 5 and
7) on the image of
Figure 8 are shown
by the binary images
on the right. The
comparison between
the final results and
the manually pro-
duced ground data is
shown by the table
on the lower left side
(each cell corre-
sponding to the
image sample at 
the same location in
the mosaic): short-
age is the percentage
of pixels visually
identified as sunlit
soil and not recog-
nised as such by the
procedure, excess is
the inverse and net
their difference, i.e.
the accuracy of the
vine and shadow
cover estimation.
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relatively important. In some cases imperfections in the
manual digitisation contribute to an increase of the error:
in the upper right sample (Fig. 9) several vines that could
not be identified visually were detected by the automatic
method.

Generally the absolute values of shortage and excess
(Fig. 9) should not be considered as serious errors as
long as their values are of the same order and do not
exceed 15%. The limited accuracy of the hand-delimited
“ground truth” and the resampling method used for the
spatial degradation (cubic convolution) can lead to a
slight shift between the method's results and the refer-
ence mask, leading to a rapid increase in shortage as well
as in excess. Only the upper left sample presents a real
problem: the relatively wide spacing of the rows com-
bined with dark lines in the middle of the inter-row
forces the method to falsely identify vine in the inter-
row. Fortunately such cases are very scarce.

6. CONCLUSION

The segmentation of the sunlit soil surface pixels is
required for two reasons. The main objective is to obtain
a population of pixels that is representative of the sunlit
soil surface's reflectance and variation. A secondary
objective is the estimation of the field's vine vegetation
cover. This would provide one of the input parameters
required by the spatially distributed hydrological model
[17].

With respect to this vegetation cover estimation we
have noticed an overestimation of the vegetation cover
on very young vine fields. This is not related to the
impossibility of the method to produce a better delimita-
tion, but is related to the prevalence of its calibration for
the main objective. Model parameters can easily be
adapted to produce an optimal mask.

Nevertheless it will remain a coarse approximation
due to the relatively large cover change upon one step in
the iterative erosion process. To improve the estimation
of the vegetation cover, research effort should be put into
the statistical analysis of the contrast change obtained
over the successive erosions/dilations. The best “vine
and shadow” delimitation can very well be situated in-
between two versions of the mask and even if the geo-
graphic delimitation cannot be obtained, its cover may
still be quantitatively estimated. Once this estimation
obtained, the orthogonal vine vegetation cover can be
calculated by taking into account the shadow part. All
parameters required for this calculation (geometric con-
figuration of viewing and illumination, crop orientation,
slope and aspect) are available except for the plant height
that can vary from 1.20 m to 1.80 m.

The most important and very satisfying result is that
the method proposed allows for a rapid and unambigu-
ous identification of the majority of the sunlit soil sur-
face, independent of its radiometry and variation. The
radiometry of the pixels labelled “sunlit soil surface” can
now be compared to known bi-directional reflectance
properties of a variety of soil surface states, and that is a
big step towards recognition of the soil surface state
under perennial, discontinuous crops.

Depending on the research objective the method can
be inverted to obtain a pure crop signal by masking the
soil “background”. Shaded soil pixels then have to be
eliminated from the “pure” shade and vine pixel popula-
tion. The use of vegetation indices may encounter the
same difficulties as those mentioned before (Sect. 4.2).
Knowing the geometrical configuration (sun, view and
slope azimuth and zenith angles, row orientation), a mor-
phological approach could be developed.
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