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Abstract

In many computing systems, information is produced and
processed by many people. Knowing how much a user trusts
a source can be very useful for aggregating, filtering, and or-
dering of information. Furthermore, if trust is used to support
decision making, it is important to have an accurate estimate
of trust when it is not directly available, as well as a measure
of confidence in that estimate. This paper describes a new
approach that gives an explicit probabilistic interpretation for
confidence in social networks. We describe SUNNY, a new
trust inference algorithm that uses a probabilistic sampling
technique to estimate our confidence in the trust information
from some designated sources. SUNNY computes an esti-
mate of trust based on only those information sources with
high confidence estimates. In our experiments, SUNNY pro-
duced more accurate trust estimates than the well known trust
inference algorithm TIDALTRUST (Golbeck 2005), demon-
strating its effectiveness.

Introduction

Trust is used in different ways in a variety of systems. Social
trust is emerging as interesting and important, but it is as yet
not well understood from a computational perspective. As
with all social relationships, it is difficult to quantify trust
and its properties are fuzzy. Still, developing methods for
accurately estimating trust between people is important for
the future of many systems; it holds promise for improving
Web policy systems, as a component of provenance in scien-
tific workflows and intelligence databases, and as a value for
filtering, ordering, and aggregating data in many domains.

If trust is being used to support decisions, it is important
to have an accurate estimate of trust when it is not directly
available, as well as a measure of confidence in the com-
puted trust value. Given a social network, existing inference
algorithms either compute only trust, or conflate trust and
confidence, yielding erroneous and ambiguous inferences.
As an example, consider the network in Figure 1 which de-
picts a network with trust values on a 0 to 1 scale. When
making a recommendation to A, one may be inclined to de-
crease the recommended trust value for H because it is de-
rived from nodes who are not trusted much and the path from
A to H is long. However, this is an incorrect approach since

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A sample social network with trust values (on a
0-1 scale) as edge labels.

there is no way to tell if we are very certain that H should
be trusted at that recommended level, or if we believe H is
more trustworthy but simply do not have confidence in the
sources of that information. The result of an algorithm that
merges trust and confidence is not a trust value, but rather a
new variable that is an amalgamation of the two concepts.

In this paper, we describe a new approach that gives an
explicit probabilistic interpretation to confidence in social
trust networks. Our contributions are as follows:

• A formal representation mapping that takes a trust net-
work and produces a Bayesian Network suited for approx-
imate probabilistic reasoning. This mapping also gener-
ates a probabilistic model for the result Bayesian Net-
work, using similarity measures computed over the pre-
vious decisions of the entities in the input trust network.

• A new algorithm, called SUNNY, for trust inference
based on probabilistic confidence models. To the best of
our knowledge, SUNNY is the first trust inference algo-
rithm that includes a confidence measure in its compu-
tation. SUNNY performs a probabilistic logic sampling
procedure as in (Kuter et al. 2004) over the Bayesian Net-
work generated by our representation mapping. In doing
so, it computes estimates of the lower and upper bounds
on the confidence values, which are then used as heuris-
tics to generate the most accurate estimates of trust values
of the nodes of the Bayesian Network.

• An experimental evaluation of SUNNY in comparison
to the well-known existing work on TidalTrust (Gol-
beck 2005). Our experiments show that SUNNY signif-
icantly outperforms TIDALTRUST in the commonly-used
FilmTrust social network.
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Background

We use the usual definitions for social trust networks as in
(Golbeck 2005). We define a social domain S as a tuple
of the form (N,E, R,D). N is a finite set of information-
processing nodes (or IP nodes, for short). For example, in
social environments, an IP node corresponds to a person;
on the Semantic Web, an IP node may also correspond to
a Web service, a database, or any entity on the Web that
takes information as input from other entities, processes that
information, and relays it to other entities.

In S, E is a finite set of information elements and R is
an interval of the form [0, r], for some predefined positive
number r. A decision by an IP node n is an assignment of a
number from R to an information element e ∈ E. Thus, D,
the decision function of S, is a function defined as

D : N × E → R.

If D(n, e) = 0 then n does not have a decision over e.
As an example, consider a social domain in which peo-

ple make decisions over the ratings of a predefined set of
movies. In this setting, N is the set of all people who partic-
ipate in such decisions and E is the set of all of the possible
movies that can be considered by the participants. If a per-
son n makes a decision about a movie e, then D(n, e) �= 0,
and it is the rating that n has assigned to e.

A trust network is a directed graph T = (S, V, α), where
S = (N,E, R,D) is the social domain in which T is de-
fined, V is the value function, and α > 0 is the maximum
possible absolute value of trust that appears in T . Intuitively,
the value function V describes the weights of the trust rela-
tions between the IP nodes in the network. Formally, V is a
function defined as

V : N × N → [0, α].

If V (n, n′) = 0 for two IP nodes n, n′ ∈ P , then there is no
direct trust relation (i.e., no edge) between n and n′; i.e., we
have no knowledge about whether n trusts n′ or not.

We say that an IP node n is an T-ancestor of n′, if there
exists a directed path in the trust network T that starts at n
and ends in n′. Similarly, n′ is a T-descendant of n in T .

A trust inference problem is a triple (T, n0, n∞), where
T = (S, V, α) is a trust network, and n0 and n∞ are the
source and the sink nodes in T , respectively. A solution to
a trust-inference problem is a trust value 0 < t ≤ α that
describes the amount of trust that the source has for the sink
in T . If there is no solution, then the amount of trust that the
source has for the sink remains unknown.

We use the usual definitions for Bayesian Networks as
in (Pearl 1988). A Bayesian Network is a directed acyclic
graph B = (X, A), where X is the set of state variables and
A is the set of arcs between those nodes. Each variable in X
describes a set of possible logical relations in the world. We
assume in this paper that each state variable in X is Boolean,
with the two possible truth values TRUE and FALSE. If there
is an arc x → x′ in A, such that x, x′ ∈ X , then this means
that the truth value of x′ depends on the truth value of x.

The parents of a variable x in B is the set of variables,
denoted as PARENTS(x), such that if there is an arc x → x′

in A then x is in PARENTS(x′). x is a terminal variable in
B, if PARENTS(x) is the empty set.

Each variable x in B is associated with a conditional
probability table (CPT), which describes the conditional
probability of x being TRUE (or FALSE) given its parents.
Note that if PARENTS(x) = {x1, x2, . . . xk} then the con-
ditional probability table associated with x has 2k entries
for each possible combination of the truth values for each of
its parents. If x is a terminal variable in B, then the con-
ditional probability table associated with x specifies the a
priori probabilities of x being TRUE or FALSE.

We make the usual conditional independence assumption
in Bayesian Networks: given PARENTS(x), x is condition-
ally independent from rest of the variables in B. That is,
whether the computation of the probability that x will be
TRUE or FALSE depends only on the truth values of x’s par-
ents and on no other state variable in B.

Modeling Confidence in Social Networks

We now describe a probabilistic interpretation of confidence
in a given trust network T and a way to compute a proba-
bilistic confidence model C for T . The next section describes
a simple method that takes the trust network T and its con-
fidence model C, and generates a Bayesian Network B such
that B structurally corresponds to T and is used for approx-
imate probabilistic reasoning to assist trust computation.

Let S = (N,E, R,D) be a social domain, and n and
n′ be two IP nodes in N . We define the confidence that
n has in n′ as n’s belief on the correctness of information
provided by n′. We model the confidence of n for n′ as the
conditional probability P (n|n′) defined as follows: given
that n′ conveys some information to n, the probability that
n believes in the correctness of that information is P (n|n′).

A confidence model C for the trust network T = (S, V, α)
is the set of conditional probabilities as above such that C
specifies P (n|n′) for every pair of (n, n′) in T such that
V (n, n′) �= 0; i.e., if there is an arc from n to n′ in T .

A confidence model for T can usually be generated in two
ways. First is to take the confidence model as input from a
“domain expert.” This is the assumption made by most prob-
abilistic reasoning and planning systems in the literature (see
(Russell & Norvig 2003; Boutilier, Dean, & Hanks 1999) for
two excellent surveys on these topics).

The second way to obtain a confidence model for T is
to use approximation techniques such as statistical sam-
pling and/or profile similarity measures. (Golbeck 2006)
described how a combination of profile similarity measures
reflect social opinions more accurately than overall similar-
ity alone. Assume that all D(n, e) are in the 0 to 1 range,
where n is an IP node and e is an information element. The
three profile features identified in (Golbeck 2006) were:

1. Overall Difference (Θn,n′ ): Given the decisions that n
and n′ have made in common in the past (i.e., the set of
values D(n, e) and D(n′, e) for all information items e
such that D(n, e) �= 0 and D(n′, e) �= 0), Θn,n′ is mea-
sured as the average absolute difference in their D values.

2. Difference on extremes (χn,n′ ): A decision D(n, e) is
considered extreme if it is in the top 20% or the bottom
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20% of the overall decisions made by n. χn,n′ is com-
puted as the average absolute difference on this set.

3. Maximum difference (∇n,n′ ): The single largest dif-
ference on the same decision made by two IPs (i.e.,
max{(D(n, e) − D(n′, e))},∀e such that D(n, e) �= 0
and D(n′, e) �= 0).
To indicate belief or disbelief, we define a coefficient

σn,n′ in the range -1 to +1 such that if σ(n, n′) > 0, then the
conditional probability P (n|n′) denotes the amount of be-
lief of n in the information provided by n′ (i.e., the amount
of the causal supportive influence that the information from
n′ has on n’s decisions). Otherwise, P (n|n′) denotes the
amount of disbelief of n in the information provided by n′
(i.e., the amount of inhibitory influence that the information
from n′ has on n’s decisions).

We compute σn,n′ as follows. If Θn,n′ is more than one
standard deviation above the mean Θ, then the IPs should
be considered to generally disbelieve in one another, so
σn,n′ = −1. If Θn,n′ is more than one standard deviation
below the mean, then the IPs should be considered to gen-
erally believe in one another, so σn,n′ = 1. When Θn,n′ is
within one standard deviation of the mean, it is not as clear
whether there is belief or disbelief. In these cases, we used
as a multiplier the Pearson correlation coefficient (ρ) over all
common decisions made by n and n′: σn,n′ = ρ.

The result is Equation 1. Note that weights wi may
vary from network to network. The weight assignment
(w1, w2, w3, w4) = (0.7, 0.2, 0.1, 0.8) followed from our
experiments and also provided the best results (Golbeck
2006).

P (n|n′) =

0
BBBBB@

σij |1 − 2(w1Θn,n′ + w2∇n,n′ + w3χn,n′)|,
if χn,n′ exists

σij |1 − 2(w4Θn,n′ + (1 − w4)∇n,n′)|,
otherwise

1
CCCCCA

(1)
In the next section, we will use the above formula for

computing confidence values (i.e., a conditional probabili-
ties of belief and disbelief) between two information pro-
cessors are already connected in the network.

A Bayesian Network Formulation of Trust

Inference Problems

Given a trust inference problem (T, n0, n∞), we construct
BT = (X, A), a Bayesian Network that is suited for ap-
proximate probabilistic confidence reasoning as follows.

Let L be the set of nodes in T such that for each node n ∈
L, V (n, n∞) �= 0 and n is a T -descendant of n0, where n0

and n∞ are the source and the sink nodes in T . Intuitively,
the set L contains each n node in T that (1) has some direct
trust information about the sink in T and (2) can relay that
information to the source.

We compute the set N of nodes in BT as follows (see
the GENERATEBN pseudocode in Figure 2 for this proce-
dure). The nodes in L described above correspond to the
leaf variables in BT ; i.e., each n in L does not have any
parents in BT . Starting from the nodes in L, we perform

Procedure GENERATEBN(T, n0, n∞)
K ← the immediate neighbors of n∞ in T
K′ ← ∅
while K �= K′ and n0 �∈ K do
K′ ← K; K′′ ← ∅
while K′′ �= K do

K′′ ← K
K ← K ∪ WEAKPREIMG(K, T )

K ← PRUNE-STATES(K)
if n0 ∈ K then return K
return FAILURE

Figure 2: The algorithm for generating a Bayesian Network,
given a trust network T and two nodes, n0 and n∞, that are
the source and the sink in T , respectively.

a variant of backward breadth-first search over the nodes of
T towards the source. The basis of this backward search is
a weak preimage computation, which was originally devel-
oped and used in a number of automated AI planning algo-
rithms (Cimatti et al. 2003). Formally, the weak preimage
of a given set of nodes, say K, in a trust network T in the
context of our representation mapping is defined as follows:

WEAKPREIMG(K, T ) = {n | n is a node in T , n �∈ K,

n′ ∈ K and V (n, n′) �= 0}.
Intuitively, a WEAKPREIMG of a set K of nodes in a trust
network contains each node n that is not in K and that has a
direct trust relation with some node n′ in K.

The backward breadth-first search does successive
WEAKPREIMG computations starting from the leaf nodes
in L. The search stops when there no new nodes left to be
visited. This generates a subnetwork of the original trust
network T in which every possible path is guaranteed to
end in T ’s sink node. However, the generated subnetwork
may contain redundant nodes that are not reachable from the
source as well as cyclic paths. Since such redundant nodes
and cyclic paths will not provide any new social information
to the source node in determining its trust value of the sink,
we perform a forward search in the result network in order to
eliminate the redundancies and cycles. The PRUNE-STATES
subroutine in Figure 2 implements this forward search.

After the redundancies are eliminated, there may be some
nodes in the network that loose their connection to the
sink node, and therefore, become redundant. To identify
and eliminate those nodes, GENERATEBN successively per-
forms the WEAKPREIMG and the PRUNE-STATES compu-
tations, until there are no redundant and cyclic nodes left in
the network. At this point, if the source node is in set K of
visited nodes, then GENERATEBN returns the set K. Oth-
erwise, it returns FAILURE since there is no trust connection
between the source and the sink in the trust network T .

The nodes in K returned by GENERATEBN and the edges
between those nodes constitute the Bayesian Network BT

as follows. For each node n in K, we define a Boolean
variable x that denotes the logical proposition that whether
n believes in the sink node n∞. In BT , X is the set of such
logical propositions. A is the set of all of the edges between
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Procedure SUNNY(T, n0, n∞)
BT ← GENERATEBN(T )
for every leaf node n in BT do
decision[n] ← UNKNOWN

〈P⊥(n0), P�(n0)〉 ← SAMPLE-BOUNDS(BT )
for every leaf node n in BT do

set the lower and upper probability bounds such that
P⊥(n) = P�(n) = 1.0

〈P ′
⊥(n0), P

′
�(n0)〉 ← SAMPLE-BOUNDS(BT )

if |P ′
�(n0) − P�(n0)| < ε and |P ′

⊥(n0) − P⊥(n0)| < ε
then decision[n] ← TRUE

else decision[n] ← FALSE

return ( COMPUTE-TRUST(BT , decision) )

Figure 3: SUNNY, the procedure for computing trust and
confidence in a trust network.

the nodes in K, with the directions of those edges reversed.1
Then, we use Equation 1 of the previous section in order to
compute the conditional probabilities for every edge in BT .

Note that GENERATEBN aggressively eliminates nodes
and edges from the original network, which may result in
the elimination of certain acyclic paths as well. This aggres-
sive strategy guarantees the elimination of all possible cy-
cles in trust networks with complicated structures, in order
to create a Bayesian Network (i.e., a directed acyclic graph).
However, as our experimental evaluation in the subsequent
sections demonstrate, this does not have any significant ef-
fect on the accuracy of the trust computation: our algorithm
was able to outperform the well-known TIDALTRUST algo-
rithm, despite its aggressive edge elimination.

Note also that the Bayesian Network generated as above
do not necessarily model a complete joint probability distri-
bution, as one would expect from a standard Bayesian Net-
work. This is due to two reasons: (1) the network generated
above does not include all of the parents of a node since we
are aggressively eliminating nodes during its construction,
and (2) Equation 1 that we use for computing a confidence
model does not compute a full CPT, but only the conditional
probabilities between pairs of nodes.

SUNNY

Figure 3 shows the pseudocode of the SUNNY procedure
for computing the confidence and trust values in a trust net-
work. The input for the procedure is a trust-inference prob-
lem (T, n0, n∞). With this input, SUNNY first generates
the Bayesian Network BT that corresponds to T using the
GENERATEBN procedure described above. SUNNY then
generates estimates of the lower and upper bounds on the
confidence values of each node in BT in the sink node.
SUNNY uses these estimates to make a decision on each
leaf node in BT whether to include that node in the final

1Note that it is correct to have the reverse edges in BT ; when
there is a trust relation in T between two nodes n and n′ is rep-
resented as n → n′, denoting “n knows n′ with some amount of
trust”, then the information flows from n′ to n, when we are com-
puting trust values. Thus in BT , the reverse edge n ← n′ captures
the correct direction of this information flow.

trust computation or not. During its computation, SUNNY
considers three types of decisions for a leaf node: include,
exclude, and unknown. Including a leaf node means that
the trust information coming from that leaf node about the
sink will be considered in the trust inference; otherwise, it
will not be considered since SUNNY will have a low con-
fidence in that trust information. An unknown decision on a
leaf node means that SUNNY has not decided yet whether
to include or to exclude that node in its operation.

SUNNY uses a probabilistic logic sampling technique in
order to compute the confidence value of the source n0 in
the sink n∞ in BT . A probabilistic logic sampling algo-
rithm runs successive simulations over a Bayesian Network
and samples whether each variable is assigned to TRUE or
FALSE (Henrion 1988). In SUNNY, we used a variant of
probabilistic logic sampling described in (Kuter et al. 2004),
with the following difference. In their sampling procedure,
Kuter et al. use a complex probabilistic approximation rule
for reasoning about the dependencies between the parents
of a node that are not explicitly modeled in the network as
well as for reasoning about unmodeled (i.e., hidden) nodes
in the underlying Bayesian Network. In a social trust con-
text, we usually do not have complex unseen implicit depen-
dencies nor hidden nodes since the trust information flows
through the existing links between the existing nodes in the
network. Thus, our sampling algorithm does not include
these aspects; instead as an approximation rule, it simply
uses a standard Noisy-OR computation (Pearl 1988).

In Figure 3, the SAMPLE-BOUNDS subroutine performs
our probabilistic sampling procedure, which provides a way
to estimate the lower and upper bounds, P⊥(n) and P�(n),
on the confidence value of a node n. The lower and upper
bounds P⊥(n) and P�(n) for a leaf node n is simply 0.0
and 1.0, respectively, if SUNNY decides to mark the node
n as unknown. For include and exclude decisions, SUNNY
sets the bounds to both 1.0’s and both 0.0’s, respectively.

The bounds P⊥(n) and P�(n) for an intermediate node
n is computed based on the current estimates of the lower
and upper bounds computed for the parents of n during
the probabilistic sampling process. In each simulation,
SAMPLE-BOUNDS samples all of the parents of n before it
processes n. This way, the procedure always knows the truth
values on the parents of a node n at the point it attempts to
sample n, and therefore, for each parent ni of n, the con-
ditional probability P (n|ni) can easily be determined from
the input confidence model.

For each intermediate node n, SAMPLE-BOUNDS proba-
bilistically samples two cases: (1) the case where n is TRUE
with minimum probability and (2) the case where n is TRUE
with the maximum probability. The minimum and the max-
imum probabilities that n is TRUE are computed using the
conditional probabilities between n and its parents, and the
truth values of each of the parent’s minimum and maximum
case. Note that, this is a recursive definition: at a leaf node,
the minimum and maximum cases are sampled by using the
confidence bounds that depends on SAMPLE-BOUNDS’s de-
cision on that node, as described above.

SAMPLE-BOUNDS keeps a counter for both minimum
and maximum case at each intermediate node, which are ini-
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tialized to 0 at the very beginning of the sampling process.
If, in this simulation, the algorithm samples that n is TRUE
in the minimum and/or in the maximum case, then the cor-
responding counters are incremented. At the end of the suc-
cessive simulations, the counter values associated with each
node are divided by the total number of simulations in or-
der to compute the estimates for the lower and upper bounds
P⊥(n) and P�(n).

SUNNY uses the lower and upper bounds computed
by the SAMPLE-BOUNDS subroutine as follows. First,
SUNNY invokes SAMPLE-BOUNDS with no decisions
made (i.e., every leaf node in BT is marked UNKNOWN).
This invocation produces a lower and an upper bound on the
confidence of the source, which are essentially the minimum
and the maximum possible confidence values, respectively.
Then, SUNNY uses these bounds in a hill-climbing search
in order to actually finalize a decision on whether to include
or exclude a leaf node in the trust computation. More pre-
cisely, SUNNY invokes SAMPLE-BOUNDS for each leaf
node n with the a priori probabilities on both of the bounds
over n set to 1.0. If this invocation of SAMPLE-BOUNDS
produces minimum and maximum possible confidence val-
ues within an error margin ε of the ones computed before,
then n should be included in the final trust computation,
since the source has these confidence bounds when it con-
siders the information coming from n. Otherwise, n should
be excluded from the final trust computation.

Once the decisions on all of the leaf nodes of BT has been
made, SUNNY computes the trust value for the source by
performing a backward search from the leaf nodes of BT

towards the source. In Figure 3, COMPUTE-TRUST subrou-
tine performs the backward search. At each iteration during
this search, the trust value of a node is computed based on
the trust values between that node and its immediate par-
ents and the trust values of the parents in the sink node that
are already computed in the search. Although there are sev-
eral ways to combine these two pieces of trust information,
SUNNY uses the same weighted-averaging formula used
in the TIDALTRUST algorithm, as we used that algorithm in
our experiments with SUNNY described in the next section.

Experimental Evaluation

Because SUNNY is the first trust inference algorithm that
includes a confidence measure in its computation, there is
no existing work against which the confidence component
can be judged. However, for both values to be useful the
computed trust value must be accurate. We computed the
accuracy of the trust values and compared them against the
performance of TIDALTRUST. TIDALTRUST is one of sev-
eral well-known localized trust computation algorithms, and
previous work has shown it to perform as well as or better
than its peer algorithms.

We used the FilmTrust network as the data source for
our experiments. FilmTrust2 is a social networking web-
site where users have assigned trust values to their relation-
ships. Users also rate movies in the system, and we used

2Detailed information on FilmTrust is available at http://trust.
mindswap.org

Table 1: The comparisons between the accuracies of
SUNNY and TIDALTRUST on the FilmTrust network.

Algorithm Average Error Std. Dev
TIDALTRUST 1.986 1.60
SUNNY 1.856 1.44

these ratings to compute confidence values as described in
the previous sections. Because it is publicly accessible on
the Semantic Web, the FilmTrust network is a commonly
used data set for this type of analysis.

There are 575 people actively participating in the
FilmTrust social network, with an average degree of 3.3.
Each pair of users connected in the network shared an av-
erage of 7.6 movies in common. When pairs of users had no
movies or only one movie in common, there was not suffi-
cient information to compute confidence from similarity. In
these cases, we scaled the trust value to a −1 to 1 scale and
used the sign of that value as our belief/disbelief coefficient
and the unsigned value as the confidence value.

To gauge the accuracy of the trust inference algorithms,
we selected each pair of connected users, ignored the rela-
tionship between them, and computed the trust value. We
then compared the computed value to the known trust value
and measured error as the absolute difference. We per-
formed this process for every connected pair of users in the
network where there were other paths connecting them. If
there is no path between users beside the direct connection,
it is impossible to make a trust computation from the net-
work, and these pairs are ignored. In total, 715 relationships
were used in this evaluation.

As shown in Table 1, the average error for SUNNY is
6.5% lower than the average error for TIDALTRUST. A stan-
dard two-tailed t-test shows that SUNNY is significantly
more accurate than TIDALTRUST for p < 0.05. While accu-
racy will vary from network to network due to variations
in structure, users’ ratings, and confidences, these results
demonstrate that SUNNY is an effective algorithm for com-
puting trust in social networks.

Related Work

(Pearl 1988) provides a comprehensive treatment of network
models of probabilistic reasoning. A probabilistic network
model defines a joint probability distribution over a given
set of random variables, where these variables appear as the
nodes of the network and the edges between these nodes de-
note the dependencies among them. One widely-known net-
work model that we exploited in this work is Bayesian Net-
works (Pearl 1988). Bayesian networks are directed acyclic
graphs in which the arcs denote the causal and conditional
dependencies among the random variables of the probabilis-
tic model. The inference mechanisms in Bayesian Networks
are due to Bayesian Inference, which provides an incremen-
tal recursive procedure to update beliefs when new evidence
about the input probabilistic model is acquired.

Probabilistic Logic Sampling (Henrion 1988) is a tech-
nique for performing stochastic simulations that can make
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probabilistic inferences over a Bayesian Network with an
arbitrary degree of precision controlled by the sample size.
It runs successive simulations to estimate the probabilities of
the nodes of a given Bayesian Network. As we run more and
more simulations, the estimates of the probability of each
variable get progressively more accurate, and it is shown in
(Henrion 1988) that these estimates converge to the exact
probability values in the limit. However, in practice, usually
a termination criterion is used to determine the number of
simulations (e.g., until the residual of every node becomes
less than or equal to an epsilon value > 0 or until an upper
bound k on the number of simulations is reached).

While there are no algorithms in the literature on social
networks that compute both trust and confidence values (i.e.,
probabilistic belief models), there are several algorithms for
computing trust. A thorough treatment can be found in (Gol-
beck 2005). The TIDALTRUST algorithm that we used in our
experimental evaluation of SUNNY is one of several algo-
rithms for computing trust in social networks and we chose
it for our comparison because, like SUNNY, it outputs trust
ratings in the same scale that users assign them, and the val-
ues are personalized based on the user’s social context.

Trust has also been studied in the area of peer-to-peer sys-
tems. Among others, (Wang & Vasilleva 2003) describes a
Bayesian Network based model of trust in peer-to-peer sys-
tems, where a naive Bayesian Network model is used to de-
scribe the trust relations between two agents (i.e., informa-
tion processors in our context) and use a “small-world as-
sumption” that enables an agent to keep its decisions based
on the trust values for only its local neighborhood of other
agents. In this paper, on the other hand, we focused on the
propagation of confidence (i.e., belief) and trust values over
the entire network of information processors and used con-
fidence models to guide such a propagation to make it more
efficient and accurate. In future, we are intending to investi-
gate to generalize our trust computation techniques by incor-
porating Bayesian Network-based models for trust values.

Conclusions and Future Work
When using social trust in many applications, it is important
to have an accurate estimate of trust when it is not directly
available, as well as a measure of confidence in the com-
puted value. In this work, we have introduced a probabilistic
interpretation of confidence in trust network, a formal rep-
resentation mapping from Trust Networks to Bayesian Net-
works, and a new algorithm, called SUNNY, for computing
trust and confidence in social networks. In direct compar-
isons, SUNNY was shown to significantly outperform the
well-known TIDALTRUST trust inference algorithm in terms
of the accuracy of the computed trust values.

As future work we plan to integrate SUNNY into a work-
ing application to evaluate its effectiveness. We are involved
in a project with the goal of developing a semantically rich
web-based syndication framework. When matching queries
over streaming news feeds, often times conflicting informa-
tion will enter the knowledge base. If the source of each
fact is known, trust can be used to prioritize information and
select the most trusted of the inconsistent facts to include.
Earlier work (Katz & Golbeck 2006) illustrated the use of

trust as a prioritization tool for default logics. We plan to
integrate our approach into this syndication system to study
the use of the confidence values as well as the effectiveness
of trust for this sort of prioritization.
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