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Abstract

While models for Visual Question Answering

(VQA) have steadily improved over the years,

interacting with one quickly reveals that these

models lack consistency. For instance, if a

model answers “red” to “What color is the bal-

loon?”, it might answer “no” if asked, “Is the

balloon red?”. These responses violate sim-

ple notions of entailment and raise questions

about how effectively VQA models ground

language. In this work, we introduce a dataset,

ConVQA, and metrics that enable quantita-

tive evaluation of consistency in VQA. For a

given observable fact in an image (e.g. the bal-

loon’s color), we generate a set of logically

consistent question-answer (QA) pairs (e.g. Is

the balloon red?) and also collect a human-

annotated set of common-sense based consis-

tent QA pairs (e.g. Is the balloon the same

color as tomato sauce?). Further, we pro-

pose a consistency-improving data augmen-

tation module, a Consistency Teacher Mod-

ule (CTM). CTM automatically generates en-

tailed (or similar-intent) questions for a source

QA pair and fine-tunes the VQA model if the

VQA’s answer to the entailed question is con-

sistent with the source QA pair. We demon-

strate that our CTM-based training improves

the consistency of VQA models on the Con-

VQA datasets and is a strong baseline for fur-

ther research.

1 Introduction

“A skeptic, I would ask for consistency first of all.”

Sylvia Plath (Plath, 2007)

Visual Question Answering (VQA) (Antol et al.,

2015) involves answering natural language ques-

tions about images. Despite the recent progress

on VQA, we observe that existing methods are

prone to making blatant mistakes while answering

questions regarding the same visual fact but from

slightly different perspectives (Figure 1). This

Figure 1: Current VQA models often fail at consistently an-
swering semantically rephrased questions. To address this
limitation, we construct a consistent VQA (ConVQA) dataset
with diverse QA pairs that query the same visual fact. We also
propose a Consistency Teacher Module (CTM) that improves
VQA consistency by rewarding consistent behavior.

reveals a critical limitation of the state-of-the-art

models in maintaining consistency.

In particular, we motivate our definition of con-

sistency based on classical deductive logic (Tarski

and Tarski, 1994) that defines a consistent theory

as one that does not entail a contradiction. Cor-

respondingly, we define consistency, in the con-

text of VQA, as being able to answer questions

posed from different semantic perspectives about

a certain fact without any contradiction. In addi-

tion, consistent Question-Answer (QA) pairs can

be derived based on simple notions of logic or

by commonsense reasoning. For instance, say an

image contains a “large building”. Logic-based

QA pairs can be “is the building small? no” and

“what size is the building? large”. On the other

hand, if an image contains “vegetarian pizza”,

commonsense-based QA pairs can be “is it a veg-

etarian pizza? yes” and “is there pepperoni on the

pizza? no”, which requires commonsense knowl-

edge that “pepperoni” is not vegetarian.

While attempts have been made to construct

logic-based consistent VQA datasets (Hudson

and Manning, 2019), they still fall short on

commonsense-based consistency. To this end,

our ConVQA Dataset consists of two subsets: 1)

a challenging human-annotated set comprised of

commonsense-based consistent QA’s (shown in
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Figure 2: Qualitative examples from our ConVQA dataset
derived based on logic.

Figure 3: Qualitative examples from our human-annotated
commonsense-based ConVQA Dataset.

Figure 3), and 2) an automatically generated logic-

based consistent QA dataset (shown in Figure 2).

To improve the consistency of VQA mod-

els, we propose a Consistency Teacher Module

(CTM), which consists of a Question Genera-

tor that synthesizes entailed (or similar-intent)

questions given a seed QA pair and a Consis-

tency Checker that examines whether answers

to those similar-intent questions are consistent.

For training a consistent VQA model, our CTM

acts as a consistency-based data augmentation

scheme that trains a VQA model with consis-

tent answers to entailed questions. We demon-

strate that our approach improves the performance

of a baseline VQA model on our ConVQA test-

ing sets in terms of both accuracy and consis-

tency. Our datasets and models will be available

at https://bit.ly/32exlM7.

2 Related Work

Checking for consistency can be considered as an

interrogative Turing Test (Radziwill and Benton,

2017) for linguistic robustness (Stede, 1992), (Li

et al., 2017). Works such as Xu et al. (2018) ex-

plore the robustness of VQA with respect to im-

age variations, whereas works such as Ray et al.

(2016) and Mahendru et al. (2017) focus on the

understanding of the premise of a question instead

of relying on dataset biases (Agrawal et al., 2017)

(Goyal et al., 2017) or linguistic biases (Ramakr-

ishnan et al., 2018).

Recently, the research community has shown

great interest in evaluating VQA for consistency

and plausibility. GQA (Hudson and Manning,

2019) is established as a scene-graph based QA

dataset. Their questions, similar to Johnson et al.

(2017), require multiple hops of reasoning, and are

not validated or annotated by humans. Our Con-

VQA differs from GQA in the following two as-

pects. First, we provide a human-validated test set

of the automatically generated logic-based consis-

tent QA’s for a more accurate performance eval-

uation. Second, we collect human-annotated QA

pairs based on common-sense in addition to the

logic-based QA’s. The most relevant work to ours

is Shah et al. (2019). However, they focus strictly

on question paraphrases that maintains the same

answers as the source question. We, however, fo-

cus on generating questions which can have dif-

ferent answers, but are about the same visual fact,

which greatly increases the diversity of the result-

ing QA pairs. To the best of our knowledge, the

proposed ConVQA dataset is the first consistent

QA dataset that contains human-annotated consis-

tent QA’s based on common-sense.

Other works have also looked into question gen-

eration (Zhang et al., 2016), (Mostafazadeh et al.,

2016) for training better VQA models. In Misra

et al. (2017), QA pairs are obtained from an oracle

in a simulated environment. In contrast, our CTM-

based training operates on real images and uses

a learned consistency measure to train the VQA

module with consistent QA’s.

3 ConVQA Datasets

The consistent QA pairs in our ConVQA are gen-

erated automatically based on simple notions of

logical consistency or are human-annotated using

commonsense reasoning.

Logic-based Consistent QA. (L-ConVQA) Con-

sider the Visual Genome (Krishna et al., 2017)

scene graph in Figure 2 consisting of objects, at-

tributes, and their relationships. We consider each

triplet to encode a single ‘visual fact’, for in-

stance, that the sofa is white. We employ slot-filler

NLP techniques to generate a set of QA pairs for

each triplet (object-relation-subject) in the scene

graph. Currently, we focus on attribute (e.g., color,

size), existential (e.g., is there) and relational (e.g.,

sofa on floor) consistency. We leverage Word-

net (Miller, 1995) and a manually generated list of

antonyms (e.g., white vs. black) and hypernyms

(e.g., white → color) to generate these QA pairs.
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Figure 4: Block diagram of the proposed CTM including a Question Generator that synthesizes questions with similar intent
and a Consistency Checker that classifies QA pairs as consistent, unrelated, or contradictory. CTM finetunes VQA models via
reinforcement learning with the answer consistency as the reward to encourage VQA models to answer rephrased questions
more consistently. The examples shown are from a real run.

For example, for the attribute “white” of an object

“cup”, we generate QA pairs such as “is the cup

white? yes”, “is the cup black? no” and “what

color is cup? white”. We also filter objects and re-

lationships by frequency and saliency (e.g., based

on bounding boxes) to avoid non-salient and in-

frequent objects or noisy relationships. We have

a total of 880,141 QA pairs in 255,910 sets on

70,292 images. We split the data into a training

set with 47,999 images, a validation set with 9,993

images, and a test set with 12,300 images. No-

tably, we create a smaller clean test set (12,325

QA pairs on 725 images) using Amazon Mechani-

cal Turk (AMT) where three independent workers

were asked to remove incorrect or unnatural QA’s.

Commonsense-based Consistent QA. While the

logic-based consistent QA set provides a first step

into large-scale examination of VQA consistency,

the generated questions require limited reasoning

and commonsense and are, therefore, frequently

simpler than human-annotated ones. Hence, we

collect more challenging QA pairs based on com-

monsense (CS-ConVQA) by asking AMT work-

ers to write intelligent rephrases of QA pairs sam-

pled from the VQA2.0 (Goyal et al., 2017) val-

idation dataset. AMT workers were instructed

to avoid simple word paraphrases and instead to

write rephrases that require commonsense reason-

ing in order to answer the question consistently.

We collect approximately 3.5 consistent QA pairs

per image for 6439 images. After filtering im-

ages that overlap with the training set of the L-

ConVQA subset, we split this data into a training

set (1568 images), a validation set (450 images),

and a test set (1590 images).

4 Approach

To improve VQA consistency, we propose training

a VQA model using a Consistency Teacher Mod-

ule (CTM) that generates entailed questions and

performs a consistency-based data augmentation.

More specifically, CTM consists of two trainable

components – an entailed question generator and

a consistency checker.

Entailed Question Generator. For a given a

source question-answer pair, we define entailed

questions as those for which the answer should

be obvious given the source QA pair. For exam-

ple, given the source QA pair “Who is on court?

Man”, an appropriate entailed question might be

“Is the tennis court empty?”. We train a ques-

tion generation model that given representations

of the image and the source QA pair, generates a

new question. Specifically, our question generator

concatenates the deep features of an image (ex-

tracted using a ResNet152 (He et al., 2016) net-

work) and a QA pair (extracted using a 1-layer

LSTM (Hochreiter and Schmidhuber, 1997)) to

represent a visual fact. These features are fed into

another LSTM model to generate a similar-intent

question. We train this module on the automati-

cally generated Logical L-ConVQA train set. We

also include some closely related (according to av-

eraged Word2Vec (Mikolov et al., 2013) distance)

Visual Genome (Krishna et al., 2017) QA pairs in

the training of the question generator to add some

diversity to the generated questions.

Consistency Checker. Once the VQA model pro-

duces an answer for the generated entailed ques-

tion, it may or may not be consistent with the

source question. To evaluate this and provide

feedback to the VQA model, we train a consis-

tency checker that processes the image and both

the source and entailed QA pairs. Similar to

the question generator architecture, the consis-

tency checker takes in deep features of the image

and two QA pairs and classifies the QA pairs as

consistent, inconsistent or unrelated. This model

is trained using the automatically generated L-

ConVQA train set alone. Inconsistent examples

in the L-ConVQA set are made using simple tech-

niques such as flipping yes/no answers and replac-
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Figure 5: Qualitative examples of entailed question genera-
tion and consistency checking for training the VQA.

ing entities in the scene graph triplets.

Consistency Teacher Module (CTM). Putting

these two components together, we can train a

VQA model based on its consistency on generated

entailed questions. Figure 4 shows our pipeline.

During training, for each source VQA QA pair

(“Who is on court? Man”), we generate an en-

tailed question (“Is tennis court empty?”) and pro-

duce the VQA model’s answer (“No”). We then

run the consistency checker to determine if the

generated answer is consistent with the source QA

(in this case, “Who is on court? Man”). If the an-

swer is consistent (and VQA confidence > 0.7),

we treat it as the ground truth for the entailed ques-

tion and update the VQA model as if this example

were part of the original dataset. Likewise if it is

deemed inconsistent, or if the question is deemed

unrelated, it is unclear what the correct answer

should be, so we do not update the model.

5 Experiments

To evaluate our approach, we apply the Consis-

tency Teacher Module (CTM) module to a state-

of-the-art VQA model trained on VQAv2 and

evaluate performance on the ConVQA datasets.

We describe training procedures, metrics, and

baselines in this section.

Consistency Teacher Module Training. We train

the components of CTM – Entailed Question Gen-

eration and Consistency Checker – using only the

synthetic L-ConVQA train set (referred as the

standard CTM) or a mix of Visual Genome and

L-ConVQA train (referred as CTMvg) and keep

them frozen when fine-tuning the VQA model.

When we train the VQA, the sets used to finetune

the VQA or seed the CTM come from splits not

Figure 6: Qualitative examples of our improved VQA con-
sistency by CTM training compared to baseline bottom-up
VQA. Green is correct, Red is wrong. GT is Ground Truth.

seen during training of the CTM - val split of L-

ConVQA and train split of CS-ConVQA.

Qualitative examples of our Entailed Ques-

tion Generator trained only on L-ConVQA are

shown in Figure 5. Despite only being trained

on the automatically-generated L-ConVQA data,

it generates reasonably well-entailed questions on

human-annotated questions.

Our Consistency Checker has a high accu-

racy of classification on the L-ConVQA test set

(90%). However, when tested with a mix of

commonsense-based CS-ConVQA, the accuracy

drops to 64% (chance is 33% for 3 classes). We

find that precision is important when training the

VQA using the pre-trained Consistency Checker.

Hence, we use the classifier at above 90% confi-

dence threshold, where the precision is 70.38%.

Evaluation Metrics for ConVQA. We report

three metrics for ConVQA – capturing notions of

consistency and performance.

– Perfect-Consistency (Perf-Con). A model is

perfectly consistent for a question set if it an-

swers all questions in the set correctly. We re-

port the percentage of such sets as Perf-Con.

– Average Consistency (Avg-Con). We also re-

port the average accuracy within a consistent

question set over the entire dataset as Avg-Con.

– Accuracy (top-1). Finally, we report the top-1

accuracy over all questions in the dataset.

Baselines. We compare to a number of baseline

models to put our CTM results into context:
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Table 1: Performance comparison of baseline VQA trained on VQA2.0, baseline VQA finetuned on ConVQA, and VQA
trained using our CTM. L-ConVQA is the human-cleaned Logical Consistent QA dataset, CS-ConVQA is the human anno-
tated Common-sense Consistency Dataset and VG is Visual Genome. CTM-based training produces the best results in terms
of overall accuracy and consistency. DATA denotes the data used to fine-tune VQA or seed the CTM question generator.

DATA L-ConVQA CS-ConVQA

Perf Con Avg Con Top1 Perf Con Avg Con Top1 Yes/No Num

a) VQA VQA2.0 36.25 71.36 70.34 26.13 59.61 60.03 65.49 31.39

b) FineTune CS-ConVQA 34.54 70.39 69.48 26.39 59.65 60.07 65.80 35.92

c) FineTune L/CS-ConVQA 54.68 83.42 83.16 24.70 59.30 59.60 65.14 33.33

d) +CTM L/CS-ConVQA 54.6 83.23 82.79 25.94 60.39 60.78 66.63 36.89

e) FineTune L/CS-ConVQA,VG 36.40 71.60 70.94 25.22 59.19 59.56 65.30 31.39

f) +CTMvg L/CS-ConVQA,VG 51.41 81.66 81.37 27.49 59.75 60.15 66.41 34.95

– VQA. We take the bottom-up top-down VQA

model (Anderson et al., 2018) as our base model

for these experiments. To evaluate consistency

in existing models, we present results on Con-

VQA of this model pretrained on VQA2.0.

– Finetuned models: We present results for mod-

els finetuned on ConVQA and Visual Genome –

Finetune CS-ConVQA finetuned on the com-

monsense ConVQA dataset, Finetune L/CS-

ConVQA on both logical and commonsense

ConVQA, and Finetune L/CS-ConVQA,VG

extending to Visual Genome questions.

When we apply our CTM model to the finetuned

baselines above, we seed the question generator

with the associated dataset.

6 Results and Analysis

Table 1 shows quantitative results on our L-

ConVQA and CS-ConVQA datasets. We make a

number of observations below.

The state-of-the-art VQA has low consistency.

The baseline VQA system (row a) retains simi-

larly high top-1 accuracy on the ConVQA splits

(63.58% on VQAv2 vs 70.34% / 60.03% on L-

ConVQA / CS-ConVQA); however, it achieves

only 26.13% perfect consistency on the human

generated CS-ConVQA questions.

Finetuning is an effective strategy for the syn-

thetic L-ConVQA split. Finetuning on L-

ConVQA train results in 18.43% gains in perfect

consistency on L-ConVQA test (row c vs a). This

is unsurprising given the templated questions and

simple concepts in L-ConVQA; however, perfect

consistency is low in absolute terms at 54.68%.

Finetuning does not lead to significant gains

in consistency for human-generated questions.

Finetuning the VQA model on CS-ConVQA (row

b) leads to an improvement in consistency of only

0.26%. Likewise, adding L-ConVQA (row c) and

extra Visual Genome questions (row e) actually

reduces consistency.

CTM-based training preserves or improves

consistency when leveraging additional data.

When we apply CTM to the Finetuned L/CS-

ConVQA model, we improve CS-ConVQA per-

fect consistency by 1.24% (row d vs c) while mod-

estly improving other metrics. Extending to Visual

Genome questions, the CTM augmented model

improves perfect consistency in CS-ConVQA by

2.27% over the finetuned model (row f vs e). In-

terestingly, the CTM modules were never trained

with the human-annotated CS-ConVQA ques-

tions and yet lead to this improvement on CS-

ConVQA by acting as an intelligent data aug-

menter/regularizer.

7 Conclusion and Discussion

In this paper, we introduced a ConVQA dataset

consisting of logic-based and commonsense-based

consistent QA pairs about visual facts in an image.

We also proposed a Consistency Teacher Module

that acts as a consistency-based data augmenter

to teach VQA models to answer consistently. As

future work, we plan to look into improving our

automatically generated consistent QA pairs using

external knowledge-bases.
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