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ABSTRACT

Aims. Extending the knowledge about the properties of solar cycles into the past is essential for understanding the solar dynamo. This
paper aims to estimate areas of sunspots observed by Schwabe in 1825−1867 and to calculate the tilt angles of sunspot groups.
Methods. The sunspot sizes in Schwabe’s drawings are not to scale and need to be converted into physical sunspot areas. We employed
a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century.
Results. Umbral areas for about 130 000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups
assuming them to be bipolar. There is, of course, no polarity information in the observations. The annually averaged sunspot areas
correlate reasonably with sunspot number. We derived an average tilt angle by attempting to exclude unipolar groups with a minimum
separation of the two alleged polarities and an outlier rejection method which follows the evolution of each group and detects the
moment it turns unipolar at its decay. As a result, the tilt angles, although displaying considerable scatter, average to 5.◦85± 0.◦25, with
the leading polarity located closer to the equator, in good agreement with tilt angles obtained from 20th century data sets. Sources of
uncertainties in the tilt angle determination are discussed and need to be addressed whenever different data sets are combined. The
sunspot area and tilt angle data are provided at the CDS.
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1. Introduction

Solar activity is apparently driven by internal magnetic fields,
which are roughly oscillatory in time. Sunspots are the most ob-
vious manifestations of solar activity in visible light, and it was
Samuel Heinrich Schwabe (1844) who first published a paper on
the abundance of sunspots as a cyclic phenomenon.

Apart from the number of sunspots and various indices that
can be defined from their appearance, there are other properties
that contain information about the underlying process of generat-
ing variable magnetic fields in the solar interior. The most promi-
nent feature is the distribution of spots in latitude versus time
(butterfly diagram; Carrington 1863). The latitudes of the spots
give us an idea of the location of the underlying magnetic fields.
In the majority of attempts to explain the dynamo process of the
Sun, it is assumed that strong azimuthal magnetic fields emerge
as sunspots at the solar surface (for a review, see Charbonneau
2010). These internal horizontal (i.e. parallel to the solar sur-
face) fields become locally unstable and form loops eventually
penetrating the surface of the Sun. At this stage, two polarities
are formed, which are actually measured and often accompanied
by sunspot groups (for a review, see Fan 2004). Alternatively,
sunspots may form as a consequence of a large-scale magnetic
field suppressing the convective motions and thereby reducing
the turbulent pressure. The lower pressure at the field location
compresses the flux even further leading to further turbulence

⋆ The sunspot area and tilt angle data are only available at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A73

suppression, and an instability can occur (Kleeorin et al. 1989;
Warnecke et al. 2013).

The radial magnetic field within active regions provides
poloidal fields to the dynamo system. The production of poloidal
magnetic flux is an essential ingredient in the sustainability of
the Sun’s large-scale magnetic field. The angle the group polar-
ities form with the solar equator is called the tilt angle and was
first measured by Hale et al. (1919). On average, the leading po-
larity of the group is slightly closer to the solar equator than the
following one. The dependence of the average tilt angle on the
emergence latitude of the sunspot groups is often referred to as
Joy’s law, according to the paper mentioned above.

Tilt angles from sunspots in white-light images were com-
puted by Howard (1991) from Mt. Wilson images and by
Sivaraman et al. (1999) from Kodaikanal images. From those
data, average tilt angles were obtained by Dasi-Espuig et al.
(2010, 2013) for the solar cycles 15−21. An anti-correlation be-
tween the average tilt angle and the amplitude of the correspond-
ing cycle was found. Additionally, the product of this average
and the cycle amplitude correlates significantly with the strength
of the next cycle. We come back to more recent tilt angle deter-
minations in Sects. 4.3 and 5.

Based on magnetograms from Kitt Peak, Wang & Sheeley
(1989) determined tilt angles for cycle 21 and obtained a
large average value of 10◦, a result confirmed by Stenflo &
Kosovichev (2012) from MDI data. Recently, Wang et al.
(2015) compared tilt angles from white-light images of the
Debrecen Photoheliographic Database and from Mt. Wilson
magnetograms for cycles 21−23. They found that magnetogram
tilt angles tend to be larger than those from sunspot groups in
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Fig. 1. Example of the drawing style in the main period of 1831−1867.
This full-disk drawing of 1847 July 22 shows spots with and with-
out penumbrae. The drawing also shows two group designations (116
and 117) which actually refer to two individual groups each (see Sect. 3,
also for the treatment of more difficult cases such as group 113).

white-light images, both because a substantial fraction of the
white-light tilt angles refer to sunspots of the same polarity, and
because the magnetograms include magnetic flux from plage re-
gions typically showing higher tilts than the sunspots of the same
active region. We address the first issue in this paper.

This paper is based on the digitized observations by Samuel
Heinrich Schwabe (Arlt 2011) of cycles 7−10 and extends the
subsequent measurements of all positions and estimates of the
sizes of the sunspots drawn in these manuscripts (Arlt et al.
2013). The initial sizes were in arbitrary units corresponding to
pixel areas in the digital images and may not be to scale. We de-
scribe the method of converting these sunspot size estimates into
physical areas in Sect. 2, an attempt at defining proper sunspot
groups in Sect. 3, the computations of the tilt angles in Sect. 4
and summarise the results in Sect. 5.

2. Calibration of sunspot areas

Apart from the importance of having reliable sunspot area in-
formation for the Schwabe period, we also need to know the
individual sunspot areas for reasonable estimates of the two po-
larities and their locations in sunspot groups when determining
the tilt angles of sunspot groups. The sunspot areas may be seen
as proxies for the magnetic flux (e.g. Houtgast & van Sluiters
1948; Ringnes & Jensen 1960, for early studies), although the
relation of the two may be complex, as emphasised recently by
Tlatov & Pevtsov (2014).

Schwabe plotted the sunspots into relatively small circles of
about 5 cm diameter, representing the solar disk. Given the finite
width of a pencil tip, at least small spots must have been plotted
with an area larger than a corresponding structure on the Sun
would have at that scale. Pores, if plotted to scale, would need
to have diameters of 0.04−0.1 mm in this kind of drawing. The

Fig. 2. Example of the drawing style in the initial period of 1825−1830.
This full-disk drawing of 1827 June 13 shows large spots which com-
bine several umbrae and at least part of the penumbral area, as is re-
vealed by the detailed drawings.

umbral areas measured in the drawings, therefore, need to be
converted into physical areas on the Sun.

There are two ways of obtaining physical sizes of the
sunspots drawn by Schwabe. The one requires the existence of
high-resolution drawings by other observers within the observ-
ing period of Schwabe for calibration. The other is a statistical
approach using data sets of the 20th century to calibrate the sizes.
We first describe the latter method, since the number of high-
resolution drawings by other observers that can be employed for
the first method is very limited. The statistical approach also
required a splitting of the data into two sets: 1825−1830 and
1831−1867. This is due to a change in the drawing style after
1831 Jan 1, as demonstrated in Figs. 1 and 2. In the initial pe-
riod, Schwabe plotted spots without distinction of umbrae and
penumbrae. In the second period starting in 1831, Schwabe dis-
tinguished umbrae from penumbrae. In those cases, umbral sizes
were measured. We begin with the second period when areas are
clearly umbral and afterwards describe a work-around for the
conversion of sunspot sizes to umbral areas in the initial period
until 1830.

2.1. Indirect umbral areas for 1831−1867

One approach to obtaining physical areas of the sunspot sizes
is of a statistical nature. Sunspots were divided into 12 classes
by size, as introduced by Arlt et al. (2013). The measurements
were actually carried out with 12 different circular cursor shapes
with areas from 5 to 364 square pixels. Their shapes and screen
areas are shown in Fig. 3. The classes increase monotonously
in area, but were chosen relatively arbitrarily. Any more precise
individual pixel counts of umbral areas are unlikely to yield more

A73, page 2 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527080&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527080&pdf_id=2


V. Senthamizh Pavai et al.: Sunspot areas and tilt angles for solar cycles 7−10

Fig. 3. Twelve cursor shapes (size classes) used for the size estimates
of the sunspots drawn by Schwabe. The bottom line gives the area in
square pixels on the screen, including the black border pixels.

accurate data, since the drawings are meant to be sketches of the
sunspot distributions and sizes rather than exact copies. More
details are given by Arlt et al. (2013).

The division into 12 size classes is done both for Schwabe’s
data set and for a modern data set (see below), whereby for the
modern data set the classes are chosen such that each class has
the same relative number of sunspots as the corresponding class
in Schwabe’s data. In other words, the relative abundances of
the 12 size classes of the Schwabe spots are compared and cali-
brated with 20th century data by building histograms of 12 artifi-
cial size classes constructed to contain the identical abundances.
The average umbral area in this kind of artificial class gives us
the umbral area corresponding to a Schwabe size class. Finally,
a function for the area depending on the heliocentric angle of
a spot from the centre of the solar disk is fitted for each size
class. We refer to this angle as “disk-centre distance” δ in the
following.

The reference data sets used to obtain a statistical map-
ping of sunspot umbral areas are from photoheliographic data
of the observatories of Debrecen, Mt. Wilson, Kodaikanal, and
the Michelson Doppler Imager (MDI) instrument of the Solar
and Heliospheric Observatory (SOHO). As described by Győri
(1998), an improved automatic analysis method was used for the
Debrecen data starting in 1988. Before that, from 1974 to 1987,
the areas were measured by video techniques (Dezső et al. 1987).
In the 1974−1987 data, the area values of larger sunspots at disk-
centre distances δ > 60◦ increase very rapidly with δ. This ef-
fect is not seen in the area values measured from 1988 onward,
therefore, we used only the Debrecen data from 1988−2013.
The Mt. Wilson data were analysed by Howard et al. (1984) and
contain spot properties from 1917−1985. The Kodaikanal data,
covering 1906−1987, were obtained in almost the same way as
the Mt. Wilson data (Sivaraman et al. 1993). The MDI data for
1996−2010 were obtained using a telescope of 4 arc seconds
resolution (Watson et al. 2011) which is similar to or perhaps
a bit worse than the resolving capabilities of Schwabe’s set-up.
The data from the Greenwich Photoheliographic Database were
not used because it contains group area totals instead of areas of
individual spots.

Typical diameters of solar pores in white light are between
1000 km and 4000 km (Keppens & Martínez Pillet 1996), which
converts to 0.8−13×106 km2 or 0.26−4.1 millionths of the solar
hemisphere (MSH). We are using a lower limit of 1 MSH for the
construction of the histogram as argued below. In the Debrecen
data, integer values of the projected area in millionths of the so-
lar disk are given (0, 1, 2, . . . ), while the corrected areas are given
in MSH, also as integer values. Since the projection correction
increases the area, whereas the conversion to MSH reduces the
value by half, the lower limits of 1 in both quantities are there-
fore statistically compatible. We discarded all spots smaller than
1 MSH from the other data sets before the analysis. Ideally, one
would want to define a minimum spot size plotted by Schwabe,
but in reality, his drawing style was not that straightforward.

Whenever he detected a small group on the Sun, he indicated its
location with small dots. In more complex groups, however, he
did not indicate all the small spots because of their abundance.
There is apparently no clear lower limit for the spot size. We
therefore use a compromise at this point, excluding the smallest
pores, and start from 1 MSH, which is also the lower limit in the
Debrecen data.

The relative abundances of the 12 cursor size classes, de-
noted by i = 1, 2, . . . , 12, are determined for three different
ranges of disk-centre distances, which were δ < 30◦, 30◦−60◦,
and 60◦−70◦. These distance classes are numbered as d = 1, 2, 3.
The upper limit of 70◦ is because not all reference data sets con-
tain spots beyond that distance. The four reference data sets (this
number is denoted by N in the following) are now also divided
into 12 classes fulfilling the same relative abundances as ob-
tained for the Schwabe classes, again split into the three selected
ranges of distances. The histograms are based on the umbral ar-
eas, which are corrected for foreshortening. We therefore expect
a mapping of size classes with a fairly small dependence on δ.

Then the area for each cursor size is calculated by the un-
weighted average of all spots

Aid =

N
∑

n= 1

Snid
∑

j= 1

An jid

/ N
∑

n= 1

Snid, (1)

where Aid is the area for a cursor of ith size class in the dth disk-
centre distance class, An jid is the umbral area (corrected for pro-

jection by cos−1 δ) of the jth spot in the nth data source, ith size
class and dth distance class, and Snid is the total number of spots
present in nth data source, ith size class in dth distance class.
These averages consist of different histogram bins for different n.
For example, the equivalent class-5 bin in the Debrecen data has
other area limits than the equivalent class-5 bin of the MDI data.
The averaging helps smooth possible systematic over- or under-
estimations of areas in the 20th century data sources. The aver-

ages Aid are not immediately areas corrected for foreshortening,
since the histogram classes are constructed using Schwabe’s raw
sunspot sizes. We capture any possibly remaining disk-centre
distance dependence in Sect. 2.4, where functions through the
three distance classes for each i are derived, i.e. 12 functions for
the 12 size classes.

2.2. Indirect umbral areas for 1825−1830

The sunspots in the early full-disk drawings from 1825 to 1830
were not drawn at a good resolution. Instead, Schwabe plotted
high-resolution magnifications at unknown scale beside the full-
disk drawings. The magnifications show that nearby spots were
combined in the full-disk drawings. The spots in these draw-
ings are therefore often “blobs” made out of very close spots
and including the penumbrae between those spots. Hence, the
pencil dots used to measure the sizes of those spots do not rep-
resent their umbral area. To estimate the area for these spots, we
need to compare the size statistics with grouped spots including
penumbrae. To do that, we combined the spots inside a single
penumbra in a modern data set and used these for the statistical
estimation of the area.

Among the data used here, the Debrecen data is the only
source that contains umbral and penumbral areas broken down
into individual spots. Recently, Tlatov et al. (2014) published de-
tailed measurements of the Kislovodsk Mountain Astronomical
Station. Since those only cover the somewhat peculiar cycle 24,
we prefer not to use them for the area calibration of Schwabe’s
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drawings. The conversion of the 1825−1830 data is therefore
based on the Debrecen data (1988−2013) as a mixture of differ-
ent cycles. From that source, we prepared a data set in which all
the umbrae inside a continuous penumbra are added and consid-
ered as a single spot of which we store the whole-spot area and
the total umbral area in each spot. Now we divide the whole-
spot areas into 12 classes with the same relative abundances as
we obtained from Schwabe’s 1825−1830 data, but use the corre-
sponding umbral areas for an average, according to Eq. (1), for
each size class in each distance class. The results for the distance
classes are again combined into a function of the disk-centre dis-
tance in Sect. 2.4.

There are still differences between these combined spots
from the Debrecen data and the pre-1831 Schwabe spots. (1) A
penumbra with a single umbra would look similar to a penumbra
with two umbrae in Schwabe’s drawings. The penumbral area
between the two umbrae in the latter case, however, leads to dif-
ferent total umbral areas when derived from the Debrecen data.
(2) Schwabe did not always plot the entire penumbra in a “blob”.
(3) All the umbrae inside a penumbra are added in the Debrecen
data, even for very extended penumbrae. Schwabe, however, did
not club together all the umbrae inside a connected penumbra
when it was very large, but plotted “sub-penumbrae” in that case.

There are 38 spots apparently drawn without the inclusion
of a penumbra which were found from the visual comparison of
disk drawings with magnifications. These spots were not used in
the procedure described here; their areas were calculated using
the method discussed in Sect. 2.1.

2.3. Umbral areas from parallel observations

For a short period from 1850 Sep. 19 to Nov. 4, large-scale
drawings are also available from Sestini who observed from
Washington, D.C., comprising a total of 42 full-disk graphs
(Sestini 1853). We compiled spots seen by both Schwabe and
Sestini and measured the umbral areas of the corresponding
spots in Sestini’s drawings. There were not enough observa-
tions to cover the whole range of size classes − we could only
cover classes 1−6. We come back to the results in the following
section. We need to bear in mind that the time difference be-
tween the observations from Dessau and those from Washington
implies changes in the evolution of the spots either leading to
wrong areas or to wrong spot associations between the two
observers.

2.4. Final mapping of sunspot sizes

Figure 4 shows the mappings of Schwabe size classes to physical
areas in km2 and MSH for three different ranges of disk-centre
distances for the statistical conversion as well as a mapping
for the calibration with concurrent high-resolution observations.
One immediate result is that the direct conversion of the pencil
spots in Schwabe’s drawings into sunspot areas would lead to
overestimated umbral areas in most size classes. One can also
see that the areas corresponding to the pixel areas do not form
a linear function or power law. The areas from the comparison
with the sunspots observed by Sestini in 1850 are in good agree-
ment with the indirect mapping based on size distribution. This
shows that the direct conversion of pixel areas into sunspot areas
is not a good choice. The only exception is class 5, but it only
contains 21 measurements and may be a poor estimate (as is the
one for class 6).

Fig. 4. Average areas in km2 (left ordinate) and MSH (right ordinate)
for each of the 12 size classes (abscissa), and for three different centre-
distance ranges: <30◦ (diamonds), 30◦−60◦ (squares), and 60◦−70◦ (cir-
cles). The areas corresponding to the simple pixel areas of the size
classes without any calibration are indicated with plus signs. The di-
rect calibration of size classes by observations from Sestini in 1850 are
shown as triangles. Top: average areas for the data from 1831−1867.
Bottom: average areas for the data from 1825−1830. An open symbol
means that the number of spots used in the calculation of the average
area is less than 20. The lower curves in the bottom panel do not imply
smaller areas, but they rather mean that any spot of a given true area
was drawn as a spot of larger class in 1825−1830 than in 1831−1867.

The bottom panel of Fig. 4 appears to show much smaller
areas. This is not true, however. The graph actually shows that
a 5-MSH spot which was typically drawn as a class-3 dot in
1831−1867, was represented by a class-5 dot before that period,
since it encompassed a considerable fraction of the penumbra at
that time. The areas of class 3 in the top panel cannot be com-
pared with the areas of class 3 in the bottom panel. Sunspot sizes
corresponding to large size classes were much more often used
by Schwabe in the period of 1825−1830 than afterwards (there
are no longer open symbols with fewer than 20 spots in the bot-
tom panel).

The dependence of final areas on the disk-centre distance is
described by functions of the form

Ai(δ) = ai + (bi/ cos δ) , (2)

where ai and bi are coefficients for the i-th size class and δ is
the distance of the spot from the centre of the solar disk. In the
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end, there are 12 functions for the period 1825−1830 and another
12 functions for the period 1831−1867. They deliver a mapping
of the size classes into physical areas.

When computing the areas for the final sunspot data base, the
area is not calculated if a spot distance is greater than 85◦ from
the disk centre, since the area values become very uncertain. All
spots with δ ≤ 70◦ are reliable in the sense that they are covered
by the statistics leading to the mapping. All spots with 70◦ < δ ≤
85◦ are uncertain because they rely on an extrapolation of the
mapping, while all spots with δ > 85◦ are highly uncertain and
are therefore excluded from the data base. The smallest sunspot
area occurring in our data after applying Eq. (2) is 1 MSH, which
is consistent with the initial lower limit for spots in the reference
data sets.

2.5. Distribution of sunspot area

The data base of Schwabe’s observations contains a total of
135 921 entries comprising 134 386 spots with size estimates
(each line corresponds to an individual umbra) as well as
1535 spotless days (each line corresponds to a day with zero
spot size). Whenever we use the term spots we refer to individ-
ual umbrae as far as Schwabe resolved them. Positions are not
available for 849 umbrae because the orientation of the drawing
could not be identified. No physical areas are available because
δ is missing. There are another 41 umbrae beyond 85◦ from the
centre of the disk for which areas are not calculated because
of too large uncertainties. The area values are therefore avail-
able for 133 496 umbrae. To study the distribution of areas, we
consider the spots within ±50◦ central meridian distance (CMD)
and within ±45◦ latitude. The same latitude limit was chosen by
Bogdan et al. (1988). The central meridian limit, however, was
±7.◦5 in Bogdan et al. (1988) in order to avoid duplicate counts
of groups (a group typically appears only once in a 15◦ window
because of the solar rotation). Since drawings by Schwabe are
not available for all days, we need to widen this window reason-
ably and found ±50◦ a good compromise between not missing
too many groups because of observing gaps, on the one hand,
and the contamination by duplicate consideration of groups, on
the other hand. The latter does not actually affect the distribu-
tion significantly since Baumann & Solanki (2005) and Kiess
et al. (2014) did not see any drastic changes between counting
umbrae only once and counting them every day they were visi-
ble. The lowest area considered for the distribution is our lowest
area, 1 MSH. The above criteria reduce the data to a sample of
104 217 spots in total, and 96 984 spots from 1831 to 1867.

The umbral area spectrum was obtained as described by
Bogdan et al. (1988) with the exception that they used a lower
umbral area limit of 1.5 MSH. Since the distribution is differen-
tial, the different lower limit should not affect the shape of the
curve. The bins for small areas were selected such that each bin
encompasses approximately one size class up to class 9, whereas
one additional bin was defined such that it contains the spots
from class 10 and about half the spots in class 11. All spots
even larger than that (≥185 MSH) were outside the above men-
tioned CMD window. Dividing the area range into 20 bins as in
Bogdan et al. (1988) would have caused a strong scatter since the
Schwabe areas accumulate near 12 typical area values because
the dependencies on the disk-centre distance described by (2) are
all small.

The area distribution of the Schwabe spots also resembles a
log-normal distribution and looks similar to the curve by Bogdan
et al. (1988). The parameters for this kind of distribution over the

Table 1. Log-normal fit parameters for the Schwabe data and various
subsets of them.

Data Umbrae 〈A〉 σA

(

dN

dA

)

max

[MSH] [MSH] [MSH−1]

All data (1825−1867) 104 217 1.05 3.8 3.8
1825−1830 7233 0.58 9.9 1.7
1831−1867 96 984 1.10 3.5 4.2

Cycle 7 9448 1.09 5.3 1.3
Cycle 8 22 382 1.08 3.8 4.0
Cycle 9 36 862 1.08 3.0 5.3
Cycle 10 35 181 1.10 3.4 4.9

Ascending phases 13 613 1.09 3.5 3.7
Descending phases 46 763 1.10 3.1 4.7
Cycle minima 3 507 1.08 3.4 1.4
Cycle maxima 31131 1.10 3.6 7.6

area A are obtained through a fit by the function

ln

(

dN

dA

)

= −
(ln A − ln 〈A〉)2

2 ln σA

+ ln

(

dN

dA

)

max

, (3)

where (dN/dA)max is the maximum of the area distribution func-
tion, 〈A〉 is the mean, and σA is the geometric standard devia-
tion. Table 1 shows the log-normal fit parameters obtained with
a Levenberg-Marquardt least-squares method. The cycle minima
and maxima were taken from the “Average” column of the cycle
timings by Hathaway (2010). Minima periods and maxima peri-
ods are defined as ±1 yr around the minima/maxima, while the
ascending and descending phases are the remaining periods.

The top panel of Fig. 5 shows the resulting total area distri-
bution of umbrae for 1831−1867. The errors on the ordinate val-
ues were estimated by (∆N/∆A)/

√
∆N, where ∆N/∆A is the dis-

crete area distribution value and ∆N is the number of spots in
each bin. The errors are all smaller than the symbols. The lower
curve from Fig. 1 in Bogdan et al. (1988), which is the fit to
the full range of umbral areas of 1.5−141 MSH, and the curve
from Kiess et al. (2014) are also plotted in Fig. 5 for compar-
ison. While the data of both analyses also influence our size
calibration of Schwabe’s sunspots, the distribution only agrees
with that by Bogdan et al. (1988) based on Mt. Wilson data.
Interestingly, the area distributions obtained from group umbral
areas (Baumann & Solanki 2005) also agree fairly well with our
results. The peak position 〈A〉 of their log-normal distribution
from the Greenwich group data is ten times larger than our peak
position from individual spot data, in good agreement with the
fact that sunspot groups consist of roughly ten spots on average.

The bottom panel of Fig. 5 shows four individual area dis-
tributions for the ascending and descending phases of the cy-
cles as well as for the cycle minima and maxima. They exhibit
nearly the same distribution as the whole area distribution. The
descending phases of all cycles have larger (dN/dA)max than the
ascending phases, however. The fairly small variation of σA is
remarkable and confirms the corresponding findings by Bogdan
et al. (1988) and Schad & Penn (2010).

The umbral area distribution was calculated for the data from
1825−1830 and from 1831−1867 separately, and the fit param-
eters are listed in Table 1. The distribution for the earlier period
is much wider, with σA similar to that by Kiess et al. (2014) who
derived σA = 10.7 (σ = 1.54 in their work).
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Fig. 5. Distribution of estimated umbral areas of sunspots. Top: the area
distribution for 1831−1867. The solid curve shows the log-normal fit.
The dashed curve and dash dot curve are the fit curves form Bogdan
et al. (1988) and Kiess et al. (2014), respectively. The horizontal bars
show the widths of the bins. The error margins on the distribution values
are all smaller than the symbols. Bottom: the area distribution of spots
for ascending phases, descending phases, cycle minima and maxima of
all cycles within 1831−1867. The lines show the log-normal fits for the
corresponding area distributions.

3. Group definitions

Tilt angles of groups are sensitive to the actual association of
spots into groups. Schwabe’s original drawings contain group
names that he started from number one every new year. His per-
ception of a group was often too broad. A fair number of sunspot
clusters actually contain two or more groups. This new definition
of the groups was made via manual inspection of the drawings.
We also used the evolutionary information of the clusters and
sub-clusters provided by the images of adjacent days. Very of-
ten, a small apparently new bipolar group emerged near an ex-
isting bipolar group and showed its individual evolution through
the Waldmeier (or Zurich) types. Schwabe included them in the
group number of the existing group, while we defined a new
group in many of these cases. In other cases, when splitting of
the polarities was not obvious and the parts of the group were
all in the same evolutionary phase, we kept Schwabe’s defini-
tion, despite leading to somewhat large groups of 30◦ extent or
more. Any splitting, however, would have been very arbitrary

Fig. 6. The number of new groups obtained by splitting Schwabe’s orig-
inal groups, normalised to the number of groups before splitting (i.e.
Schwabe’s original groups). The criteria for splitting a group are de-
scribed in the main text.

and would add noise rather than new information to the tilt angle
data base. A total of 56 groups with extents ≥30◦ size remained.

Figure 6 shows the ratio of the number of newly formed
groups, i.e. those obtained by splitting Schwabe’s original
groups, to the original number of groups. For instance, if there
were a total of ten groups which were all split into two, resulting
in ten new groups, the ratio would be one (100% splitting). The
large fraction of splittings seen after 1850 is partly due to the
presence of very many closely located groups, but chiefly due
to a wider definition of groups Schwabe adopted during those
cycles. In nine cases, Schwabe assigned one group designation
each to two spots, while they apparently form one bipolar group.
We combined those cases to one group name.

The splittings are marked by modified group names in the
above mentioned data file. The two groups 116 and 117 in Fig. 1
now appear as four groups, 116-0, 116-1, 117-0, and 117-1 in
the catalogue. Combined groups are labelled with plus signs in
the new group name, e.g. 39+40.

To demonstrate the impact of the regrouping (splitting
as well as combining), Fig. 7 shows the annual averages
of the number of spots per group, derived from Schwabe’s
group definitions and derived after regrouping by visual inspec-
tion. Additionally, the sunspot group magnifications drawn by
Schwabe (see Fig. 2) were used to compute a third set of aver-
age spot numbers per group. Since the magnifications are not bi-
ased towards exceptionally large groups until 1830, we give only
the averages for 1826−1830. These spot numbers per group ob-
tained from detailed drawings of individual groups match mod-
ern values very well (Tlatov 2013; Clette et al. 2014). After
1830, only selected, big groups were magnified, so the values
of spots per group are biased.

In the averages derived from the full-disk drawings, there is a
significant increase in the number of spots per group from 1830
to 1836. This increase was not flattened after the regrouping of
sunspot groups. This may be partly due to initially smaller true
numbers of spots per group and partly due to the early, coarser
drawing style of Schwabe. The most notable jump from 1835
to 1836 does not coincide, however, with the change in drawing
style in 1830/1831. An increase in the number of spots per group
can also be seen after the other minima, namely in 1843−1847,
1856−1858, and 1866−1867. Therefore, the change in drawing
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Fig. 7. Annual averages of the number of spots per group calculated
before the regrouping of sunspot groups (circles), after regrouping (tri-
angles), and manually counted number of spots from the magnifica-
tion drawings of sunspot groups (diamonds). Uncertainties are only
given for the values after regrouping and are obtained from the relative
Poissonian error 1/

√
ncounts, where ncounts are the number of all instances

of all groups in a given year (groups count several times with different
numbers of spots).

style and recovery from the activity minimum in 1833 are prob-
ably superimposed effects.

By the same token, we may spot small peaks coinciding with
the solar cycle maxima 8, 9, and 10 in Fig. 7. This effect has also
been observed, even more drastically, by Clette et al. (2014) in
20th century data, and it may actually be a mixture of a real effect
and observational bias (basically because on a crowded Sun, the
splitting of groups is difficult).

The top panel of Fig. 8 shows the annual averages of umbral
areas of sunspots. They are compared to the yearly averages of
the group sunspot number (GSN) according to our own group
number information and the (Wolf or Zurich) sunspot number
(SSN), both derived from Schwabe’s observations, as well as to
the International Sunspot Number (ISN)1. Good agreement is
found between umbral areas and Schwabe’s group sunspot num-
ber for cycle 8, while the areas of cycles 7 and 9 fall below the
(rescaled) sunspot numbers and cycle 10 has larger areas than the
sunspot numbers indicate. Since Schwabe’s observing method,
telescope and drawings are very constant after 1835, the differ-
ence between the ISN and the Schwabe record may be due to
calibration issues of the ISN before 1849 (Leussu et al. 2013).

In an attempt to assess the correlation of the umbral areas
with the group sunspot number, we plot averages of 100 daily
all-disk umbral areas versus the corresponding group sunspot
number of the same days in the bottom panel of Fig. 8. The
same was done for the Greenwich photoheliographic database
which contains umbral areas until 1976. The graph is similar to
that by Balmaceda et al. (2009) who used the total spot areas
instead. There is an intrinsic scatter in the correlation because
of a certain randomness if both the sunspot number and sunspot
areas are related to an internal magnetic field, rather than to each

1 The GSN includes a scaling of 12.08 derived from the comparison
of the ISN with the groups found in the Greenwich Photoheliographic
Database (Hoyt & Schatten 1998). Since the ISN was scaled down to
match Wolf’s observations, who recorded about 60% of the sunspots
that would be reported today, the SSN from Schwabe’s data can actually
lie above the GSN. This is the case when Schwabe’s drawings are bit
more detailed than Wolf’s reports.

Fig. 8. Top: annual averages of total-disk umbral area of sunspots in
MSH and divided by three (solid line), the group sunspot number
(GSN) derived from our groupings (dashed line), the sunspot number
(SSN; Wolf number) derived from our groupings and the actual num-
ber of spots in the full-disk drawings (dash-dotted line), and the official
International Sunspot Number (dotted line) of before the revision sug-
gested by Clette et al. (2014) which was not yet available. The grey
horizontal bar indicates the period in which the number of spots per
group was fairly constant (cf. Fig. 7). Bottom: daily total umbral areas
versus GSN (in case of Schwabe, the GSN is based on our grouping in
Schwabe’s drawings, corresponding to the dashed line in the top panel),
averaged over 100 values in each group sunspot number bin for the
Schwabe data (circles) and the Greenwich data (asterisks). The solid
and dashed lines are linear fits through the Schwabe and Greenwich
data, respectively, which must go through the origin.

other. The uncertainty from the randomness has been reduced to
about 10% by averaging over 100 days. Although the scatter in
total umbral areas is higher than that due to randomness (as seen
in the bottom panel of Fig. 8), it is comparable to the results from
the Greenwich data, except for a slight tendency to larger areas
(lines of linear fits through the origin were added for clarity in
Fig. 8). We therefore conclude that the areas inferred from the
Schwabe data are compatible with the Greenwich data, which
did not enter our calibration at any step. The Schwabe areas do
show, however, cycle-to-cycle variations in the strength of the
correlation with the sunspot number indices.

The final total numbers of groups as well as the numbers of
groups that have tilt angles (see Sect. 4) are listed in Table 2.
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Table 2. Statistics of coverage, spot areas, groups, and tilt angles α for Schwabe’s observations in 1825−1867.

Period Days with Gaps longer Gross groups Unique groups Groups Group tilts with Group tilts with
drawings than 5 daysa with areas with areas with tilt |CMD| < 60◦ |CMD| < 60◦

and α > 3◦

1825−1830 1187 (63.0%) 32 4401 945 2452 2159 1745

1831−1867 8808 (65.2%) 149 27 116 5903 20 689 17 365 13 803

Total 9995 (64.9%) 182b 31 517 6848 23 141 19 524 15 548

Notes. CMD is the central meridian distance of the area weighted centre of a group. (a) The gaps are derived only from the days for which we
obtained data; if we include the unused drawings, the number of gaps longer than five days is a bit smaller than the number given in this column.
(b) One group is missing in the 1825−1830 number because a gap straddles 1830 and 1831.

4. Tilt angles of groups

4.1. Determination of tilt and separation

The tilt angle of a given sunspot group is calculated in a plane
tangential to the solar surface in an estimated mid-point of that
particular group to avoid problems with the curvilinear helio-
graphic coordinates. The mid-point of the group (hereafter box
centre as opposed to the area-weighted centre of gravity of the
group) is obtained using the easternmost and westernmost spots
as well as the northernmost and southernmost spots of a given
group. The longitude and latitude of the box centre is set to be
the contact point of the tangential plane with the solar surface.
The Cartesian coordinates in this plane are xi and yi for the ith
spot and xg and yg for the box centre and are normalised with
respect to the solar diameter.

The algorithm then checks for the number of spots in a
group. If this number is equal to two, the algorithm proceeds
to calculate the tilt angle and polarity separation directly. If this
number is more than two spots, we have to assess the most
probable configuration of which spots belong to which polar-
ity, since magnetic information is not available. We look for the
most probable division of the group into two clusters by finding
the least positional variance within the individual clusters. To
accomplish this, we let a division line, running through the box
centre, rotate from θ = 0 to θ = 180◦ and obtain, for each angle,
a cluster of supposedly leading spots and a cluster of supposedly
following spots. This is achieved using a vector perpendicular
to the division line, D = (cos θ, sin θ). The sign of the inner
product of this vector with the spot vector, Si = (xi − xg, yi − yg)
defines the cluster (“polarity”) membership of the i-th spot. The
sum of the two variances of the spots’ coordinates on either side
of the division line is calculated. We denote the angle at which
the least positional variance is achieved by θopt and adopt it as
the most probable division of the sunspot group into polarities.
The area-weighted centres of the polarities found are then calcu-
lated. The eastern and western parts correspond to the following
and leading polarities, respectively, and their coordinate pairs are
denoted by (xF, yF) and (xL, yL). The coordinate pairs convert to
heliographic coordinates (φF, λF) and (φL, λL), respectively.

The tilt angle α is computed by

tanα =

{

(yF − yL) / (xL − xF) if λg ≥ 0
(yL − yF) / (xL − xF) otherwise,

(4)

where λg is the heliographic latitude of the box centre. The tilt
angles are positive if the leading polarity is nearer to the equa-
tor. We emphasise that these operations are done in a tangen-
tial plane through the box centre. Problems with measuring on a
spherical surface are thus very small. The tilt angles calculated
are called pseudo-tilt-angle as in case of the Mt. Wilson data

because magnetic polarity information is not available (Howard
1991).

The polarity separation is then computed on the great circle
(orthodrome) through the two polarities:

cos∆β = sin λF sin λL + cos λF cosλL cos(φF − φL). (5)

The tilt angles are calculated for all spot groups with two or more
spots.

4.2. Sources of errors

Differences between various data sources and tilt angle determi-
nations may have the following origins:

– unipolar groups are assigned a tilt angle erroneously;
– the method of computation may introduce a bias if the

division angle through the bipolar group is presumed or
prejudiced;

– ambiguity of the tilt angle sign due to the lack of magnetic
information;

– or incorrect splittings or combinations of groups lead to spu-
rious tilt angles.

The misidentification of unipolar regions generates a noise com-
ponent whose distribution is much shallower than the distribu-
tion from bipolar groups (Wang et al. 2015; Baranyi 2015). The
peak-to-tail ratio apparent from Fig. 8 in Wang et al. (2015) is
about six for unipolar groups with ∆β < 2.◦5, while it is roughly
100 for the groups with ∆β > 2.◦5. In the Schwabe data, we find a
peak-to-tail ratio of a bit more than two for ∆β < 2.◦5, while it is
entirely uniform for ∆β ≤ 1.◦5 (Fig. 9). An interesting exercise is
the determination of the dependence of the average tilt angle on
the level of noise that is typically introduced by unipolar sunspot
groups, which are erroneously included when no magnetic infor-
mation is available. We assume that the true tilt angle distribu-
tion is symmetric around its mean and denote it by S (α, α0, σα),
where α0 and σα are the true average and width of that distri-
bution, respectively. We add the noise as a simple background
constant C, which mimics the contamination by unipolar groups
or other spurious tilt angles to simplify the analysis, giving an
upper limit of the error introduced by those tilt angles. The aver-
age tilt angle is then

〈α〉 =
∫ π/2

−π/2
α (C + S ) dα

/∫ π/2

−π/2
(C + S ) dα. (6)

We can replace the constant C by the number of sunspot groups
that contribute to C as a fraction of the total number of groups
and denote this fraction by f . We find

C =
f
∫ π/2

−π/2 S dα

π(1 − f )
· (7)
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Fig. 9. Histogram of spurious tilt angles of supposedly unipolar groups
in the Schwabe data selected by a maximum polarity separation of
∆β ≤ 1.◦5.

Inserting this into (6) leads to

〈α〉 = (1 − f )

∫ π/2

π/2

αS dα

/ ∫ π/2

π/2

S dα

≈ (1 − f )α0. (8)

The approximation coming from the finite-limit integral is bet-
ter than 0.◦05 up to α0 = 42◦ for σα = 20◦ and up to 15◦ for
σα = 30◦, which is good enough for any relevant average tilt
angles. The relation (8) tells us that if 10% of the individual tilt
angles are spurious, the average tilt angle reduces by 10%, e.g.
from a true value of 5◦ to a measured value of 4.◦5. Looking at
the cycle-to-cycle variations derived by Wang et al. (2015) for
individual data sets, we infer cycle-to-cycle scatters (corrected
by t-distribution) of 4%, 9%, and 14% for the Debrecen umbral-
based tilt angles, the Debrecen whole-spot-based tilt angles, and
the tilt angles from the Mt. Wilson white-light images, respec-
tively. Since the cycle-to-cycle variations of the average tilt an-
gles are that small, the possible contamination of the distribution
should be assessed, especially when data from different sources
are combined. A noise level of 100% naturally leads to an aver-
age tilt angle of 0◦ (without polarity information). The influence
of unipolar groups can be reduced significantly by excluding all
groups with apparent separations of ∆β < 2.◦5 or even ∆β < 3◦

(Baranyi 2015).
We tried to further reduce the influence of spurious tilt an-

gles by looking at the scatter of tilt angles of a given group
during its evolution over several days. We denote the individ-
ual appearances of a group over several days as “instances”. A
similar procedure was proposed by Li & Ulrich (2012). On the
one hand, outliers due to ill-defined groups need to be removed.
On the other hand, groups become unipolar at the end of their
lifetime, but are still large and accompanied by pores, mimick-
ing ∆β > 3◦. We therefore determine the median tilt angle ᾱ
from the various instances of a given group and determine the
average deviation from it by

∆α =

I
∑

i= 1

|αi − ᾱ|/I, (9)

where I is the number of instances of the group and αi are the tilt
angles of the individual instances of the group. The tilt angle is

Fig. 10. Histograms of the tilt angles in the Schwabe data, analysed with
two different methods. Light bars show the excess of tilt angles from
our isotropic method searching for the optimum polarity division, while
dark bars show the excess of tilt angles from the method by Howard
(1991). Only groups with area weighted centres within ±60◦ CMD and
polarity separations ∆β > 3◦ are used.

fairly reliable if the polarity separation is large. We therefore
tested whether the tilt angle at maximum polarity separation,
αmaxsep, does not deviate from the median significantly, using
the criterion |αmaxsep − ᾱ| < ∆α. The groups fulfilling this cri-
terion are a good guess of the real bipolar groups, while others
are omitted entirely. Now, within the accepted groups, all in-
stances with |αi − ᾱ| > 2∆α are omitted as outliers. A group
turning unipolar near the end of its lifetime still exhibits scat-
tered spots and pores around the remaining (large-area) polar-
ity which causes spurious tilt-angles with rapid changes. Those
(mostly H-type) groups are not supposed to deliver a tilt angle.
We call those cases evolutionary outliers in the following.

The removal of evolutionary outliers also requires the deci-
sion on which hemisphere a given group lay, since low-latitude
groups may have instances on both sides of the equator, lead-
ing to jumps in the tilt angle. We decided upon the hemispheric
membership by the average (signed) latitude of the group in-
stances of each group. The signs of the tilt angles of all instances
are then computed assuming the single hemisphere obtained
from that average latitude, regardless of the actual hemisphere
of an individual instance.

With respect to the method of computing tilt angles, we used
the Schwabe data set to compare the method by Howard et al.
(1984) with our method. The former always divides groups with
a north-south line leading to a bias with an avoidance of tilt an-
gles near 90◦. Our method of trying all possible dividing lines
is isotropic with equal prior probabilities for tilt angles of 90◦,
0◦, and −90◦. Figure 10 shows a comparison of the two methods
based on the Schwabe data of individual spots. The method of
Howard (1991) tends to concentrate tilt angles at lower values.

Groups that are reversed dipoles as compared to the typical
polarity of a given cycle (anti-Hale groups) cannot be detected
in white-light images or sunspot drawings. The anti-Hale frac-
tion of all groups is about 8% (Li & Ulrich 2012; McClintock
et al. 2014) or about 5% (Sokoloff & Khlystova 2010) or even
lower (Sokoloff et al. 2015), based on magnetogram data. This
fraction holds true for large bipolar regions though, while the
fraction may be as high as 50% for ephemeral regions with areas
less than 50 MSH (Illarionov et al. 2015), which are not relevant
here as they are not accompanied by sunspots. In our cleanest
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Fig. 11. Histograms of the tilt angles of groups with area weighted cen-
tres within 60◦ central meridian distance. Open bars: entire set, filled
bars: groups with a minimum polarity separation of ∆βmin = 3◦, and
hatched bars: groups with ∆βmin = 3◦ and a removal of evolutionary
outliers that occur in the sequence of tilt angles during the evolution
of any given group. This hatched histogram is an attempt to further re-
duce the influence of occasional unipolar instances of otherwise bipolar
groups. See text for the detailed algorithm. The bin width is 2.◦5.

distribution without evolutionary outliers, 95% of the groups are
larger than 10 MSH in terms of their umbral group area. This
translates to roughly 100 MSH total group area. For this lower
limit of group areas, Illarionov et al. (2015) give an anti-Hale
fraction of about 37%, while for large groups with 500 MSH
or more, that fraction is 10% or less. The unsigned tilt angle
distribution of anti-Hale groups is broader than that of the Hale
groups, but with similar peaks (McClintock et al. 2014). The in-
fluence of the missing knowledge of the polarity on the average
tilt angle is therefore relatively mild and not as strong as a similar
fraction of random noise in the data.

The exact definition of a group yields another source of
possible errors. Baranyi (2015) revisited the Mt. Wilson and
Kodaikanal data sets and compared them with Debrecen tilt an-
gles. Among other things, she found that the automated routine
used in the original analysis of the Mt. Wilson and Kodaikanal
data often splits true groups into two smaller groups. While the
average tilt angle by Howard (1991) (4.◦2 ± 0.◦2) was reproduced
as 4.◦16 ± 0.19, a higher value of 4.◦69 ± 0.◦20 was found for
1917−1976 when these extra splittings were corrected. In terms
of Eq. (9), this new value indicates a random noise fraction in the
original value of 11%. That period of 1917−1976 is the one for
which the Greenwich Photoheliographic Database was used as a
reference to define proper groups. For 1974−1985, the Debrecen
Photoheliographic Database was used to obtain cleaner groups,
to give the average of 5.◦00 ± 0.◦47. The difference between this
value and 4.◦69± 0.◦20 may actually be real and due to the differ-
ent cycles covered.

4.3. Distribution and averages

Figure 11 shows the resulting distribution of tilt angles. While
the distribution is quite broad, it has its maximum at small,
non-zero α. The open bars may include tilt angles, which are
erroneously computed for two or more spots of a single polar-
ity, fragmented spots, and spots inside the same penumbra. The
filled histogram therefore shows the distribution of tilt angles

with polarity separations ∆β > 3◦. In this distribution, spots in-
side a common penumbra are essentially excluded, but, on the
one hand, true bipolar groups with very small polarity separa-
tions may also be excluded. On the other hand, spurious tilt
angles due to a decaying big group with a single polarity may
still contribute to this distribution, but are a very minor fraction
(Baranyi 2015). The selection of bipolar groups may perhaps
be fine-tuned using an area-dependent minimum polarity sepa-
ration, but we did not wish to impose biases that may affect the
distribution of polarity separations. A constant minimum sepa-
ration ∆βmin is therefore used for selecting actual bipolar groups.

The average tilt angle for the distribution with ∆βmin = 3◦

and with area weighted group centres within ±60◦ CMD is
4.◦45 ± 0.◦20 (median 4.◦69 ± 0.◦20) where the error of the mean
is computed by the standard deviation of the distribution di-
vided by the square root of the number of points, σtilt/

√
n. For

comparison, we may also compute the average tilt angle for
∆βmin = 0 (again |CMD| < 60◦) and obtain 4.◦01 ± 0.◦22 (me-
dian 4.◦55 ± 0.◦22). The lower value is consistent with our ear-
lier supposition that spurious bipolarities add a certain amount
of randomness to the data, bringing the average closer to zero.
This average agrees relatively well with those found by Howard
(1991) (4.◦2 ± 0.◦2) and Dasi-Espuig et al. (2010) (4.◦25 ± 0.◦18
for Mt. Wilson and 4.◦51 ± 0.◦18 for Kodaikanal) for solar cy-
cles 15−21, which were all computed without a lower limit, i.e.
∆βmin = 0.

An analysis of the Debrecen data by Baranyi (2015) with
careful extraction of truly bipolar groups delivered 5.◦12 ± 0.◦46
for 1974−1985 (end of cycle 20 and cycle 21). Based on a min-
imum polarity separation of ∆βmin = 3◦, we recomputed the
Mt. Wilson and Kodaikanal averages as well which resulted in
values of 5.◦95± 0.◦42 and 6.◦91± 0.◦45, respectively, for cycle 21.
Ivanov (2012) used the Pulkovo database (Catalogue of Solar
Activity; CSA) for tilt angles in the period 1948−1991. We used
their database and obtained an average tilt angle of 6.◦41 ± 0.◦14
for cycle 21 only. In this sample, the groups were determined
manually and contain a fairly clean definition of what a group
is, similar to our analysis of the Schwabe drawings. Since the
average tilt angle varies from one cycle to the next, we cannot
compare Schwabe’s tilt angles with those from the 20th century
directly, but we find that averages of clean tilt angle samples are
typically 5◦ or larger.

The resulting histogram of tilt angles with deleted evolution-
ary outliers (Sect. 4.2) is shown in Fig. 11 as hatched bars. The
average tilt angle has risen to 5.◦85 ± 0.◦25, based on 7765 tilt
angles. We consider this the cleanest sample of tilt angles for
cycles 7−10. The only average this value can be compared with
now (as far as different cycles can be compared at all) is that
given by Baranyi (2015) where bipolar groups have also been
selected fairly rigorously. However, that Debrecen tilt angle of
5.◦12 is different in that spots smaller than 5 MSH are consid-
ered pores that do not enter the determination of tilt angles and
polarity separations. Figure 12 shows the histogram of the tilt an-
gles restricted to spots that have areas ≥5 MSH. The average of
5.◦45± 0.◦34 (based on 4154 tilt angles) is slightly lower than the
above value of 5.◦85±0.◦25, but not significantly. Even though the
pores seem to play a minor role in determining reliable tilt an-
gles, the difference shows that the minimum umbral area needs
to be considered when combining several data sets.

The average dependence of the tilt angle on the absolute
heliographic latitude (Joy’s law) is shown in Fig. 13. Together
with the Schwabe data, we also plotted the average tilt an-
gles obtained from the Mt. Wilson, Kodaikanal, and Debrecen
data, using only tilt angles from groups within ±60◦ CMD. The
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Table 3. Modified format of the data of individual sunspots observed by Samuel Heinrich Schwabe.

Field Column Format Explanation

YYYY 1−4 I4 Year
MM 6−7 I2 Month
DD 9−10 I2 Day referring to the German civil calendar running from midnight to midnight
HH 12−13 I2 Hour, times are mean local time in Dessau, Germany
MI 15−16 I2 Minute, typically accurate to 15 minutes
T 18 I1 Indicates how accurate the time is. Timeflag= 0 means the time has been inferred by the measurer (in

most cases to be 12h local time); Timeflag= 1 means the time is as given by the observer
L0 20−24 F5.1 Heliographic longitude of apparent disk centre seen from Dessau
B0 26−30 F5.1 Heliographic latitude of apparent disk centre seen from Dessau
CMD 32−36 F5.1 Central meridian distance, difference in longitude from disk centre; contains −.- if line indicates spot-

less day; contains NaN if position of spot could not be measured.
LLL.L 38−42 F5.1 Heliographic longitude in the Carrington rotation frame; contains −.- if line indicates spotless day;

contains NaN if position of spot could not be measured.
BBB.B 44−48 F5.1 Heliographic latitude, southern latitudes are negative; contains −.- if line indicates spotless day; con-

tains NaN if position of spot could not be measured.
M 50 C1 Method of determining the orientation. “C”: horizontal pencil line parallel to celestial equator; “H”:

book aligned with azimuth-elevation; ‘Q’: rotational matching with other drawings (spot used for the
matching have ModelLong � ‘ − .−′, ModelLat � ‘ − .−′, and Sigma � ‘ − .−′).

Q 52 I1 Subjective quality, all observations with coordinate system drawn by Schwabe get Quality= 1.
Positions derived from rotational matching may also obtain Quality= 2 or 3, if the probability dis-
tributions fixing the position angle of the drawing were not very sharp, or broad and asymmetric,
respectively. Spotless days have Quality= 0; spots for which no position could be derived, but have
sizes, get Quality= 4.

SS 54−55 I2 Size estimate in 12 classes running from 1 to 12; a spotless day is indicated with 0
GROUP 57−64 C8 Group designation based on Schwabe, but modified by our regrouping
MEASURER 66−75 C10 Last name of person who obtained position
MOD_L 77−81 F5.1 Model longitude from rotational matching (only spots used for matching have this)
MOD_B 83−87 F5.1 Model latitude from rotational matching (only spots used for matching have this)
SIGMA 89−93 F5.3 Total residual of model positions compared with measurements of reference spots in rotational match-

ing (only spots used for the matching have this). Holds for entire day.
DELTA 95−98 F4.1 Heliocentric angle between the spot and the apparent disk centre in degrees (disk-centre distance); it is

−.− for spotless days, while it is NaN if the spot position could not be determined.
UMB 100−103 I4 Inferred umbral area in millionths of the solar hemisphere (MSH); it is 0 for spotless days and NaN if

spot position could not be derived or DELTA > 85◦

A 105 C1 Flag saying whether area mapping is based on umbral (“U”) or penumbral (“!”) areas with the latter
being less certain. The actual area given in UMB is always umbral. Spotless days have −.

Notes. The format extends that by Arlt et al. (2013) after Col. 93. In the Format column, I denotes integer fields, C8 is an 8-character text field,
and, e.g. F5.1 denotes a 5-character-wide floating point field with one decimal. Areas in UMB are based on the derivation by (2).

latitudinal dependence in the Schwabe data may be a bit shal-
lower than the dependencies determined from the other data sets,
especially since it exhibits a non-zero intersection with the ordi-
nate. However,the latitudinal dependence is in agreement with
them considering the uncertainty margins.

The format of the database containing the individual um-
brae including umbral areas as well as spotless days is given
in Table 3, which extends the format given by Arlt et al. (2013),
while the format of the final data set containing the tilt angles
and polarity separations of sunspot groups is given in Table 4.
We give both the tilt angles obtained according to our method
described above as well as the tilt angles derived with the method
by Howard (1991) in Table 4.

5. Summary

This study aims to determine physical areas of sunspots from
drawings by Samuel Heinrich Schwabe in 1825−1867 as well
as ordering these sunspots into (hopefully bipolar) groups and
computing tilt angles of these sunspot groups for that period.
The fraction of the solar disk covered by the pencil dots in the
drawings cannot be directly converted into an area in km2 or mil-
lionths of a solar hemisphere (MSH). We therefore constructed

a mapping of the 12 arbitrary cursor sizes that were used
by Arlt et al. (2013) to estimate the sizes of sunspots in the
Schwabe drawings. For cycles 8−10, we obtain an average um-
bral area per day of 113. The Debrecen data for cycles 21−23,
which were predominantly used for calibration, yield an aver-
age of roughly 150. The difference appears to be compatible
with the stronger cycles in the second half of the 20th cen-
tury and because Schwabe may have overlooked (or not plotted)
a number of small spots. The umbral areas in the Greenwich
Photoheliographic Database lead to an average of about 140
from cycles 12−20 of mixed strengths. Our area conversion is
independent of the Greenwich data, but seems to agree with it
fairly well, again taking into account that the Schwabe drawings
may miss a few smaller spots.

The area distribution of the Schwabe sunspots exhibits a log-
normal distribution in agreement with 20th century data (Bogdan
et al. 1988) and is essentially independent of the cycle phase.
Schwabe’s original sunspot group designations were modified
so that the groups comply with the modern understanding of a
sunspot group, with the limitation of missing magnetic informa-
tion. The tilt angles, as well as the polarity separations of the
sunspot groups, were calculated using the positions and areas of
all individual sunspots. Without the magnetic information, the
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Table 4. Format for the tilt angle data derived from the sunspot groups observed by Schwabe, with format symbols as in Table 3.

Field Column Format Explanation

YYYY 1–4 I4 Year
MM 6–7 I2 Month
DD 9–10 I2 Day
HH 12–13 I2 Hour
MI 15–16 I2 Minute; mean local time in Dessau, Germany
GROUP 18–25 C8 Group name based on Schwabe, but modified by our regrouping
SP 27–28 I2 Number of spots in a group
ARA 30–32 I3 Sum of umbral area of all spots in a group, in millionths of the solar hemisphere (MSH)
AWL.L 34–38 F5.1 Area-weighted heliographic longitude of the group
AWB.B 40–44 F5.1 Area-weighted heliographic latitude of the group
TILTAN 46–51 F6.2 Tilt angle of the group; positive sign means leading polarity closer to equator in either hemisphere. This

tilt angle was found using an isotropic search for the most likely dividing line between the polarities.
TILTHO 53–58 F6.2 Tilt angle computed as in Howard (1991) for compatibility reasons. It is based on a fixed vertical dividing

line between the polarities and an approximative formula for the tilt angle.
POLSP 60–64 F5.2 Polarity separation of the group in degrees on the solar sphere. This and the following items are based on

the polarity definition for TILTAN.
FN 66–67 I2 Number of spots in the following polarity
LN 69–70 I2 Number of spots in the leading polarity
FAR 72–74 I3 Umbral area of the following polarity, in MSH
LAR 76–78 I3 Umbral area of the leading polarity, in MSH
FLL.L 80–84 F5.1 Area-weighted longitude of the following polarity
FBB.B 86–90 F5.1 Area-weighted latitude of the following polarity
LLL.L 92–96 F5.1 Area-weighted longitude of the leading polarity
LBB.B 98–102 F5.1 Area-weighted latitude of the leading polarity
GFC 104–108 F5.1 Heliocentric distance of the group from the disk centre in degrees

Notes. All areas are based on the UMB column in Table 3.

Fig. 12. Tilt angle histogram of the Schwabe data for group centres
within 60◦ central meridian distance and polarity separations ∆β > 3◦.
In this analysis, only spots with umbral areas of 5 MSH or more were
used to compute the weighted positions of the polarities. The selection
therefore affects both tilt angles and polarity separations. As compared
with the hatched bars in Fig. 11, many groups have now turned into
unipolar groups, since one of the polarities was represented by a single
spot of less than 5 MSH.

definition of the polarities may lead to wrong associations af-
fecting both tilt angles and polarity separations. The manual in-
spection of the groups before computing these quantities reduces
these incorrect polarities as compared to fully automatic analy-
sis schemes. Nevertheless, a remaining random component in
the tilt angle distribution is likely to be present.

Fig. 13. Dependence of the average tilt angle on the unsigned latitude
for the data from Schwabe, Kodaikanal, Mt. Wilson, and Debrecen. We
only use groups with central meridian distances within ±60◦ as the sim-
plest common filter for all data sets. Errors of the means are the standard
deviation of the bin sample divided by

√
n in each bin.

Both an updated sunspot database and a tilt angle database2

for further study. In the sunspot database, we find:

– sunspot areas for spots with CMD ≤ 70◦ are reliable;
– sunspot areas for spots with 70◦ < CMD ≤ 85◦ are uncertain

because they are an extrapolation of the statistical method
employed;

– sunspot areas for spots with CMD > 85◦ have been omitted;
and

2 Are available at
http://www.aip.de/Members/rarlt/sunspots and at the CDS.
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– sunspot areas are calibrated using 20th century data; they do
not serve for the purpose of detecting differences in areas
between the 19th and the 20th century.

In the tilt angle database, we find:

– tilt angles for all groups with two or more spots are reported;
– tilt angles for groups with CMD ≤ 60◦ are considered reli-

able as the positions are reliable;
– tilt angles for polarity separations ∆β > 3◦ (POLSP) are

likely to be bipolar groups and should be selected for fur-
ther analysis; and

– the influence of spurious tilt angles from remaining unipolar
groups can be further reduced by removing outliers from the
sequence of tilt angles provided by the evolution of a given
group. In brief, we removed days of appearance of a given
group if the obtained tilt angle deviates significantly from
the mean tilt angle of all appearances of that single group.
The actual procedure is a bit more involved and is described
in Sect. 4.2.

Joy’s law was found to be obeyed by the likely bipolar groups.
The latitude dependence averages over all Schwabe cycles is not
significantly different from cycles in the 20th century.

The applicability of white-light images for inferring cycle
properties was doubted by Wang et al. (2015), mostly because
of the inevitable contamination by actual unipolar groups. We
believe the white-light images and drawings can still be useful
because (a) improved algorithms and visual inspection can re-
duce the impact of unipolar groups significantly; and (b) we are
interested in relative variations of tilt angles from one cycle to
another, so consistently analysed sunspot data can still provide
useful relative information of cycle-to-cycle variability. Care has
to be taken that all data used for a particular study are consis-
tent with each other, e.g. tilt angles from white-light images and
magnetograms cannot be combined directly into a single record.

We have not studied the tilt angles of the individual cycles.
This will be the subject of a future study of tilt angles and
strengths of individual cycles as well as correlations thereof,
extending earlier works on Mt. Wilson and Kodaikanal data.
Cycle 7 is an especially interesting candidate to look for pe-
culiarities, since it occurred shortly after the Dalton minimum
(roughly 1795−1820). This paper aims to disseminate the areas
and tilt angles as the basis for further studies.
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