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1 Introduction

A prime example of duality between a three-dimensional and a two-dimensional theory

is the relation between a Chern-Simons theory in the presence of a boundary and the

associated chiral Wess-Zumino-Witten (WZW) model: on the classical level for instance,

the variational principles are equivalent as the latter is obtained from the former by solving

the constraints in the action [1–3].

In the case of the Chern-Simons formulation of three-dimensional gravity [4, 5], the role

of the boundary is played by non trivial fall-off conditions for the gauge fields. For anti-de

Sitter or flat asymptotics, a suitable boundary term is required in order to make solutions

with the prescribed asymptotics true extrema of the variational principle. Furthermore,

the fall-off conditions lead to additional constraints that correspond to fixing a subset of

the conserved currents of the WZW model [6, 7]. The associated reduced phase space

description is given by a Liouville theory for negative cosmological constant and a suitable

limit thereof in the flat case [8, 9]. This procedure was also implemented in the context of

three dimensional higher spin gravity without cosmological constant, where a flat limit of

Toda theory is recovered [10].

In this paper, we apply the construction to three-dimensional asymptotically flatN = 1

supergravity, whose algebra of surface charges has been shown to realize the centrally
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extended super-BMS3 algebra [11]. The non-vanishing Poisson brackets read

i{Jm,Jn} = (m− n)Jm+n +
c1

12
m3δm+n,0 ,

i{Jm,Pn} = (m− n)Pm+n +
c2

12
m3δm+n,0 ,

i{Jm,Qn} =
(m

2
− n

)

Qm+n ,

{Qm,Qn} = Pm+n +
c2

6
m2δm+n,0 ,

(1.1)

where the fermionic generators Qm are labeled by (half-)integers in the case of

(anti)periodic boundary conditions for the gravitino, and the central charges are given

by

c1 = µ
3

G
, c2 =

3

G
. (1.2)

Here, G and µ stand for the Newton constant and the coupling of the Lorentz-Chern-Simons

form, respectively.

The resulting two-dimensional field theory admits a global super-BMS3 invariance.

By construction, the associated algebra of Noether charges realizes (1.1) with the same

values of the central charges. We provide three equivalent descriptions of this theory: (i) a

Hamiltonian description in terms of a constrained chiral WZW theory based on the three-

dimensional super-Poincaré algebra, (ii) a Lagrangian formulation in terms of a gauged

chiral WZW theory and (iii) a reduced phase space description that corresponds to a

supersymmetric extension of flat Liouville theory.

Besides the extension to the supersymmetric case, previous results in the purely bosonic

sector are also generalized. This is due to the inclusion of parity-odd terms in the action,

which suitably modifies the Poincaré current subalgebra, and consequently, turns on the

additional central charge c1 in (1.1).

2 Brief review of (minimal) N = 1 flat supergravity in 3D

As in the case of pure gravity, minimal N = 1 supergravity in three dimensions [12–14]

with vanishing cosmological constant admits a Chern-Simons formulation [15]. Different

extensions of this theory have been developed in e.g., [16–29]. Hereafter we consider the

most general supergravity theory with N = 1 that is compatible with asymptotically

flat boundary conditions, and leads to first order field equations for the dreibein, the

spin connection and the gravitino [19](see also [11, 30]). The standard minimal N = 1

supergravity theory is recovered for a particular choice of the couplings (see below). The

gauge field A = Aµdx
µ is given by

A = eaPa + ω̂aJa + ψαQα , (2.1)

where ea, ωa and ψα stand for the dreibein, the dualized spin connection ωa = 1
2ǫabcω

bc,

and the (Majorana) gravitino, respectively; while ω̂a := ωa + γea and the set {Pa, Ja, Qα}
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spans the super-Poincaré algebra,

[Ja, Jb] = ǫabcJ
c , [Ja, Pb] = ǫabcP

c , [Pa, Pb] = 0 ,

[Ja, Qα] =
1

2
(Γa)

β
αQβ , [Pa, Qα] = 0 , {Qα, Qβ} = −1

2
(CΓa)αβ Pa ,

(2.2)

where C is the charge conjugation matrix (see appendix A for conventions). In these terms,

the action reads

I[A] =
k

4π

∫

〈A, dA+
2

3
A2〉 , (2.3)

where the bracket 〈·, ·〉 stands for an invariant nondegenerate bilinear form, whose only

nonvanishing components are given by

〈Pa, Jb〉 = ηab , 〈Ja, Jb〉 = µηab , 〈Qα, Qβ〉 = Cαβ , (2.4)

and the level is related to the Newton constant according to k = 1
4G . Hence, up to a

boundary term, the action reduces to

I(µ,γ) =
k

4π

∫

2R̂aea + µL(ω̂)− ψ̄αD̂ψα , (2.5)

where ψ̄α = Cαβψ
β is the Majorana conjugate, and with respect to the connection ω̂a, the

curvature two-form and the covariant derivative of the gravitino are defined as

R̂a = dω̂a +
1

2
ǫabcω̂bω̂c , D̂ψ = dψ +

1

2
ω̂aΓaψ , (2.6)

respectively, while L(ω̂) = ω̂adω̂a+
1
3ǫabcω̂

aω̂bω̂c is the corresponding Lorentz-Chern-Simons

form.

By construction the action is invariant, up to a surface term, under the following local

supersymmetry transformations

δea = −1

2
ǭΓaψ , δωa =

1

2
γǭΓaψ , δψ = Dǫ+

1

2
γeaΓaǫ , (2.7)

where Dǫ = dǫ + 1
2ω

aΓaǫ is the standard Lorentz covariant derivative of a spinor. The

field equations F = dA + A2 = 0, whose general solution is locally given by A = G−1dG,

decompose as

Ra =
1

2
γ2ǫabcebec +

1

4
γψ̄Γaψ , T a = −γǫabcebec −

1

4
ψ̄Γaψ , Dψ = −1

2
γeaΓaψ , (2.8)

where Ra, and T a = dea + ǫabcωbec stand for the curvature and torsion two-forms, respec-

tively.

Defining ω̂ = 1
2 ω̂

aΓa, e = 1
2e

aΓa and contracting the first two equations in (2.8) with
1
2Γa gives the matrix form dω̂ + ω̂2 = 0, de+ [ω̂, e] = −1

4ψψ̄, so that the decomposition of

the general (local) solution is

ω̂ = Λ−1dΛ , ψ = Λ−1dη , e = Λ−1

(

−1

4
ηdη̄ − 1

8
dη̄η1+ db

)

Λ , (2.9)
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where Λ is an SL(2,R) group element, η a Grassmann-valued spinor and b a traceless 2× 2

matrix.

The asymptotic conditions proposed in [11] imply that the gauge field is of the form

A = h−1ah+ h−1dh , (2.10)

where the radial dependence is completely captured by the group element h = e−rP0 , while

a =

(M
2
du+

N
2
dφ

)

P0 + duP1 +
M
2
dφJ0 + dφ J1 +

ψ

21/4
dφQ+ , (2.11)

with functions M, N , and the Grassmann-valued spinor component ψ that depend on the

remaining coordinates u, φ.

The standard supergravity theory with N = 1 with its asymptotically flat behaviour is

then recovered for µ = γ = 0. It is also worth pointing out that the fall-off conditions (2.11)

can be generalized, along the lines of [31], so as to include a generic choice of chemical

potentials [30].

3 Chiral constrained super-Poincaré WZW theory

3.1 Solving the constraints in the action

Up to boundary terms and an overall sign which we change for later convenience, the

Hamiltonian form of the Chern-Simons action (2.3) is given by

IH [A] = − k

4π

∫

〈Ã, du
˙̃
A〉+ 2〈duAu, d̃Ã+ Ã2〉 , (3.1)

where A = duAu + Ã.

One of the advantages of the gauge choice in (2.10), for which the dependence in the

radial coordinate is completely absorbed by the group element h, is that the boundary can

be assumed to be unique and located at an arbitrary fixed value of r = r0. Hence, the

boundary generically describes a two-dimensional timelike surface with the topology of a

cylinder (R×S1). We will also discard all holonomy terms. As a consequence, the resulting

action principle at the boundary only captures the asymptotic symmetries of the original

gravitational theory. Note also that positive orientation in the bulk is taken as dudφdr.

The boundary term in the variation of the Hamiltonian action is given by

− k
2πdud̃〈Au, δÃ〉. Thus, by virtue of the boundary conditions (2.11), the components of

the gauge field at the boundary fulfill

ωa
φ = eau , ωa

u = 0 , ψ+
u = 0 = ψ−

u , (3.2)

so that the boundary term becomes integrable. Consequently, the improved action principle

that has a true extremum when the equations of motion are satisfied is given by

II [A] = IH [A]− k

4π

∫

dudφωa
φωaφ|r=r0 . (3.3)
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In this action principle Au are Lagrange multipliers, whose associated constraints are locally

solved by Ã = G−1d̃G for some group element G(u, r, φ). Solving the constraints in the

action yields

I =
k

4π

(∫

dudφ
[

〈G−1∂φG,G−1∂uG〉 − ωa
φωaφ

]r=r0 + Γ[G]

)

, (3.4)

where

Γ[G] =
1

3

∫

〈G−1dG, (G−1dG)2〉 . (3.5)

Equivalently, in terms of the gauge field components, the action can be conveniently

written as

I =
k

4π

(∫

dudφ
[

ωa
φeau + eaφωau − ωa

φωaφ + µωa
φωau − ψ̄uψφ

]r=r0 + Γ[G]

)

, (3.6)

with

Γ[G] =
1

6

∫

(3ǫabce
aωbωc + µǫabcω

aωbωc − 3

2
ωa(CΓa)αβψ

αψβ) , (3.7)

and the understanding that Aµ = G−1∂µG. Decomposing this connection according to

eq. (2.9) allows one to rewrite this expression in terms of a 2 by 2 matrix trace, so that

integrating by parts the first term in Γ[G] gives

I=
k

2π

∫

dudφTr

[

2Λ̇Λ−1

(

−ηη̄′

4
+b′

)

−(Λ′Λ−1)2+µΛ′Λ−1Λ̇Λ−1+
η′ ˙̄η

2

]r=r0

+
µ

3

∫

Tr(dΛΛ−1)3 .

(3.8)

Furthermore, the boundary conditions (2.10), (2.11) imply that ∂φAr = 0, and hence

G = g(u, φ)h(u, r). More precisely, since in the asymptotic region h = e−rP0 , one obtains

in particular that ḣ(u, r0) = 0. The decomposition in (2.9) is then refined as

Λ = λ(u, φ) ς(u, r) ,

η = ν(u, φ) + λ̺(u, r) ,

b = α(u, φ) +
1

4
ν ¯̺λ−1 +

1

8
¯̺λ−1ν1+ λβ(u, r)λ−1 ,

(3.9)

where ς̇(u, r0) = ˙̺(u, r0) = β̇(u, r0) = 0. Therefore, up to a total derivative in u and φ, one

finds that the action reduces to that of a chiral super-Poincaré Wess-Zumino-Witten theory,

I[λ, α, ν] =
k

2π

∫

dudφTr

[

2λ̇λ−1α′ − (λ′λ−1)2 + µλ′λ−1λ̇λ−1 +
1

2
ν ′ ˙̄ν − 1

2
λ̇λ−1νν̄ ′

]

+
µ

3

∫

Tr(dΛΛ−1)3 . (3.10)

The field equations are then obtained by varying (3.10) with respect to α, ν, λ, which gives

(λ̇λ−1)′ = 0 ,

D−λ̇λ−1

u ν ′ = 0 ,

D−λ̇λ−1

u α′ + (µ∂u − ∂φ)(λ
′λ−1)− 1

4
ν̇ν̄ ′ − 1

8
ν̄ ′ν̇1+

1

4
λ̇λ−1νν̄ ′ +

1

8
ν̄ ′λ̇λ−1ν1 = 0 ,

(3.11)
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respectively. The general solution of these equations is given by

λ = τ(u)κ(φ) ,

ν = τ(ζ1(u) + ζ2(φ)) ,

α = τ

(

a(φ) + δ(u) + uκ′κ−1 − µ[ln τ, lnκ] +
1

4
ζ1ζ̄2 +

1

8
ζ̄2ζ11

)

τ−1 .

(3.12)

3.2 Symmetries of the chiral WZW model

By using the Polyakov-Wiegmann identities, the action (3.10) can be shown to be invariant

under the gauge transformations

λ → Ξ(u)λ , ν → Ξν , α → ΞαΞ−1 . (3.13)

Moreover, it is also invariant under the following global symmetries

λ → λ , ν → ν , α → α+ λΣ(φ)λ−1 ,

λ → λΘ−1(φ) , ν → ν , α → α− uλΘ−1Θ′λ−1 , (3.14)

λ → λ , ν → ν + λΥ(φ) , α → α+
1

4
νῩλ−1 +

1

8
Ῡλ−1ν1 ,

whose associated infinitesimal transformations read

δσλ = 0 , δσν = 0 , δσα = λσ(φ)λ−1 ,

δϑλ = −λϑ(φ) , δϑν = 0 , δϑα = −uλϑ′λ−1 , (3.15)

δγλ = 0 , δγν = λγ(φ) , δγα =
1

4
νγ̄λ−1 +

1

8
γ̄λ−1ν1 .

The Noether currents associated to a global symmetry, whose parameters are collectively

denoted by X1, generically read J
µ
X1

= −k
µ
X1

+ ∂L
∂µφi δX1

φi, with δX1
L = ∂µk

µ
X1

. Hence, in

the case of global symmetries spanned by (3.15), the corresponding currents are given by

J
µ
σ = 2δµ0Tr[σP ], Jµ

ϑ = 2δµ0Tr[ϑJ ], J
µ
γ = 2δµ0Tr[γQ], where

P =
k

2π
λ−1λ′ ,

J = − k

2π

[

λ−1α′λ− u(λ−1λ′)′ + µλ−1λ′ − 1

4
λ−1νν̄ ′λ− 1

8
ν̄ ′ν1

]

,

Q =
k

4π
ν̄ ′λ .

(3.16)

For the Noether n − 1-forms jX1
= J

µ
X1

(dn−1x)µ, the current algebra can then be

worked out by applying a subsequent symmetry transformation δX2
, so that

δX2
jX1

= j[X1,X2] +KX1,X2
+ “trivial” , (3.17)

where [δX1
, δX2

] = δ[X2,X1], andKX1,X2
denotes a possible field dependent central extension,

and “trivial” stands for exact n − 1 forms plus terms that vanish on-shell. Furthermore,

general results guarantee that, in the Hamiltonian formalism, this computation corresponds

– 6 –
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to the Dirac bracket algebra of the canonical generators of the symmetries, i. e., δX2
J0
X1

=

{J0
X1

, J0
X2

}∗, see e.g. [32–35]. Once applied to the components of the currents, given by

Pa(φ) = Tr[ΓaP ] , Ja(φ) = Tr[ΓaJ ] , Qα(φ) = − k

2π
ν̄ ′βλ

β
α , (3.18)

this yields

{Pa(φ), Pb(φ
′)}∗ = 0 ,

{Ja(φ), Jb(φ′)}∗ = ǫabcJ
cδ(φ− φ′)− µ

k

2π
ηab∂φδ(φ− φ′) ,

{Ja(φ), Pb(φ
′)}∗ = ǫabcP

cδ(φ− φ′)− k

2π
ηab∂φδ(φ− φ′) ,

{Pa(φ), Qα(φ
′)}∗ = 0 ,

{Ja(φ), Qα(φ
′)}∗ = 1

2
(QΓa)αδ(φ− φ′) ,

{Qα(φ), Qβ(φ
′)}∗ = −1

2
(CΓa)αβPaδ(φ− φ′)− k

2π
Cαβ∂φδ(φ− φ′) ,

(3.19)

which is the affine extension of the super-Poincaré algebra (2.2).

3.3 Super-BMS3 algebra from a modified Sugawara construction

In order to recover the super-BMS3 algebra (1.1) from the affine extension of the super-

Poincaré algebra in (3.19), it can be seen that the standard Sugawara construction has to

be slightly improved. Indeed, let us consider bilinears made out of the currents components

Pa, Ja, Qα, given by

H =
π

k
P aPa , P = −2π

k
JaPa + µH+

π

k
QαC

αβQβ , G = 23/4
π

k

(

P2Q+ +
√
2P0Q−

)

,

(3.20)

for which the current algebra (3.19) implies

{H(φ), Pa(φ
′)}∗ = 0 , {P(φ), Pa(φ

′)}∗ = Pa(φ)δ
′(φ− φ′) ,

{H(φ), Ja(φ
′)}∗ = −Pa(φ)δ

′(φ− φ′) , {P(φ), Ja(φ
′)}∗ = Ja(φ)δ

′(φ− φ′) , (3.21)

{H(φ), Qα(φ
′)}∗ = 0 , {P(φ), Qα(φ

′)}∗ = Qα(φ)δ
′(φ− φ′) ,

{G(φ), Pa(φ
′)}∗ = 0 ,

{G(φ), Ja(φ′)}∗ = − π

21/4k
(ǫabc(QΓb)+P

c + PaQ+)δ(φ− φ′)− δ′(φ− φ′)
1

21/4
(QΓa)+(φ

′) ,

{G(φ′), Qα(φ
′)}∗ = − 1

21/4
HCα+δ(φ− φ′) + δ′(φ− φ′)

1

21/4
(CΓa)α+P

a(φ) . (3.22)

When expressed in terms of modes, the algebra of the generators H, P corresponds to

the pure BMS3 algebra without central extensions, i.e., the bosonic part of (1.1) with

c1 = 0 = c2. This does however not hold for the mode expansion of the full set H, P, G
whose algebra disagrees with the non-centrally extended super BMS3 algebra given in (1.1).

It reflects the fact that the non-constrained super-WZW model (3.10) is invariant under

– 7 –
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global BMS3 transformations, but not under the full super-BMS3 symmetries, in the sense

that there are no (obvious) superpartners to H, P that would close with them according

to the (non centrally extended) super-BMS algebra (see [7] for an analogous discussion in

the case of the superconformal algebra).

According to the fall-off of the gauge field in (2.11), the remaining boundary conditions

that have to be taken into account imply that [λ−1λ′]1 = 1, [λ−1ν ′]− = 0, [λ−1(−1
4νν̄

′ −
1
8 ν̄

′ν1+ α′)λ]1 = 0. In terms of the currents, this amounts to imposing the following first

class constraints

P0 =
k

2π
, J0 = −µk

2π
, Q+ = 0 . (3.23)

The super-BMS3 invariance of our model with the correct values of the central charges

is recovered only once the constraints (3.23) are imposed. The generators of super-BMS3
symmetry in the constrained theory are given by

H̃ = H+ ∂φP2,

P̃ = P − ∂φJ2,

G̃ = G + 23/4∂φQ+(φ),

(3.24)

which are representatives that commute with the first class constraints (3.23), on the

surface defined by these constraints. Furthermore, on this surface, the Dirac brackets of

the generators are given by

{H̃(φ), H̃(φ′)}∗ = 0 ,

{H̃(φ), P̃(φ′)}∗ = (H̃(φ) + H̃(φ′))∂φδ(φ− φ′)− k

2π
∂3
φδ(φ− φ′) ,

{P̃(φ), P̃(φ′)}∗ = (P̃(φ) + P̃(φ′))∂φδ(φ− φ′)− µk

2π
∂3
φδ(φ− φ′) ,

{H̃(φ), G̃(φ′)}∗ = 0 ,

{P̃(φ), G̃(φ′)}∗ = (G̃(φ) + 1

2
G̃(φ′))∂φδ(φ− φ′) ,

{G̃(φ), G̃(φ′)}∗ = H̃(φ)δ(φ− φ′)− k

π
∂2
φδ(φ− φ′) ,

(3.25)

so that, once expanded in modes according to

Pm =

∫ 2π

0
dφ eimφH̃ , Jm =

∫ 2π

0
dφ eimφP̃ , Qm =

∫ 2π

0
dφ eimφG̃ ,

the super-BMS3 algebra (1.1) with central charges given in (1.2) is recovered.

4 Reduced super-Liouville-like theory

In order to obtain the reduced phase space description of the action (3.10) on the constraint

surface defined by (3.23), it is useful to decompose the fields according to

λ = eσΓ1/2e−ϕΓ2/2eτΓ0 , α =
η

2
Γ0 +

θ

2
Γ2 +

ζ

2
Γ1 , (4.1)

– 8 –
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where σ, ϕ, τ, η, θ, ζ stand for functions of u, φ. The constraints (3.23) then become

σ′ = eϕ ,

ζ ′ = µ(eϕ − σ′) +
1

2
σ2η′ + σθ′ , (4.2)

ν−′ =
1√
2
σν+′ ,

and hence, by virtue of (4.1) and (4.2), the reduced chiral super-WZW action (3.10) is

given by

IR =
k

4π

∫

dudφ

[

ξ′ϕ̇− ϕ′2 + µϕ′ϕ̇+
1√
2
χχ̇

]

, (4.3)

where ξ := −2(θ + ησ) + 1
2(ν

−ν+), and χ := eϕ/2ν+. It is worth noting that, in the case

of µ = 0, the bosonic part of (4.3) is related to a flat limit of Liouville theory [9]. The

super-BMS3 generators (3.24) then reduce to

H̃=
k

4π

(

ϕ′2−2ϕ′′
)

, P̃=
k

4π

(

ξ′ϕ′−ξ′′+
1√
2
χχ′

)

+µH̃ , G̃=21/4
k

4π

(

1

2
ϕ′χ−χ′

)

,

(4.4)

which generate the following transformations

δϕ = Y ϕ′ + Y ′ ,

δξ = 2fϕ′ + ξ′Y + 2f ′ − 21/4ǫχ ,

δχ = Y χ′ +
1

2
Y ′χ+ 2−1/4ǫϕ′ + 23/4ǫ′ ,

(4.5)

with f = T (φ) + uY ′, Y = Y (φ), and ǫ = ǫ(φ). Therefore, by construction, the super-

Liouville-like theory turns out to be invariant under (4.5), and the mode expansion of the

algebra of Noether charges is again given by (1.1) and (1.2).

5 Gauged chiral super-WZW model

The super-Liouville-like action (4.3), that has been shown to be equivalent to the chiral

super-WZW model (3.10) on the constraint surface given by (3.23), can also be described

through a gauged chiral super-WZW model. Here we follow the procedure given in [36],

where it was shown that Toda theories can be written as gauged WZW models based on a

Lie group G. The action is endowed with additional terms involving the currents linearly

coupled to some gauge fields that belong to the adjoint representation of the subgroups of

G generated by the step operators associated to the positive and negative roots.

Hence, we consider the following action principle

I[λ, α, ν, Aµ, Ψ̄] = I[λ, α, ν]

+
k

π

∫

dudφTr

[

Au

(

λ−1α′λ− u
(

λ−1λ′
)′ − 1

4
λ−1νν̄ ′λ− 1

8
ν̄ ′ν1

)

+Ãu(λ
−1λ′)− µM Ãu +

(

1

4
λ−1ν ′

)

Ψ̄

]

, (5.1)
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where I[λ, α, ν] is the flat chiral super-Poincaré WZW action (3.10). Here Au, Ãu are along

Γ0, and µM := µΓ1 with µ an arbitrary constant, while the fermionic gauge field Ψ̄ fulfills

[Ψ̄]+ = 0 (see appendix B for more details on the construction in the bosonic case).

One can then show that the action (5.1) is invariant (up to boundary terms) under

the transformations given in (3.15), where a subset of the symmetries has been gauged

by allowing for an arbitrary u dependence of the part of σ, ϑ that belongs to the subspace

generated by Γ0, of the fermionic parameters that belong to the subspace defined by [γ̄]+ =

0, [λγ]− = 0 and the non-trivial transformations for the gauge fields are

δσÃu = − (σ̇ + [Au, σ]) , δγΨ̄ = −∂uγ̄ .

δϑAu = −(ϑ̇+ [Au, ϑ]) , δϑÃu = −[Ãu, ϑ].
(5.2)

Therefore, the reduced theory described by the action in (4.3) is equivalent to the one

in (5.1), which corresponds to a WZW model in which the subgroup generated by the first

class constraints has been gauged. Indeed, the gauge fields Au, Ãu and Ψ act as Lagrange

multipliers for these currents, so that the variation of the action with respect to these non-

propagating fields sets them to zero. In other words, solving the algebraic field equations

for the gauge fields into the action amounts to imposing the first class constraints (3.23),

which shows the equivalence of both descriptions.
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A Conventions

The orientation has been chosen so that the Levi-Civita symbol fulfills ǫ012 = 1, while the

tangent space flat metric ηab, with a = 0, 1, 2, is assumed to be off-diagonal and given by

ηab =







0 1 0

1 0 0

0 0 1






.
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The Dirac matrices in three spacetime dimensions satisfy the Clifford algebra {Γa,Γb} =

2 ηab, and have been chosen as

Γ0 =
√
2

(

0 1

0 0

)

, Γ1 =
√
2

(

0 0

1 0

)

, Γ2 =

(

1 0

0 −1

)

.

The matrices fulfill the following useful properties:

ΓaΓb = ǫabcΓ
c + ηab1 , (Γa)αβ(Γa)

γ
δ = 2δαδ δ

γ
β − δαβ δ

γ
δ , (A.1)

where α = +1, −1. The Majorana conjugate is defined as ψ̄α = Cαβψ
β , where

Cαβ = εαβ = Cαβ =

(

0 1

−1 0

)

, (A.2)

stands for the charge conjugation matrix, which satisfies CT = −C and CΓaC
−1 = −(Γa)

T .

Note that this implies that Λ−1ψ = ψ̄Λ, for any Λ ∈ SL(2,R). The conjugate of the product

of real Grassmann variables is assumed to fulfill (θ1θ2)
∗ = θ1θ2.

B Gauged chiral bosonic WZW theory

Let us describe here a way to construct a gauged chiral iso(2, 1) WZW model associated

to (3.10) for the purely bosonic case and µ = 0. The action is given by

I(λ, α) =
k

π

∫

dudφTr

[

λ̇λ−1α′ − 1

2
(λ′λ−1)2

]

, (B.1)

and it has the following Noether symmetries

δσλ = 0 , δσα = λσ(φ)λ−1 ,

δϑλ = −λϑ(φ) , δϑα = −uλϑ′λ−1 .
(B.2)

According to (3.23), we are interested in gauging the subset of these symmetries involving

the parts of σ and ϑ along Γ0. These parameters are promoted to depend on both u and φ.

One can check that the action

I(λ, α,Aµ) = I(λ, α) +
k

π

∫

dudφTr
[

−Au

(

λ−1α′λ− u
(

λ−1λ′
)′
)

+ Ãuλ
−1λ′

]

, (B.3)

is invariant under

δσλ=0 , δσα=λσ(u, φ)λ−1 , δσAu=0 , δσÃu=− (σ̇+[Au, σ]) ,

δϑλ=−λϑ(u, φ) , δϑα=−uλϑ′λ−1 , δϑAu=−(ϑ̇+[Au, ϑ]) , δϑÃu=−[Ãu, ϑ] , (B.4)

with σ and ϑ along Γ0.

Since the constraints we want to implement set some current components to a constant,

the suitable final action is

I(λ, α,Aµ) = I(λ, α) +
k

π

∫

dudφTr
[

−Au

(

λ−1α′λ− u
(

λ−1λ′
)′
)

+ Ãuλ
−1λ′ − µM Ãu

]

,

(B.5)

– 11 –
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where µM := µΓ1, with µ an arbitrary constant, and Au, Ãu are along Γ0. The action (B.5)

is indeed still gauge invariant since, as noticed in [36], the variation of Tr[µM Ãu] under a

gauge transformation is a boundary term.

Finally, in order to see how the constraints are explicitly implemented, it is useful to

parametrize the fields according to

λ = eσΓ1/2e−ϕΓ2/2eτΓ0 , α =
η

2
Γ0 +

θ

2
Γ2 +

ζ

2
Γ1 . (B.6)

The field equations for the gauge fields imply that σ′e−ϕ = µ and η′σ2 +2θ′σ− 2ζ ′ = 0, so

that, taking µ = 1, the reduced action is

I =
k

4π

∫

dudφ
[

ξ′ϕ̇− ϕ′2
]

, (B.7)

where ξ := −2(θ+ησ), in full agreement with the centrally extended BMS3 invariant action

found in [9].
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