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SUPER-BROWNIAN MOTION AS THE UNIQUE STRONG
SOLUTION TO AN SPDE

BY JIE XIONG'
University of Tennessee and University of Macau

A stochastic partial differential equation (SPDE) is derived for super-
Brownian motion regarded as a distribution function valued process. The
strong uniqueness for the solution to this SPDE is obtained by an ex-
tended Yamada—Watanabe argument. Similar results are also proved for the
Fleming—Viot process.

1. Introduction. Let (2, F, P, F;) be a stochastic basis satisfying the usual
conditions. Namely, (€2, F, P) is a probability space, and {#;} is a family of non-
decreasing right-continuous sub-o-fields of F such that Fg contains all P-null
subsets of 2. Let W be an F;-adapted space—time white noise random measure on
R4 x U with intensity measure ds A(da), where (U, U, 1) is a measure space. We
consider the following stochastic partial differential equation (SPDE): for € R4
and y e R,

t t]
(1.1) u,(y)zF(y)—i-/o fUG(a,y,us(y))W(dsda)—l—/O EAus(y)ds,

where F is a real-valued measurable function on R, G : U x R? — R satisfies the
following conditions: there is a constant K > 0 such that for any u{, us,u, y € R,

(12) /U|G<a,y,u1)—G(a,y,m){zx(da)sK|u1 ]
and
(1.3) fU|G(a,y,u)|2x(da) < K(1+ [ul).

We first give the definition for the solution to SPDE (1.1). To this end, we need
to introduce the following notation. For i € N U {0}, let &; be the Hilbert space
consisting of all functions f such that f® e L2(R, e~ dx), where f® denotes
the kth order derivative in the sense of generalized functions. We refer the reader
to Section 2.1 of Chapter 1 in the book of Gel’fand and Shilov [9] for a precise
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definition of such derivatives. We shall denote f© = f. The Hilbert norm || f||; is
defined as

I£17 = F® ()2 M gx < o0.
>,

We denote the corresponding inner product by (-, -);. Let C;5°(IR) be the collection
of functions which has compact support and derivatives of all orders.

DEFINITION 1.1. Suppose that F' € Aj. A continuous Xp-valued process {u,}
on a stochastic basis is a weak solution to SPDE (1.1) if there exists a space—time
white noise W such that for any > 0 and f € Cj°(R), we have

» e 1y = 4P, 11+ [ s 57 )as

t
+f0 A;_/;]G(a’y’”s()’))f(Y)dyW(dsda) as.

Here let (f, g) = Jp f(x)g(x) dx whenever the integral is well-defined.

SPDE (1.1) has a strong solution if for any space—time white noise W on
stochastic basis (€2, F, P, F;), there exists a continuous Xp-valued F;-adapted
process {u,} such that (1.4) holds for all f € C5°(R).

The first main result of this article is presented as follows.

THEOREM 1.2. Suppose that conditions (1.2) and (1.3) hold. If F € Xy, then
SPDE (1.1) has a strong solution (u;) satisfying

(1.5) E sup |lu]|3 < oo,
0<t<T

and any two solutions satisfying this condition will coincide.

The idea for the proof of the uniqueness part of Theorem 1.2 is outlined as fol-
lows. When the solution to SPDE (1.1) is Xj-valued, that is, u,(x) is differentiable
in x, we establish its connection to a backward doubly stochastic differential equa-
tion (BDSDE). When the driving noise is finite dimensional, the coefficients are
Lipschitz, and the solution of the SPDE is differentiable in x up to order 2, this
connection was established by Pardoux and Peng [23]. We will use a smoothing
approximation to achieve such a connection for the current non-Lipschitz setting.
The Yamada—Watanabe (cf. [29]) argument to the BDSDE is applied to establish
the uniqueness of the solution. As a consequence, SPDE (1.1) has at most one
solution in the class of spatially differentiable solutions. In fact, the uniqueness
in this smaller space is sufficient for applications to super-Brownian motions and
Fleming—Viot processes.
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The goal of Theorem 1.2 is to prove uniqueness in the set of Ap-valued pro-
cesses. The proof of this case is inspired by that of the X’-valued process. It uses
a detailed estimate of the spatial derivative term in the equation satisfied by the
smoothing approximation of the solutions.

The main motivation of the above result is its applications to many measure-
valued processes, from which three are stated here. At the end of this section,
other possible applications will be outlined, while their presentations will appear
in forthcoming publications.

Super-Brownian motion (SBM), also called the Dawson—Watanabe process, has
been studied by many authors since the pioneering work of Dawson [2] and Watan-
abe [26]. It is a measure-valued process arising as the limit for the empirical mea-
sure process of a branching particle system. It has been proved that this process
satisfies a martingale problem (MP), whose uniqueness is established by the non-
linear partial differential equation satisfied by its log-Laplace transform. Denote
SBM by (). When the state space is R, for each ¢ and almost all @, the mea-
sure 1, has density with respect to the Lebesgue measure, and this density-valued
process v; satisfies the following nonlinear SPDE:

(1.6) 3 v (x) = 5 AV (x) + v/v, (x) By,

where B is the space-time white noise on R} x R. This SPDE was derived and
studied independently by Konno and Shiga [15] and Reimers [24]. The uniqueness
of the solution to SPDE (1.6) is only proved in the weak sense using that of the
MP.

Many attempts have been made toward proving the strong uniqueness for the
solution to (1.6). The main difficulty is the non-Lipschitz coefficient in front of
the noise. Some progress has been made by relaxing the form of the SPDE.
When the space R is replaced by a single point, (1.6) becomes an SDE which
is the Feller’s diffusion dv, = ,/v; d B; whose uniqueness is established using the
Yamada—Watanabe argument. When the random field B is colored in space and
white in time, the strong uniqueness of the solution to the SPDE (1.6) with v/v;(x)
replaced by a function of v;(x) was obtained by Mytnik et al. [21] under suitable
conditions. When B is a space—time white noise, Mytnik and Perkins [20] prove
pathwise uniqueness for multiplicative noises of the form o (x, vy (x))B,x, where
o is Holder continuous of index o > % in the solution variable. In particular, their
results imply that the SPDE

(1.7) v (x) = $ AV (x) + | (x)|* By

has a pathwise unique solution when o > %. Some negative results have also been

achieved. When signed solutions are allowed, Mueller et al. [19] give a nonunique-

ness result when % <ua< %. For SPDE (1.7) restricted to nonnegative solutions,

Burdzy et al. [1] show a nonuniqueness result for 0 < o < %

In this paper, we approach this problem from a different point of view. Instead
of considering the equation for the density-valued process, we study the SPDE



UNIQUE SOLUTION TO SPDE 1033

satisfied by the “distribution” function-valued process. That is, we define the “dis-
tribution” function-valued process u;,

y
(1.8) m00=A/uMﬂ VyeR.

Notice that u;(y) is differentiable in y. Here u; is referred to as the corresponding
distribution function of u,, although u; is not necessarily a probability measure.
In addition, we take the integral starting from 0 instead of —oo to include the case
of u; being an infinite measure.

Inspired by Dawson and Li [6], we consider the following SPDE:

torus(y) ]
(1.9) zmw=ﬂw+AA W@mm+ﬁimmww,

where F(y) = foy 1o(dx) is the distribution function of g, W is a white noise
random measure on Ry x R with intensity measure ds da. The authors of [6]
considered equation (1.9) with %A replaced by the bounded operator A given by

Af () = (y(x) = f(x))b,

where b is a constant and y is a fixed function. We prove that the solution of (1.9)
is indeed the distribution function-valued process corresponding to an SBM. The
strong uniqueness for the solution to (1.9) is then obtained by applying Theo-
rem 1.2 to the current setup. This result provides a new proof of uniqueness in law
for SBM.

THEOREM 1.3. Let {iu;} be an SBM and F € Xy, where F(y) = foy Ho(dx),
Vy € R. If {u;} is the corresponding distribution function defined by (1.8), then it
is possible to define a white noise W on an extension of the stochastic basis so that
{u;} is the unique solution to the SPDE (1.9).

On the other hand, if {u;} is a weak solution to the SPDE (1.9) with F € Xy
being nondecreasing, then {i;} is an SBM.

The definition of the extension of a stochastic basis and random variables on the
basis can be found in the book of Ikeda and Watanabe [11]. We refer the reader to
Definition 7.1 on page 89 in [11] for details. Here we only remark that the original
SBM remains an SBM on the extended stochastic basis.

Because of the difference in driving noise, the uniqueness of the solution to
SPDE (1.9) does not imply that of SPDE (1.6). In fact, the noise W in (1.9) is
constructed using the noise B and the solution v; in (1.6). We also note that our
uniqueness of the solution to SPDE (1.9) does not contradict the nonuniqueness
result of [19] for the case of & = %, since signed solutions are allowed in [19]. Let

vy (x) be a (signed) solution to (1.7) with « = % Then

u(x) = fo v (y)dy
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does not satisfy [unless v;(x) is nonnegative] SPDE (1.9) because the quadratic
variation of the martingale

t X
/0 /0 lvs ()| ? B(ds dy)

is

/0’ _/(;x|vs(J’)|dyds #/Ot|us(x)|ds,

Similarly, we consider another very important measure-valued process: the
Fleming—Viot (FV) process. We demonstrate that the SPDE

t 1 t1
(1.10) u,(y) = F(y) + fo /0 (Lozus () — tts (")) W (ds da) + fo S Aus () ds

can be used to characterize the distribution function-valued process determined
by the FV process, where W is a white noise random measure on R4 x [0, 1],
with intensity measure ds da. Uniqueness of the solution to SPDE (1.10) is the
second application of Theorem 1.2. Observe that this result provides a new proof
of uniqueness in law for FV process.

THEOREM 1.4. Let {iu;} be an FV process and

u (y) =Mt((—00,y]) Vy e R.

Let F =ug € Xy. Then it is possible to define a white noise W on an extension of
the stochastic basis so that {u,} is the unique solution to SPDE (1.10).

On the other hand, if {u;} is a solution to SPDE (1.10) with F € Xy being the
distribution of a probability measure on R, then {,} is an FV process.

The third application of Theorem 1.2 is for the SPDE driven by colored noise.
More precisely, we consider the following SPDE:

(1.11) dus(x) = %Aut(x)dt+\/ut(x)B(x,dt),

where B is a Gaussian noise on R x R with covariance function ¢ in space, that
is,

EB(x,dt)B(y,dt) =¢(x,y)dt Vx,yeR.

THEOREM 1.5. Suppose uog € Xy is fixed, and ¢ is bounded. Then
SPDE (1.11) has at most one solution.

Such a result was obtained by Viot [25] when the state space is bounded. The
unbounded state space case was shown in [21]. We reprove the result of [21] as an
application of Theorem 1.2. Mytnik, Perkins and Sturm [21] also consider the case
of singular covariance; however, Theorem 1.2 does not apply to this case.
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The rest of this paper is organized as follows. In Section 2, we establish the ex-
istence of a solution to SPDE (1.1). Section 3 introduces the BDSDE and gives a
Yamada—Watanabe type criteria for such equation. It also illustrates the connection
between the SPDE and the BDSDE. As a consequence, uniqueness for the solu-
tion of the SPDE when the solutions are restricted to those with first order partial
derivative in the spatial variable. We refine in Section 4 the uniqueness proof of
Section 3 without the spatial differentiability condition. Finally, Section 5 applies
the uniqueness result for SPDE (1.1) to three important measure-valued processes.

We use u(f) or (i, f) to denote the integral of a function f with respect to
the measure . The letter K stands for a constant whose value can be changed
from place to place. 9, is used to denote the partial derivative with respect to the
variable x if the notation V is ambiguous.

We conclude this section by mentioning other possible applications of the idea
developed in this article. The first is to consider measure-valued processes with
interaction among individuals in the system. This interaction may come from the
drift and diffusion coefficients which govern the motion of the individuals. It may
also come from the branching and immigration mechanisms. This extension will
appear in a joint work of Mytnik and Xiong [22]. The second possible application
is to consider other type of nonlinear SPDEs, especially those where the noise term
involves the spatial derivative of the solution. This extension will appear in a joint
work of Gomez et al. [10]. Finally, studying measure-valued processes by using
SPDE methodology will have the advantage of utilizing the rich collection of tools
developed in the area of SPDEs. For example, the large deviation principle (LDP)
for some measure-valued processes, including FV process and the SBM, can be
established. As is well known, LDP for general FV process is a long standing open
problem (some partial results were obtained by Dawson and Feng [4, 5], and Feng
and Xiong [8] for neutral FV processes, and Xiang and Zhang [27] for the case
when the mutation operator tends to 0). This application will be presented in a
joint work of Fatheddin and Xiong [7].

It was pointed out to me by two referees and by Leonid Mytnik that Theorem 1.2
can be proved using the Yamada—Watanabe argument directly to the SPDE without
introducing the BDSDE. One of the advantages of the current backward framework
is that the term involving the Laplacian operator gets canceled when It6—Pardoux—
Peng formula is applied. Furthermore, as one of the referees pointed out, “it is
quite possible that the BDSDE idea will have something to offer in other natural
interacting models.” In fact, in [10], the BDSDE idea is used to get the uniqueness
for the solution to an SPDE where the noise term involves the spatial derivative
of the solution. This term actually helped us in the proof of the uniqueness of the
solution. To the best of my knowledge, the direct Yamada—Watanabe argument to
such an equation cannot be easily implemented in this case.

2. Existence of solution to SPDE. In this section, we consider the existence
of a solution to SPDE (1.1).
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Note that the definition of weak solution to (1.1) is equivalent to the following
mild formulation:

t
@1 u(y)=T,F(y) + /0 fU fR sy — )G (a, 2, us(2)) dz W (ds da),

where 7; is the Brownian semigroup, which is for any f € Aj,

1 2
th(x)=A;{Pt(x—y)f(y)dy and pt(X)ZZ—MCXp(_;_t)'

Before constructing a solution to (2.1), we prove the semigroup property for the
family {7;} to be used in later sections.

LEMMA 2.1. {T;:t > 0} is a strongly continuous semigroup on Xj.

PROOF. Let K; be the function given by
K?:/e’lz|p1(z)dz<oo Vi > 0.
R

It is easy to show that for any f € &), we have

(2.2) I fllo = Kill fllo-

Thus, {T;,t > 0} is a family of bounded linear operators on Aj. The semigroup
property is not difficult to verify. We now focus on this semigroup’s strong conti-
nuity.

For any f € Cp(R) N XY, it follows from the dominated convergence theorem
that as t — 0,

2
1T f — FI3 < fRVR(ﬂx b 12) = FOO)p1()dz| e dx 0.

In general, for f € Xp, we take a sequence f;,, € Cp(R)NAp such that || f;, — fllo =
0 as n — oo. Then

1T f = fllo < Kill fu = fllo+ 1Tt fu = fullo,
which implies 7; f — finApast — 0. U

In addition, we define operators TtU on the Hilbert space Ay ® L2(U,\) =
L*(R x U, el dx A(da)) as

Tng(a,X)=/Rpt(x—y)g(a,y)dy vt > 0.

By the same argument as in the proof of Lemma 2.1, we have the following result.
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LEMMA 2.2. {TtU :t > 0} is a strongly continuous semigroup on Xy ®
L2(U, ). Furthermore, for any g € Xo ® LU, ),
(2.3) [ Tng“X()Q@LQ(U,A) = Killgllxyer2w,m-
Now, we come back to the construction of a solution to (2.1). Define a sequence
of approximations by: M?()’) = F(y) and, for n > 0,
et @ o=1F0+ [ [ [ pet =06 i) dwdsda)
Let
76 = [ ot = ydy.
where p is the mollifier given by
p(x) = K exp(=1/(1 = x*))1jz<1,

and K is a constant such that fR p(x)dx = 1. Then, for any m € Z_, there are
constants ¢,;, and C,, such that

eme ¥ < 7 (x) < Cpe ! Vx € R;
cf. Mitoma [18], (2.1). We may and will replace ¢! by J(x) in the definition of
space Aj.
LEMMA 2.3. Forany p > 1and T > 0, there exists a constant K1 = K1(p, T)
such that for any n > 0,

(2.5) Esup|u’|s? < K.
t<T

PROOF. We proceed by adapting the idea of Kurtz and Xiong [17]. Smoothing
out if necessary, we may and will assume that u}”’l € X>. By Itd’s formula, it is
easy to show that, for any f € C;°(R),

o= (F o+ [ (3t g) as
012 0
(2.6) ;
+/0 /R/UG("’y’”?(y))f(y)J(y)dyW(dsda) as.

Applying 1t6’s formula to (2.6) gives
2
™ £l
t
— (P £+ [ et flofdurt ! flyds

! 2
+fo /U(/H;G("’ Y, U (y))f(y)J(y)dy) rda)ds

t
+ [ [ 21 [ Glay i) 1)) dyWdsda).
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Summing on f over a complete orthonormal system (CONS) of Xy, we have

t
G = NFI+ [ !, au s
t
[ [ Glaywm)sodyidads
0 JUJR

+ /ot /U 2yt Gla. - ul ()W ds da).

1t6’s formula is again applied to obtain
n+12p
™ Mo

t
— 1P+ [l R et sy ds
t
en o+ [ ol 50 [ [ Glay )P s dyidards
1
+‘/0 p||M?+1|}(2)(p_1)][;2<”?+1,G(a,-,M?(‘)))OW(dsda)

+2p(p— 1)](:\}u;’+1||§<”‘2)fU(u;’“,G(a,-,ug?(.))>§,\(da)ds.
Note that, for u € Aj,
A;u(x)u/(x)J/(x) dx = —Au(x)(u’(x)]’(x) +u(x)J"(x))dx,
which implies that
—Au(x)u/(x)J/(x)dx = %/Iéu(x)zl”(x)dx < K2/Ru(x)2J(x)dx = Ko llu|l3.
Therefore,

(u, Au)o = /Ru”(x)u(x)\](x) dx

_ —A;u/(x)(u/(x)J(x) +u(0)J' (x)) dx

< Kallul.
By using the Burkholder—Davis—Gundy inequality on (2.7),
t
~Esuplul*! 57 <11 + pK [ EJu I ds
5=
! 2p—1 2
s [ R0+ ) ds

! 114p—2 2 1/2
KB ([ e 170+ 1 ds)
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Hence,

2
a1 (6) = Esup|ul |7
s<t
2 t t
< IFIE +Ks | fun)ds+Ks [ fu(s)ds
1

+ Efn—i-l(t)-

Gronwall’s inequality and an induction argument finish the proof. [J
We proceed to proving the tightness of {u#"} in C ([0, T'] x R). Denote
t

v (y) =/(; /U/Rp;_s(y —2)G(a, z, uy(z))dzW (ds da).

LEMMA 2.4. Forany p > 1 > «a, there is a constant K| such that

(2.8) E[v! (y1) — v (y2)|* < KeP V2D |y gy ppe

PROOF. Denote the left-hand side of (2.8) by 1. It follows from Burkholder’s
inequality that there exists a constant K, > 0 such that / is bounded by

p

KzlE(/ot /;J(/R(Ps(yl —2)— ps(»2—2))G(a, z, u’f_s(z))dz>2)»(da)ds) )

By Holder’s inequality,

t
I§K2E</0 /U/R(ps(yl —2)— ps(ya —2)) %€ dz

P
></RG(a,z,u;’_s(z))ze_mdzk(da)ds) :

The linear growth condition (1.3) and the estimate (2.5) is then applied to get
t
1= KE( [ [ (1 =0 = po = ) az
) p
x/ K(1+ |u}_ (2| )e"zldzds)
R

< K3 (/Ol /R(ps(yl —2) = ps(y2 — 2)) el dzds>p.

Using the fact that

Ips1) = ps)| < Ks7Hyr =yl V¥s>0,y1,meR,
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we arrive at

! P
_ 2-
I= K4(/0 /ﬂ;s Iy = »l*(ps(1 —2) V ps(y2 —2))" "l dzds)
! p
< K4(/(; A;S_ab’l — y2|%ps(2)* el dz ds e|y1|V|y2|)
t

p
< Ks(/ sasaa)/zds) PV |y _ ) p
0
< Klep(lyllvlyzl)b,1 — ya|P¥,

which finishes the proof of (2.8). [

Similarly, we can prove that
Elvf (») — vZ(y)|2p < K112t — P2,

We are now ready to provide.

PROOF OF THEOREM 1.2 (Existence). By Kolmogorov’s criteria (cf. Corol-
lary 16.9 in Kallenberg [12]), for each fixed m, the sequence of laws of
{vf(x):(t,x) € [0,T] x [-m,m]} on C([0, T] x [—m,m]) is tight, and hence,
has a convergent subsequence. By the standard diagonalization argument, there
exists a subsequence {vtnk (x)} which converges in law on C([0, T'] x [—m, m]) for
each m. Therefore, {v;*(x)} converges in law on C([0, T] x R).

Let v;(x) be a limit point. For any #; < 1, it follows from Fatou’s lemma that

p
2 - 5 _
Ellvy —vpllp” < Ki l}cn_l)ng</R|UZk(x) — v ()| dx)
<K, limianE/ |vl"1" (x) — Ul”zk (x)|2176—(2/3)p|x| dx
k—00 R
< K3/ WPl gy _ 1y |Pe/2p=2/3pIx] gy
R

= Kalt; — 2|72

By Kolmogorov’s criteria again, we see that there is a version, which we will take,
such that v. € C([0, T'], Xp) a.s.

Let u;(y) = T; F(y) 4+ v; (). Then, u. € C([0, T], Xp) a.s. The proof of {u.} be-
ing a solution to SPDE (1.1) is standard. Here is a sketch and the reader is referred
to Sections 6.2 and 8.2 of Kallianpur and Xiong [14] for two similar situations.
First, by passing to the limit, we can prove that for any f € C;°(R),

M/ = (. f) = (F. f) —/OI<MS, %Af>ds
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and

f 2 2 !
N/ = (s, /Y2 — (F. f) —f()(us,f><us,Af>ds

- t [ ( [ G(a,y,us<y>)f(y)dy>2x(da>ds

are martingales. It then follows that the quadratic variation process of M/ is given
by

m)=[ L /RG(a,y,us<y>)f<y>dy)2x<da>ds.

The martingale M/ is then represented as

f_ t
M/ = fo A fU Gla, y.us (1) () dyW(ds da)

for a suitable random measure W defined on a stochastic basis. Consequently, u;
is a weak solution to SPDE (1.1).
Estimate (1.5) follows from (2.5) and Fatou’s lemma. [

3. Backward doubly SDE. This section is of interest on its own. It is inspira-
tional for the proof of the uniqueness part of Theorem 1.2, which we will present
in the next section.

In this section, we study uniqueness of the solution to a BDSDE whose coef-
ficient is not Lipschitz, and the relationship between this BDSDE and an SPDE
whose coefficient is not Lipschitz. Because of this non-Lipschitz property, the cor-
responding results of Pardoux and Peng [23] do not apply to the current BDSDE
and SPDE. We will adapt Yamada—Watanabe’s argument to the present setup to
obtain uniqueness for the solution to the BDSDE and a smoothing approximation
to establish the connection between the BDSDE and the SPDE. As an application,
we obtain the uniqueness for the SPDE if the solutions are restricted to those that
are differentiable with respect to the spatial variable.

Let y € R be fixed. We consider the following BDSDE with pair (Y;, Z;) as its
solution:

T o T
3.1) Yt=§+f /G(a,y,Ys)stda)—f Z,dB,, 0<i<T,
t U t

where £ is an Fﬁ -measurable random variable, G satisfies the Holder continu-
ity (1.2), .7-'71? =0(By:0<s <T), B is a Brownian motion and W, independent
of B, is a space—time white noise in R4 x U with intensity measure ds A(da).
The notation W(c?s da) stands for the backward It6 integral (cf. Xiong [28]), that
is, in the Riemann sum approximating the stochastic integral, we take the right
endpoints instead of the left ones.
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DEFINITION 3.1. The pair of processes (Y;, Z;) is a solution to BDSDE (3.1)
if they are G;-adapted, Y. € C([0, T], R) a.s., IEfOT Zf ds < oo and for each ¢ €
[0, T'], identity (3.1) holds a.s., where G; = o(ftB , g,l) and Q,l is a nonincreasing
family of o-fields which is independent of B and contains

F, T—O‘( ([r, T1x A),re(t,T], A€ BR)).

Note that the family {G;} is not a filtration because it is not increasing. We now
state an It6 type formula in the present setting.

LEMMA 3.2 (It6—Pardoux—Peng formula). Suppose that a process y; is given
by

T o T
)’t=€+/ / a(S,a)W(dsda)—/ zsdBy,
t U t
where a: [0, T] x U x Q@ — R is a G;-adapted random field, and

T T
IE/ / a(s, a)’r(da)ds +E/ 22ds < oo.
0 U 0

Then, for any f € CE(R), we have

T o T
FON = FE) + / f £ Onats, )W ds da) — / 2 f'(y5) dBs

(3.2)
T
‘s / / £ Os)als, a)? dads—— [ 2500 ds

PROOF. Let {A;} be a CONS of L2(U,U, 1) and
t -
z/ / hj(a)W(dsda), j=12,....
0 JU

~h;j . . .
Then, {W,’}j1,2,... are independent Brownian motions. Let

n T T
A~ Tl
y? =&+ E :/ <ot(s, ')’hj>L2(U,)L)dWs ! _/ Zsd By,
R t

where (-, -) ;2(y ) denotes the inner product in L*(U,U, )), and c?Wgh’ means that
the stochastic integral is defined as backward It6 integral.
Applying Lemma 1.3 of [23] to f(y;") gives

~h:

T
o7 f(é)—l—Z/ (V) ee(s, ), hj )LZ(UA)dW / _/z. 2 f'(y") d By

1 T 1 (T
+ 3 Z/t f”(yf)(a(s, s hj)iZ(U,x) ds — 5/1 Z?f”(y?)ds
j=1
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Taking n — oo, we then finish the proof of the It6—Pardoux—Peng formula (3.2)
under the present setup. [J

Here is the main result of this section.

THEOREM 3.3. Suppose that conditions (1.2) and (1.3) hold. Then BDSDE (3.1)
has at most one solution.

PROOF. Suppose that (3.1) has two solutions (Yti, Zf), i=1,2.Let {a;} be a
decreasing positive sequence defined recursively by

ap=1 and / _ldz— k>1.

Let ;. be nonnegative continuous functions supported in (ak, ax—1) satisfying
ak—1
[ n@dz=1 ad w@ 2007 vieRr,
ax
Let
4 y
®k(2) :f dy/ Vi (x) dx Vz e R.

Then, ¢k (z) — |z] and |z|¢} (z) <2k~
Since

5 T
—Y; :/ /(G(a,y,Ys —Gla,y, s))W(dsda)
(3.3) v

T
- f (z! — 7%)dB,

t

then by the It6—Pardoux—Peng formula,
oY) = 17)

:f,T/ (Y —Y2)(Gla,y, Y)Y = G(a,y, Y?))W(ds da)
(3.4) —ft ou(v) —Y?)(z! — 2%)dB,
2/ /d’ (G(a, y,Y}) = G(a, y, Y2))*M(da) ds
~3 ¢Z( —v2)(z! - z%) ds.

2

The sequence ¢; being bounded and E fOT |Z! — 722 ds < oo imply that the sec-
ond term on the right-hand side of (3.4) is a square integrable martingale, and
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hence, its expectation is 0. Moreover, by a parallel argument, the expectation of
the first term is also zero. Since the last term is nonpositive, by taking expectation
on both sides of (3.4), the following estimate is attained

Eg (Y, — Y7)
<E- / /qb (G(a.y.Y") = G(a., y. Y?))*A(da)ds

<Kk [ gt vy - 2] as
t

< Kok~
Taking £k — oo and making use of Fatou’s lemma, we have
ElY! —v?| <o.
Therefore, Yt1 = Yt2 a.s. Plugging back into (3.3), we can get

T
/ (z! —72)dB;=0  as.
t
Hence, Z! = Z? a.s. for a.e. ¢, completing the proof. [J

Finally, in this section, we establish a relationship between SPDEs and BDSDEs
under non-Lipschitz setup. To this end, we convert SPDE (1.1) to its backward
version. For T fixed, we define the random field

ur(y) =ur—(y) Viel[0,T],y eR,
and introduce the new noise W by
W([O, 11x A)=W([T —t,T] x A) Vte[0,T], Ae BR).
Then, i, satisfies backward SPDE given by

T ) o T1
(3.5) 12Ay)=F(y)+ft /UG(a,y,us(y))W(dsda)—i-/t EAus(y)ds.

It is clear that SPDEs (1.1) and (3.5) have the same uniqueness property. Specif-
ically, if (1.1) has a ~unique strong solution, then so does (3.5), and vice versa.

Observe that i, is ﬁ”’T—measurable.
We denote

(3.6) X" =y+Bs— B Vi<s<T,
and consider the following BDSDE:
T
x77) +/ / (a.y, Y)W (dr da) — / Z'Y dB,,
(3.7) :

t<s<T.
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BDSDE (3.7) coincides with BDSDE (3.1) if we take & = F(X ;y ) and let the
initial time be denoted by ¢ instead of O (¢ is fixed and s varies as shown). We use
the superscript (¢, y) to indicate the dependency on the initial state of the underly-
ing motion.

THEOREM 3.4. Suppose that conditions (1.2) and (1.3) hold. If the process
{u,} is a solution to (3.5) such that u. € C([0, T1], X}) a.s., and

(3.8) E/OT lig|l3 ds < oo,
then
i () =1"
where Y;’y is a solution to the BDSDE (3.7).
PROOF. Let
(3.9) Y0V =ag(XhY) and ZDY =Viag(XLY), t<s<T.
To prove (3.7), we need to smooth the function ;. For any é > 0, let

uj(y)=Tsiir(y)  VyeR.
It is well known that for any r > 0 and § > O, uf € C*. Applying T to both sides
of (3.5), we have
8 1
W) =TFO) + [ A ds
(3.10) . '
+/ _/;]A%p(g(y—z)G(a,z,ﬁs(z))de(c?sda).
t
Lets=1f <t <---<t,=T be apartition of [s, T]. Then
ub(XY) — TsF(X3)

- n—1
Z — Uy (Xi-lyl)) + Z(”i (X;;zl) - u?i+1 (X;i’j—]l))
i=0 i=0
n—1
i ] ti
Z—Z/ " dr—Z/ HVut (XLY)d B,
i=0 71 2 ti ’
n=l enig PO
+> f EAM,(X,;H)dr
i=0"1

Ll -
+ X [ pxi - 6.z @)W daydz,
=07l
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where we used It6’s formula for ufl, (note that ufi is independent of X £’y and B,),

and SPDE (3.10) with y replaced by X;i’fl. Setting the mesh size to go to 0, we
obtain

ug (X(Y) = TsF(X7)

T
(3.11) :_/ Vul (X'¥) d B,
)

T ~ A
+fs fR/UPa(Xi’y —2)G(a, 2,ii,(2)) W(dr da) dz.

We take § — 0 on both sides of (3.11). Note that for s > ¢,

T T 2
E / Vul(X!Y)dB, — f Vi, (X"Y)dB,

N N

T
—E / Vb (X1) — Vi, (X) 2 dr
R

T
= E/ fR(T‘? Vi, (2) = Viir ()’ pr—i(y — 2) dzdr.

For s > ¢t fixed, there exists a constant K, depending on s — ¢, such that for any
r>s,

DPr—t(y —2) < Ke V2l < KelVe 2l

Thus, we may continue the estimate above with

T T 2
Ef wf(x;’y)dB,—f Vi, (X.7)dB,

s N

T
<KePE [ [ (Vi @) - Vi, @) e dzdr
s R
— 0,

where the last step follows from the integrability condition (3.8).
The other terms can be estimated similarly. (3.7) follows from (3.11) by taking
§—0. O

4. Uniqueness for SPDE. The existence of a solution to SPDE (1.1) was es-
tablished in Section 2. This section is devoted to the proof of the uniqueness part
of Theorem 1.2.

PROOF OF THEOREM 1.2 (Uniqueness). Lg:t u!, j=1, 2’. be two splutions to
SPDE (1.1). Let T > 0 be fixed and let i = ujT_s. Denote u§’5 = T5ﬁ§,j =1,2,
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and let s > ¢ be fixed. By (3.11),
1,8 [yt 2,8 (v,
Us (X§ y) — U (va y)

T
__ / V(u!® — u2%)(X")dB,

N

off f oo

x (G(a, z,il(2)) — G(a, z, #%(2))) dzW (dr da).

Let ¢« be defined as in the proof of Theorem 3.3. Applying the [t6—Pardoux—Peng
formula to (4.1) and ¢, similarly to (3.4), we get

B (u!(X4) — w2 (X,

_21@/ f¢ S(XEY) — uld (X1))
« A; ps(X1Y = 2)(Gla, 2. i (2))

4.1)

4.2)

2
—Gla, z, @2 (z))) dz| Mda)dr.

Next, we take the limit § — 0 on both sides of (4.2). By Lemma 2.1, Tgﬁf —
i) in Xy as 8 — 0. Taking a subsequence if necessary, we may and will assume

that Tgﬁ{ (x) —> ﬁ{ (x) for almost every x with respect to the Lebesgue measure.
Therefore,

1,8 (yt, 2,8 (yt, ~1 (v, ~D (1Y
Ug (va y) — Uy (va y) — U (va y) — Uy (va y) a.s.,
and by the bounded convergence theorem, the left-hand side of (4.2) converges to
B (iig (Xy) — a5 (X))
Denote
gr(a,2)=G(a.z,ii}(z)) — G(a.z.i;(2)).  (a.2) €U xR,
Then, the right-hand side of (4.2) can be written as
1 r 2
SB[ [ 000 =20 0) T (a0 i = v dx ada) dr
s RJU
4.3) | .
U 2
= EE/S (75" &) hr 22202 AT
where h,(x), r > s and x € R, is such that

e ()% = @ (uy® () — u2 (x)) e pr_p (x — ).
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Note that %, (x) is bounded by a constant depending on (k, s — ¢, ¥). On the other
hand,

”gr”EYo®L2(U,A) <K A%(l + ’M}(Z)|2 + ’u%(z)f)e—lzl dz,

which is integrable. By Lemma 2.2 and the dominated convergence theorem, we
see that the limit of the right-hand side of (4.2) is equal to

IE Tl. TU h 2 d
5 1m|| 5 8r rHX0®L2(U,M ’

= JE / T

=8 [ oL@ ) — @O ) 00) (1) ar.
To summarize, we obtain
By (itg (X) — i3 (X5Y))
1 T ~ - - -
ah =3B [ = BN — ) dr

<k'T,

where we used |z]¢; (z) < 2k~ !'in the last step.
Finally, applying Fatou’s lemma for k — 00, we obtain

B[] (X{) - 2(X(2)]| < lim inf By (i} (X1%) — @2(X!)) <0.

Therefore, I:Zl (X57) — ftf(X?y) =0 a.s. Taking s | t, we get u,l (y) = utz(y), a.s.
a

After proving the pathwise (strong) uniqueness and weak existence of the so-
lution for SPDE (1.1), we verify its (weak) uniqueness. For finite dimensional
Itd equations, Yamada and Watanabe [29] proved that weak existence and strong
uniqueness imply strong existence and weak uniqueness. Kurtz [16] considered
this problem in an abstract setting. To apply Kurtz’s result to SPDE (1.1), we con-
vert it to an SPDE driven by a sequence of independent Brownian motions. Let
{h; }°° | be a CONS of L?(U,U, 1), and define

B,j:/ / hj@W(dsda),  j=1,2,....
0 JU

Letting B; = (B ) =1 it is easy to see that (1.1) is equivalent to the following
SPDE:

@45  w(y) = F<y>+Z / J(y.us(y)dBI + / = Auy(y)ds,
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where
G = [ Ga.y.wh;(@)ida).
Denote
S1=C([0,T], X) and S,=C([0, T], R®).
Let { fi}72, C C5°(R) be a dense subset of Ap and I': S x S5 — R be the mea-

surable functional defined by

o0
I'u.,B)= Z sup|y| A 27K,
k=11=T

where

t 1 St t )
8 = (u;, fr)—(F, —<;,—A>— (s us B/.
K= (uy. fi)—(F. fi) /0 s, 5 Afc)ds j}:jl /0 /R G ;(y. us(»)) £ (y) dy dB!

Then, SPDE (4.5) can be rewritten as
I'u.,B)=0.

The following theorem is a direct consequence of Proposition 2.10 in Kurtz [16],
which is needed for next section.

THEOREM 4.1. If (uf), i =1,2, are two solutions of SPDE (1.1) (may be
defined on different stochastic bases) such that

Esuplulls <oo, i=1,2,
t<T
then their laws in C([0, T'], Xy) coincide.

5. Measure-valued processes. In this section, we give the proofs of three
applications of Theorem 1.2 to measure-valued processes.

Recall that SBM p, is defined as the unique solution to the following martingale
problem (MP): Vf e C g (R), the process

5.1) = —nin)- [ M(%f) ds

is a continuous square-integrable martingale with

(5.2) (M), = fo t s (£2) ds.

Now, we present:
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PROOF OF THEOREM 1.3. Suppose that wu, is an SBM and u; is defined
by (1.8). Let f € Cg(]R) and g(y) :fyoo f(x)dx. Then

(ur, f) = (g)
¢ 1
(53) = o)+ [ s (Eg”> ds + ME

=(F, f) +f0t<us, %f”>ds + M?.

Let S'(R) be the space of Schwartz distributions and define the S’(IR)-valued pro-
cess N; by N;(f) = M forany f e Ci°(R). Then, N; is an S’ (R)-valued contin-
uous square-integrable martingale with

(NCP), / [ ePustands

_f/ 1(a) dads
=f0tfR(/H;1a§us<y)f<y>dy)2dads,

where u ! is the generalized inverse of the nondecreasing function uy, that is,
u; (a) = sup{x e R:uy(x) < al.
Let y :Ry x Q— L)(H, H) be defined as
r6.0)f@= [ losuw f@dx Ve H.

where H = L*(R) and L)(H, H) is the space consisting of all Hilbert—Schmidt
operators on H. By Theorem 3.3.5 of Kallianpur and Xiong [14], on an extension
of the original stochastic basis, there exists an H-cylindric Brownian motion B,
such that

t
No(f) = fo ly(s.0) f, dBy),,.

Let {h;} be a CONS of the Hilbert space H and define random measure W on
Ry x R as

W ([0, 7] x A) :ZlAh

It is easy to show that W is a Gaussian white noise random measure on R4 x R
with intensity ds da. Furthermore,

N = [ [ [ e s dxwias da,
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Plugging back to (5.3) verifies that i, is a solution to (1.9).

On the other hand, suppose that {u;} is a weak solution to SPDE (1.9) with
F € Xy being nondecreasing. Let po be the measure determined by F. Let v; be
an SBM with initial pg. Define the function-valued process it; by

y

i) = [Tu@o  vyek
By the above result, i, is a solution to SPDE (1.9) with initial . Here we remark
that (1.9) coincides with (1.1) if we take U = R, A(da) =da and G(a, y,u) =
lo<a<u + lu<a<o. By the weak uniqueness (Theorem 4.1) of the solution to this

SPDE, (u;) and (ii;) have the same distribution, implying («;) and (v;) have the
same distribution. This proves that (u;) is an SBM. [

The result for the Fleming—Viot process is similar so we only provide a sketch.

SKETCH OF THE PROOF OF THEOREM 1.4. The uniqueness of SPDE (1.10)
follows from Theorem 1.2 by taking U = [0, 1], A(da) = da and G(a, y,u) =
10§a§u —Uu.

Suppose that {u,} is a weak solution to the SPDE (1.10), and {u,} is defined
by (1.8). Then for any f € C3(R),

e (f) = _<Mt, f,>
—(F. £ / f Zus ) £ () dy ds

- /R /0 /0 (Lazuyy) — us ()W ds da) f'(y) dy

=utn+ [ s(37) s

+ / f @) — ()W (ds da).
Thus

N = —nin- [ u(% 7")as

- / / w7 (@) — s (F)) W (ds da)

is a continuous square-integrable martingale with

(N7, / / Tl@) = () dads

= fo (s (f2) = s (f)?) ds
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The proof of other direction is similar, so we omit it. [
Finally, we present:

PROOF OF THEOREM 1.5. Denote by H the reproducing kernel Hilbert space
(RKHS) of the covariance function ¢. In other words, H is the completion of the
linear span of the functions {¢ (x, -) : x € R} with respect to the inner product

<¢(X, ')’ ¢(y’ ))]HI =¢(X, Y)

We refer the reader to Kallianpur [13], page 139, for more details on RKHS. Let
{h;} be a CONS of H. Let U = N and let A(da) be the counting measure. Note
that
o0
P, y) =Y (¢, ), hjlgld (v, ), by

j=1

- /U pla, x)p(a, y)h(da),
where p(a,x) = (¢ (x, ), ha)H.

Let S(IR) be the space of rapidly decreasing functions on R; cf. Definition 1.3.4
in Kallianpur and Xiong [17] for its definition. For any # € S(R), we define

t
B,(h):/o /Rh(x)B(x,ds)dx.

Then, B, is an S’(R)-valued martingale with

t
(B(h)), = /0 /R /R Ry (x, y) dx dy ds

Analogously to the proof of Theorem 1.3, there exists a sequence of independent
Brownian motions B; such that

2
ds.

/ h(x)p(j. x)dx
R

o0 t .
= 1 J
B,(h) ]221: | [ #eG.xaxas].

Let
W0, x {j)=w/, j=12....

Then, W is a space—time white noise random measure on R x U with intensity
dt M(da), and

B(x,dt):/ p(a,x)W(dtda).
U
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Let

G(a,y,u) =p(a, y)/u.

Then, (1.11) is a special case of SPDE (1.1) and conditions (1.2) and (1.3) are
satisfied. The conclusion of Theorem 1.5 then follows from Theorem 1.2. [
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