
Super chirped rogue waves in optical fibers

SHIHUA CHEN,1,* YI ZHOU,1 LILI BU,1 FABIO BARONIO,2 JOSE M.
SOTO-CRESPO,3,5 AND DUMITRU MIHALACHE4

1School of Physics, Southeast University, Nanjing 211189, China
2INO CNR and Dipartimento di Ingegneria dell’Informazione, Università di Brescia, Via Branze 38, 25123
Brescia, Italy
3Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Serrano 121, Madrid 28006, Spain
4Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Theoretical
Physics, Magurele-Bucharest RO-077125, Romania
5j.soto@csic.es
*cshua@seu.edu.cn

Abstract: The super rogue wave dynamics in optical fibers are investigated within the framework

of a generalized nonlinear Schrödinger equation containing group-velocity dispersion, Kerr and

quintic nonlinearity, and self-steepening effect. In terms of the explicit rogue wave solutions up

to the third order, we show that, for a rogue wave solution of order n, it can be shaped up as a

single super rogue wave state with its peak amplitude 2n + 1 times the background level, which

results from the superposition of n(n + 1)/2 Peregrine solitons. Particularly, we demonstrate that

these super rogue waves involve a frequency chirp that is also localized in both time and space.

The robustness of the super chirped rogue waves against white-noise perturbations as well as the

possibility of generating them in a turbulent field is numerically confirmed, which anticipates

their accessibility to experimental observation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As an optical counterpart of the infamous oceanic rogue waves that have been held responsible

for numerous marine misfortunes [1], optical rogue waves [2] are attracting burgeoning interest

of research on both theoretical and experimental sides [3, 4], due to their potential applications

and their comparative ease to create and capture in a laboratorial environment [5]. They are

associated with solitons [6–10], as both of them can be generated through a process known

as modulation instability (MI) [11]. However, while solitons are stationary wavepackets that

can propagate in a dispersive medium with no distortion, rogue waves are transient ones that

are localized in both time and space, hence seeming to appear from nowhere and disappear

without a trace [12]. Despite their unpredictability, rogue waves have now been successfully

observed in a number of optical settings such as optical fibers [13], mode-locked lasers [14],

microresonators [15], and photorefractive ferroelectrics [16], not to mention those observed in

filamentation [17], beam speckles [18], caustics [19], and integrable turbulence [20].

On mathematical aspect, the rogue wave concept is generally thought of as a rational polynomial

construct based on the integrability of a class of nonlinear differential equations [21]. A typical

example is the Peregrine soliton, which was first discovered in 1983 by Peregrine as the

fundamental rational solution to the celebrated nonlinear Schrödinger (NLS) equation [22].

It is built on a finite continuous background, reaching a climax three times the background

height followed by two deep troughs, and is therefore not a genuine ‘soliton’. As it can mimic

realistic extreme wave events, the Peregrine soliton has become a popular prototype of rogue

waves in many areas [5, 23]. Recent studies reveal that Peregrine solitons are universal solutions

of majority of integrable models [24–26], not peculiar to the NLS equation, and have many

interesting variants of emergence such as dark Peregrine solitons [27], anomalous Peregrine

solitons [28], and chirped Peregrine solitons [29]. Of particular interest is the chirped Peregrine
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soliton, which can possess an extra doubly localized chirp while keeping the intensity features of

the original Peregrine soliton. Such chirped version of Peregrine solitons can be reminiscent

of the well-established chirped soliton concept [30, 31] that has been used for many practical

purposes (e.g., compression [32], amplification [33], communication [34], etc.).

In the past decade, intriguing rogue wave dynamics of higher hierarchy were also explored,

which can be classified into two categories: super rogue waves and multi-rogue waves. While

the multi-rogue wave, as its name implies, is a combination of multiple well-separated Peregrine

solitons [35, 36], by the super rogue wave [37] we mean a rogue wave whose intensity takes

its maximum allowable value and is much stronger than that of Peregrine solitons. Typical

experiments include those carried out by Chabchoub et al. who observed the super hydrodynamical

rogue waves in a water-wave tank [37], and by Baronio et al. who observed vector dark ‘three

sisters’ in a telecommunication fiber [38], to name a few. No doubt, the success of these

experimental observations justifies the quest of higher-order rogue wave solutions [39–41].

In this article, we investigate the chirped version of higher-order rogue waves, termed

super chirped rogue waves for their super high peak amplitude, within the framework of a

generalized NLS equation that contains the group-velocity dispersion (GVD), the Kerr and quintic

nonlinearity, and the self-steepening effect [42]. Such kind of generalized NLS equation, with

different reductions, usually applies to the description of ultrashort pulse propagation in optical

fibers [43, 44] and also to the description of high-intensity pulse propagation [45], controllable

self-steepening [46, 47], and generation of Cherenkov radiation [48] in quadratic crystals. In

terms of the explicit rogue wave solutions up to the third order, we show that, for a rogue wave

solution of order n, it can be shaped up as a single super rogue wave state with its peak amplitude

2n + 1 times the background level, which arises from the superposition of n(n + 1)/2 Peregrine

solitons. In particular, we reveal that these super rogue waves involve a frequency chirp that is

also localized in both time and space. The stability of the super chirped rogue waves as well as

the possibility to generate them in a turbulent field is numerically confirmed, which anticipates

an accessibility to experimental observation.

2. Theoretical framework

The propagation of ultrashort pulses in a single-mode optical fiber can be modelled by the

dimensionless cubic-quintic (CQ) NLS equation [42]:

iEz +
1

2
Ett + σ |E |2E + iγ(|E |2E)t + i(µ − 2γ)(|E |2)tE

+

1

2
(µ − γ)(µ − 2γ)|E |4E = 0, (1)

where E(z, t) is the normalized complex envelope of an optical pulse, and z and t are the distance

and retarded time, respectively. Subscripts z and t stand for partial derivatives. While the constant

coefficient 1
2

points to the GVD effect, the coefficient σ denotes the Kerr nonlinearity, γ accounts

for the pulse self-steepening effect (we assume γ > 0 without loss of generality) [46, 47], and µ

relates to the nonlinearity dispersion, which can result in self-frequency shift if µ is complex [43],

and to the quintic nonlinearity, which was often found in highly nonlinear materials such as

chalcogenide fibers [44]. In cases of self-focusing, self-defocusing, and zero Kerr nonlinearities,

σ can be normalized to 1, −1, and 0. In the context of fiber optics, the term |E |2E in Eq. (1) is

often referred to as self-phase modulation (which is actually a temporal analog of self-focusing),

and then the coefficient σ can be scaled out to the GVD term, which will be termed anomalous

dispersion if σ > 0 and normal dispersion if σ < 0 [6, 44]. It is worth noting that, to attain

integrability [42], the last three terms on the left hand side of Eq. (1) have been related by two

real free parameters γ and µ. Besides, in order to weigh the nonlinearity factors that affect the

chirped rogue wave dynamics, we have excluded the higher-order dispersion terms from Eq. (1),
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which usually appear in the high NLS equation hierarchy [49].

As one might expect, Eq. (1) is rather general, as it can reduce to a series of well-established

integrable equations such as the celebrated NLS equation (µ = γ = 0), the Chen–Lee–Liu type

NLS (CLL–NLS) equation (µ = γ , 0) [50], the Kaup–Newell type NLS (KN–NLS) equation

(µ = 2γ) [51], the Gerdjikov–Ivanov (GI) equation (µ = 0) [52], and the Kundu–Eckhaus (KE)

equation (γ = 0) [53, 54]. The fundamental rational solution, termed chirped Peregrine soliton,

of this equation has been obtained by a gauge transformation method [29]. It naturally generalizes

previous fundamental solutions found for the above reduced equations [39, 55–58]. In this work,

we present for the first time, to the best of our knowledge, the nth-order rogue wave solution of

Eq. (1), and particularly its explicit solution forms up to the third order, using a nonrecursive

Darboux transformation method [59].

It is easy to show that this general integrable equation is equivalent to the compatibility of the

following Lax pair of the linear eigenvalue problem

Rt = UR, Rz = VR, (2)

where R = [r(z, t, λ), s(z, t, λ)]T (T means a matrix transpose), and

U = − i(λ − σ)σ3

2γ
+

√
λQ +

i(µ − 2γ)
2

σ3Q2,

V = − i(λ − σ)2σ3

4γ2
+

√
λ

2

(
λ − σ
γ

Q − i
√
λσ3Q2

+ µQ3
+ iσ3Qt

)

+

µ − 2γ

4

[
i(2µ − γ)σ3Q4

+ (QQt − QtQ)
]
,

(3)

with λ being the free spectral parameter, σ3 = diag(1,−1), and

Q =


0 E(z, t)

−E∗(z, t) 0


.

The asterisk over the field variables signifies the complex conjugate and ‘diag’ means a diagonal

matrix. For our present purpose, we consider the plane-wave solution of Eq. (1) as an initial

potential, which can be defined by its amplitude (a), wavenumber (k), and frequency (ω) through

E0 = a exp[i(kz + ωt)], (4)

under the dispersion relation

k = ηa2
+

1

2
(µ − γ)(µ − 2γ)a4 − ω

2

2
, (here η = σ − γω). (5)

With this plane-wave potential, the linear eigenvalue problem (2) can be readily solved to obtain

R(λ) = G(Γ1N1 + Γ2N2), (6)

where Γj ( j = 1, 2, the same below) are arbitrary complex constants, G = diag(1, E∗
0
/a), and

Nj =


1

i[a2γ(µ−2γ)+2γφ j+λ−σ]
2aγ

√
λ


exp

[
i(θ j z + φ j t)

]
, (7)

with

φ j =
ω

2
− (−1)j

2γ

√
(λ + a2γ2 − β2/a2)2 + 4β2γ2, (8)
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θ j =
k

2
+

ω − 2φ j

4γ
[a2γ(2µ − γ) + 2ωγ + β2/a2 − λ], (9)

β = a

√
η − a2γ(µ − γ). (10)

An inspection of Eqs. (8) and (9) reveals that, if λ = (β/a + iγa)2 ≡ λ0, there will be

φ1 = φ2 = φ0 and θ1 = θ2 = θ0, where

φ0 =
ω

2
, θ0 =

k

2
. (11)

This implies further that N1 = N2. Then, by choosing appropriate parameters Γ1,2 in Eq. (6),

the ratio of the entry r of the column vector R to the other one s could have a simple rational

form (excluding the plane-wave exponential factor), which, according to the Darboux dressing

formalism, results in the rogue wave solutions of Eq. (1) [60,61]. On the other hand, as is evident

below, λ0 must be complex, or equivalently, β must be real, which gives the parameter condition

for existence of a rogue wave:

ω < σ/γ − a2(µ − γ). (12)

This condition is the same as that obtained using the theory of baseband MI [3,62,63] and suggests

that rogue waves can exist in both the self-focusing (or equivalently, anomalous dispersion) and

the defocusing (normal dispersion) regimes, when the self-steepening effect, denoted by the

parameter γ, comes into play [29, 61].

As employed in [59], there is a more convenient way to obtain the rogue wave solutions. To

this end, one can let

λ = λ0 + χǫ
2, χ = λ0 − λ∗0 = 4iβγ, (13)

where ǫ is a complex perturbation parameter, and let the parameters Γ1,2 be

Γ1 =
1

2

n∑
j=1

(
γ2j−1 +

γ2j

ǫ

)
ǫ2(j−1), Γ2 =

1

2

n∑
j=1

(
γ2j−1 −

γ2j

ǫ

)
ǫ2(j−1), (14)

where γj ( j = 1, 2, · · · , 2n) are arbitrary complex constants (which should not be confused with

the system parameter γ). Then, the factorized eigenvector Θ(λ) = G−1R(λ) = Γ1N1 + Γ2N2 can

be expanded in a Taylor series form (in powers of ǫ2):

Θ(λ) = Θ(0)
+ Θ

(1)ǫ2 + Θ(2)ǫ4 + · · · + O(ǫ2n), (15)

where Θ(m)
= [Rm, Sm]T ei(θ0z+φ0t) denotes the series coefficient of order m. As a result, the

nth-order rogue wave solution can be expressed as

E [n]
= E0

(
−1 − i

|E0 |
Y1(M†)−1Y

†
2

) (
−det(M†)

det(M)

)µ/γ
, (16)

where the dagger sign † indicates the complex-conjugate transpose, ‘det’ means taking the

determinant of a square matrix, Yj ( j = 1, 2) are 1 × n row vectors defined through


Y1

Y2


=

[
Θ
(0),Θ(1),Θ(2), · · · ,Θ(n−1)

]
, (17)

and M is an n × n matrix with its entries Mi j determined by

Θ
†XΘ

λ − λ∗ =
n∑
i j

Mi jǫ
∗2(i−1)ǫ2(j−1)

+ O(|ǫ |4n), X = γ


√
λ 0

0
√
λ∗


. (18)
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We would like to emphasize that the compact expression (16) for the nth-order rogue wave

solution was never reported before, to our best knowledge, which is seen to be distinctly different

from the previous solution forms obtained for the NLS equations or their extensions [40, 59].

3. Super chirped rogue wave dynamics

As an illustrative example of our general solution (16), we demonstrate in Fig. 1 the first-order

(fundamental), second-order, and third-order rogue wave dynamics, respectively, obtained with

the same set of system parameters a = 1, σ = 1, γ = 1, µ = 3/2, and ω = −1, but with different

structural parameters γj . For convenience, the explicit solution forms for these three low-order

rogue waves have been provided in Appendix A (see Eqs. (A3)–(A5)). It is seen that, for given

structural parameters as specified in the caption, the fundamental rogue wave always takes the

shape of Peregrine soliton (see Fig. 1(a)), while the second-order and third-order rogue waves

appear as the rogue wave triplet (see Fig. 1(b)) and sextet (see Fig. 1(c)), which consist of 3 and

6 Peregrine solitons, respectively. Depending on the relative values of the structural parameters

γj , the multiple rogue wave dynamics can display patterns that might not be so regular as seen in

Figs. 1(b) and 1(c). Generally, for an nth-order rogue wave, it can evolve into at most n(n + 1)/2
Peregrine solitons, each with a peak amplitude three times the level of the background field [36].

Fig. 1. Surface (top) and contour (bottom) plots of the (a) first-order (fundamental), (b)

second-order, and (c) third-order rogue waves in the self-focusing (or anomalous dispersion)

regime, obtained with the same set of system parameters. (a) γ2 = 1; (b) γ2 = 1, γ3 = 100;

(c) γ2 = 1, γ5 = 2000. In each case, the other unshown γj will be set zero.

More interestingly, we find further that, by a specific choice of parameters γj , the nth-order

rogue wave can reach a climax of 2n + 1 times the background height. In contrast to the

above-mentioned multiple rogue wave dynamics, this kind of rogue wave state manifests itself

as a single main hump, and hence can be referred to as a super rogue wave [37] when n > 1.

Physically, such super rogue wave state results from the superposition of n(n + 1)/2 Peregrine

solitons. Figure 2 shows the preceding three low-order rogue wave states on the same plane-wave

background formed in the normal dispersion regime (σ = −1), which have peak amplitudes

higher by a factor of 3, 5, and 7, respectively, as compared to the background height. In these

plots, we have used special sets of structural parameters given in the caption that can give rise to

the unique super rogue wave states as shown, after translations on the plane (z, t). As one can

check via Eqs. (A3)–(A5) in Appendix A, these rogue wave states can not have a peak amplitude

higher than their respective factors specified above, no matter what values of γj are used and

no matter whether the nonlinear system is self-focusing or not. In addition, different from the

symmetric super rogue waves in the NLS system [37,39], the super rogue waves associated to

Eq. (1) are generally anti-symmetrical in shape, as indicated in Figs. 2(b) and 2(c).
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Fig. 2. The preceding three low-order rogue wave states that have their respective maximum

allowable amplitude factor (3, 5, 7) in the normal dispersion regime: (a) Peregrine soliton;

(b) Super second-order rogue wave; (c) Super third-order rogue wave. We choose a = 1,

σ = −1, γ = 1, µ = 3/2 and ω = −2 as the system parameters, and choose γ2 = 1,

γ3 = 2/81 − i86
√

2/81, γ5 = 359/1215 − i101
√

2/1215, and γ1 = γ4 = γ6 = 0 as the

specific structural parameters.

Moreover, aside from the anti-symmetrical amplitude (or intensity) distribution, these super

rogue waves are generally endowed with an extra nonlinear phase as well, as implied by the

exponential factor [−det(M†)/det(M)]µ/γ in solution (16). More exactly, as will be shown below,

this extra phase is actually caused by the exponential factor [−det(M†)/det(M)]µ/γ−1, i.e., equal

to the phase of det(χM†) multiplied by 2(µ/γ − 1). It is time and space dependent, and hence

would lead the rogue waves to undergo a frequency shift (or chirping) during evolution. Such a

chirping effect does not exist in many integrable systems, e.g., in the NLS equation [37], in the

Maxwell–Bloch system [25], and in the Manakov system [59,62]. For this reason, our super rogue

wave solutions discussed here can be termed super chirped rogue waves, to show distinction. In

the following, let us take a closer look at this super chirped rogue wave dynamics.

First of all, we find that the super rogue waves (including the fundamental solution) actually

have a unique solution form, which does not involve any structural parameters γj . For instance,

by performing the replacements z → z − z0 and t → t − t0, where z0 and t0 are the magnitudes

of translation along the z and t axes, respectively, given by

z0 =
a2γ

2β(a4γ2
+ β2)

− Im(γ1/γ2)
2β2

, t0 = z0(a2µ + ω) − β

2(a4γ2
+ β2)

− Re(γ1/γ2)
2β

, (19)

the fundamental rational solution given by Eq. (A3) in Appendix A can be simplified as

E [1]
= E0

[
1 − 2i(γτ + β2z/a2) + 1/a2

M − iN

]
exp(iΦ), (20)

where

τ = t − (a2µ + ω)z, M =

(
β2

a2
+ γ2a2

)
(τ2
+ β2z2) + 1

4a2
,

N = γ(γa2z − τ), Φ = 2

(
µ

γ
− 1

)
arctan

(
N

M

)
.

(21)
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Here Im and Re denote the imaginary and real parts of a complex number, respectively. It is clear

that this simplified fundamental solution has now become independent of any structural parameter,

displaying a 3-fold peak amplitude that has been located on the origin and an extra phase Φ that

is proportional to the factor 2(µ/γ − 1). Indeed, as one can see, this rational solution is none

other than the chirped Peregrine soliton solution obtained in [29] via a gauge transformation

method. Noteworthily, as discussed in [29], the solution (20) has also an inherent phase caused

by the complex term inside square brackets, but that phase is intrinsic to all Peregrine soliton

categories and thus will not be used to define what we mean by chirped Peregrine soliton.

On the basis of the above translations defined by Eq. (19), if one further sets γ2 = 1 without

loss of generality, and then expresses γ3 by

γ3 =
3γ1

2
+γ1γ4 −

γ3
1

3
−γ∗1 −

2β2(3a8γ4 − 6a4β2γ2 − β4)
3(a4γ2

+ β2)3
− 2ia2βγ(3a8γ4

+ 14a4β2γ2
+ 3β4)

3(a4γ2
+ β2)3

,

the second-order rogue wave solution given by Eq. (A4) can reduce to the super rogue wave state:

E [2]
= E0

(
1 − G + iH

C − iD

)
exp(iΦ), (22)

which involves an extra nonlinear phase that is again proportional to 2(µ/γ − 1):

Φ = 2

(
µ

γ
− 1

)
arctan

(
D

C

)
. (23)

Here C, D, G, and H are real polynomials of z and τ ≡ t − (a2µ + ω)z, given by

C = 64(a4γ2
+ β2)3(β2z2

+ τ2)3 + (a4γ2
+ β2)

[
48β2(4a8γ4

+ 17a4β2γ2
+ 9β4)z4

+384a6β2γ3τz3 − 288(2a4γ2
+ β2)(a4γ2

+ β2)τ2z2
+ 384a6γ3τ3z − 48(3a4γ2 − β2)τ4

]
+ 36(28a8γ4

+ 35a4β2γ2
+ 11β4)z2 − 288a6γ3τz + 36(7a4γ2

+ 3β2)τ2
+ 9,

D = 192a2γ(a4γ2
+ β2)2(β2z2

+ τ2)2(a2γz − τ) + 96a2γ
[
a2γ(6a8γ4

+ 13a4β2γ2
+ 9β4)z3

+(6a8γ4
+ 15a4β2γ2

+ 3β4)τz2
+ 3a2γ(a4γ2 − β2)τ2z − (3a4γ2

+ β2)τ3
]

+ 36a2γ(11a2γz − 3τ),
G = 192(a4γ2

+ β2)2(β2z2
+ τ2)(4a2γτz + 5β2z2

+ τ2) − 1152a4β2γ2z2

+ 288(3a4γ2
+ β2)

[
(2a4γ2

+ 3β2)z2 − 2a2γτz + τ2
]
− 36,

H = 384(a4γ2
+ β2)2(β2z2

+ τ2)2(a2γτ + β2z) + 192
[
(4a8γ4

+ 3a4β2γ2
+ β4)β2z3

−3a2γ(a4γ2
+ 3β2)(2a4γ2

+ β2)τz2 − 3(2a8γ4
+ a4β2γ2

+ β4)τ2z + a2γ(a4γ2 − β2)τ3
]

− 72
[
(12a4γ2

+ 5β2)z + a2γτ
]
.

(24)

Obviously, the simplified rational solution (22) does not involve any structural parameters γj .

As the polynomial C is always positive definite for arbitrary system parameters, this solution can

now describe the super second-order rogue wave dynamics in either the anomalous or normal

dispersion regime. It is easy to check that this super rogue wave will have a 5-fold peak amplitude,

as shown in Fig. 2(b). In addition, it will undergo a frequency chirp defined by [44]

δω = −∂Φ
∂t
=

2(µ − γ)(DCt − CDt )
γ(C2

+ D2)
, (25)

which is also localized in both time and space. This chirp is different from that of traveling

solitons, which is usually of tanh shape in the transversal dimension, namely, nearly linear across
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the pulse width [30, 31]. Here, for the same reason that applies to the chirped Peregrine soliton,

we do not consider the intrinsic chirping effect arising from the complex term inside the big

round brackets in Eq. (22). Figure 3 shows the super second-order rogue wave solutions in

the self-focusing (or anomalous dispersion) regime for the GI equation (µ = 0), the CLL-NLS

equation (µ = γ), and the KN-NLS equation (µ = 2γ), respectively, with the other system

parameters kept the same, i.e., a = 1, σ = 1, γ = 1, and ω = −1. It is exhibited that all these

super rogue waves have a 5-fold peak amplitude, in addition to an extended spatiotemporal

distribution as µ increases. Meanwhile, depending on the GI, CLL, and KN models used, the

chirp of these rogue waves will exhibit a dark doubly localized structure, zero, and a bright doubly

localized structure correspondingly, as suggested by surface plots in the right column of Fig. 3.

Fig. 3. Super second-order rogue waves in the anomalous dispersion regime associated to

(a) the GI equation, (b) the CLL-NLS equation, and (c) the KN-NLS equation, respectively.

Left column: Amplitude |E |; Middle column: Phase Φ; Right column: Chirp δω.

As a limiting case, when γ = 0 (which corresponds to the KE equation scenario), it follows

that D = 0 and β = a
√
σ. Then, the second-order rogue wave solution (22) can boil down to

E [2]
= E0

(
1 − G + iH

C

)
exp(iΦ), (26)

where

C = 64β6(β2z2
+ τ2)3 + 48β4(3β2z2 − τ2)2 + 36β2(11β2z2

+ 3τ2) + 9,

G = 192β4(β2z2
+ τ2)(5β2z2

+ τ2) + 288β2(3β2z2
+ τ2) − 36,

H = 384β6(β2z2
+ τ2)2z + 24β2z(8β4z2 − 24β2τ2 − 15),

Φ = − µa
2

β2
(ln C)t = −24µa2τ

C
[16β4(β2z2

+ τ2)2 − 8β2(3β2z2 − τ2) + 9].

(27)

It is clear that the polynomial C will be positive definite when σ > 0, but fails to be so if σ < 0.

Therefore, only in the self-focusing (or anomalous dispersion) regime does the rational solution
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(26) represent a genuine rogue wave, as occurred in the NLS situation [3]. Besides, the extra

nonlinear phase Φ would lead to a frequency chirp given by

δω =
µa2

β2
(ln C)tt . (28)

As seen in Fig. 4, this special super second-order rogue wave is symmetric in amplitude

distribution (see left column), as in the NLS equation, but, however, has a nonvanishing nonlinear

phase (see middle column) and thus a doubly localized chirp (see right column) that will be

absent in the NLS equation. Naturally, if we further let µ = 0, the solution (26) can be reduced to

that of the NLS equation, in which the nonlinear phase Φ is vanishing.

Fig. 4. Super second-order rogue wave solution of the KE equation in the anomalous

dispersion regime, with the system parameters a = 1, σ = 1, γ = 0, µ = −1 and ω = 1.

In a similar fashion, one can readily obtain the super third-order rogue wave solution from

Eq. (16) or from Eq. (A5) in Appendix A, which will also be unique in form, although lengthy. It

is easy to show that this simplified super rogue wave solution will involve a 7-fold peak amplitude,

as shown in Fig. 2(c), and, if µ , γ, a nonlinear phase Φ that may result in a chirp. Here, for the

sake of brevity, we do not present this simplified yet lengthy solution.

4. Numerical simulations

We performed extensive numerical simulations to inspect the stability of super chirped rogue

waves against white-noise perturbations, based on the split-step Fourier method [11]. Here, in

contrast to the intuitionistic “stability" concept intended for usual solitons, we would refer to the

rogue wave as being stable if its structure can unfold without significant distortion over a rather

long distance, irrespective of whether this type of wave-packet is transient or not.

As typical examples, we chose to simulate the GI and KE super chirped rogue waves whose

structures are already shown in Figs. 3(a) and 4, respectively. We put the noise onto the

initial profile by multiplying the real and imaginary parts of the optical field E by a factor

[1 + εri(x)] (i = 1, 2), respectively, where r1,2 are two uncorrelated random functions uniformly

distributed in the interval [−1, 1] and ε is a small parameter defining the noise level. Figure 5

displays the numerical results, where, in order to show up other periodical wave structures arising

from MI, we used a quite large noise level in both situations, namely, ε = 0.01 for the GI super

                                                                                    Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 11378



chirped rogue wave and ε = 0.02 for the KE super chirped rogue wave. The initial amplitude

profiles used for our simulations are indicated by red lines in Figs. 5(a) and 5(d), each having

been compared to their respective analytical solutions given at z = −2 and −5 (see blue lines). It

is exhibited that, even under such a large noise perturbation, these super chirped rogue waves

can still propagate very neatly for a rather long distance, despite the onset of the spontaneous

MI activated by the white noise, as seen in Figs. 5(b) and 5(e). To evaluate the consistency, we

plotted in Figs. 5(c) and 5(f) the numerical amplitude profiles obtained at t = 0 (red lines), which

agree very well with the analytical solutions (blue lines). Besides, we notice that, compared with

its GI cousin, the KE super chirped rogue wave can recover from larger noise level on a less

unstable background and thus can propagate over longer distance without significant distortion.

For example, for the case shown in Fig. 5(e), such a distortion-free propagation can unfold within

around 8 dispersion lengths, or more intuitively, around 0.4 km for a 1.55 µm pulse of duration

1 ps propagating in a telecommunication fiber with GVD of −20 ps2/km.

Fig. 5. Numerical simulations of the GI (see left column) and KE (see right column) super

chirped second-order rogue waves, which are the same as in Figs. 3(a) and 4, but are now

perturbed by white noises of ε = 0.01 and 0.02, respectively. (a), (d): Initial amplitude

profiles (red line) as compared to the analytical ones (blue line); (b), (e): Numerical

recurrence of rogue waves from the above initial conditions; (c), (f): the numerical amplitude

profiles obtained at t = 0 (red line) compared with their analytical ones (blue line).

Further, we have also investigated the robustness of these super chirped rogue waves by
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inspecting if they can appear spontaneously in a turbulent field. For this purpose, we have

performed a number of simulations, integrating Eq. (1) numerically with an initial field that can

be defined by the plane-wave solution (4) perturbed by a white noise of very low amplitude. This

low-amplitude noise may produce a turbulent field via an MI process and then one can monitor

the maximums of the field amplitude for all t at each z value (i.e., |E(z)|peak) so as to detect the

presence of extreme waves in such a field. Here we still take the GI super chirped rogue wave

shown in Fig. 3(a) as an example and use the same noise level ε = 0.01 as in Fig. 5(a). For some

realizations, we got typically what is shown in Fig. 6(a). It is seen that the continuous wave

remains stationary for a short propagation distance, and then it develops exponentially to create

a turbulent field, as expected. Quite strikingly, in this turbulent field, one can clearly observe

extreme peaks with amplitudes close to 5, which can be associated to super rogue waves. One

of them can be seen at around z = 14 (see the yellow region). We presented the evolution of

the field amplitude around this z value and in a narrow temporal interval properly chosen in

Fig. 6(b), where the rogue wave encircled by the black curve bears a strong resemblance to the

GI super chirped rogue wave shown in Fig. 5(b) or in Fig. 3(a), despite there being random fields

surrounding it. Accordingly, as one might envision, this impressive robustness of super chirped

rogue waves may enable them to be observed in realistic physical settings (e.g., in optical fibers),

as long as the self-steepening effect functions properly.

Fig. 6. Numerical excitation of the GI super chirped rogue wave from a turbulent field under

otherwise the same parameter condition as in Fig. 3(a). The panel (a) shows the maximum

peak amplitude chosen from a very large t window for each specific value of z, and (b)

displays the evolution of the field amplitude around z = 14 within a narrow temporal interval,

where a typical super chirped rogue wave has been singled out by the black curve.

5. Conclusion

We have studied the super rogue wave dynamics of optical pulses in optical fibers within

the framework of a generalized CQ NLS equation that contains the GVD, the Kerr and

quintic nonlinearity, and the self-steepening effect. With the help of the nonrecursive Darboux

transformation technique, we have presented for the first time the nth-order rogue wave solution

and particularly its explicit solution forms up to the third order. It is unveiled that, for a rogue

wave solution of order n, it can be shaped up as a single super rogue wave state whose peak

amplitude is as high as 2n + 1 times the background level, which results from the superposition

of n(n + 1)/2 Peregrine solitons. More interestingly, we have found that these super rogue waves

involve a frequency chirp that is also localized in both time and space.

In addition, we have performed numerical simulations to confirm the stability of these super

chirped rogue waves in spite of the onset of the spontaneous MI activated by white noises, and

have demonstrated their numerical excitation from a turbulent field caused by a low-amplitude

noise. In the light of this impressive recurrence stability and the universality of the model used,

we anticipate that these super chirped rogue waves can be observed in optical fibers, e.g., in
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highly nonlinear chalcogenide fibers [44], where the cubic-quintic nonlinearity (including the

self-steepening effect) is important, while the higher-order dispersions beyond GVD can be

ignored, for pulses in the picosecond range and for small propagation distances. We would also

like to remark that such super chirped rogue waves could be observed as well in quadratic crystals

(e.g., β-barium borate or periodically poled lithium tantalate crystals) in the high phase-mismatch

cascading regime, which may produce a controllable self-steepening effect [45–47].

On the other side, as Eq. (1) has significantly generalized such integrable models as the NLS

equation, the CLL–NLS equation, the KN–NLS equation, the GI equation, and the KE equation,

we expect that the universal solutions presented here might be used as a platform for exploring

the interesting rogue wave dynamics of many complex and non-integrable systems, which, to the

first order approximation, are well described by the latter equations [64, 65].

Appendix A—Explicit rogue wave solutions up to the third order

In this Appendix, we would like to derive the explicit rogue wave solutions up to the third order from

Eq. (16). As seen, only the preceding three series coefficients Θ(0,1,2) ≡ [R0,1,2, S0,1,2]Tei(θ0z+φ0t)

in Eq. (15) need to be determined, which, after some algebra, can be found as below:

R0 = γ1 + 2iγ2βϑ,

S0 = −γ1 − 2iγ2βξ,

R1 = −2γ1β
2ϑ2
+ γ2

(
−4i

3
β3ϑ3

+ 5iβϑ + 4βτ

)
+ γ3 + 2iγ4βϑ,

S1 = 2γ1β
2ξ2 − γ2

(
−4i

3
β3ξ3 + 5iβξ + 4βτ − iρ

)
− γ3 − 2iγ4βξ,

R2 = γ1g + γ2p − 2γ3β
2ϑ2
+ γ4

(
−4i

3
β3ϑ3

+ 5iβϑ + 4βτ

)
+ γ5 + 2iγ6βϑ,

S2 = −γ1h − γ2q + 2γ3β
2ξ2 − γ4

(
−4i

3
β3ξ3 + 5iβξ + 4βτ − iρ

)
− γ5 − 2iγ6βξ,

(A1)

where γj ( j = 1, 2, · · · , 6) are arbitrary complex constants, and

κ = −γa2
+ iβ, ρ =

4β

κ
+

4iβ2

κ2
+

8β3

3κ3
,

τ = t − (a2µ + ω)z, ϑ = iτ − βz, ξ = ϑ + 1/κ,

g =
2β4ϑ4

3
− 10β2ϑ2

+ 8iβ2ϑτ,

h =
2β4ξ4

3
− 10β2ξ2 + 8iβ2ξτ + 2ρβξ,

p =
4iβ5ϑ5

15
− 10iβ3ϑ3

+

7iβϑ

4
− 8β3ϑ2τ + 2βτ,

q =
4iβ5ξ5

15
− 10iβ3ξ3 +

7iβξ

4
− 8β3ξ2τ + 2βτ + 2iρβ2ξ2

− 2iβ

κ
+

2β2

κ2
− 12iβ3

κ3
− 16β4

κ4
+

32iβ5

5κ5
.

(A2)

Accordingly, the expressions of Y1,2 and M intended for the former three low-order rogue wave

solutions can be found as well, via Eqs. (17) and (18). Therefore, from Eq. (16), one can obtain

the explicit fundamental rogue wave solution of Eq. (1) as

E [1]
= E0

(
−1 +

iχR0S∗
0

γam∗
11

) (
m∗

11

m11

)µ/γ
, (A3)
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the explicit second-order rogue wave solution as

E [2]
= E0

{
−1 +

iχ[R0(S∗
0
m∗

22
− S∗

1
m∗

21
) + R1(S∗

1
m∗

11
− S∗

0
m∗

12
)]

γa(m∗
11

m∗
22

− m∗
12

m∗
21
)

} (
−

m∗
11

m∗
22

− m∗
12

m∗
21

m11m22 − m12m21

)µ/γ
,

(A4)

and the explicit third-order rogue wave solution as

E [3]
= E0

©«
−1 +

iχ

γa

[
R0, R1, R2

] 

m∗
11
,m∗

21
,m∗

31

m∗
12
,m∗

22
,m∗

32

m∗
13
,m∗

23
,m∗

33



−1 

S∗
0

S∗
1

S∗
2



ª®®®®®¬
×

©«

���������
m11,m12,m13

m21,m22,m23

m31,m32,m33

���������

∗ /���������
m11,m12,m13

m21,m22,m23

m31,m32,m33

���������
ª®®®®¬

µ/γ

,

(A5)

where |[mi j]| signifies the determinant of the involved matrix and mi j are defined by

m11 =

√
λ0 |R0 |2 +

√
λ∗

0
|S0 |2,

m12 =

√
λ0R∗

0R1 +

√
λ∗

0
S∗

0S1 +
χ |R0 |2

2
√
λ0

− m11,

m13 =

√
λ0R∗

0R2 +

√
λ∗

0
S∗

0S2 +
χR∗

0

2
√
λ0

(
R1 −

χR0

4λ0

)
− m12,

m21 =

√
λ0R0R∗

1 +

√
λ∗

0
S0S∗

1 −
χ |S0 |2

2
√
λ∗

0

− m11,

m22 =

√
λ0 |R1 |2 +

√
λ∗

0
|S1 |2 +

χ

2

(
R0R∗

1√
λ0

−
S∗

0
S1√
λ∗

0

)
− m12 − m21,

m23 =

√
λ0R∗

1R2 +

√
λ∗

0
S∗

1S2 −
χS∗

0
S2

2
√
λ∗

0

+

χR∗
1

2
√
λ0

(
R1 −

χR0

4λ0

)
− m22 − m13,

m31 =

√
λ0R0R∗

2 +

√
λ∗

0
S0S∗

2 −
χS0

2
√
λ∗

0

(
S∗

1 +
χS∗

0

4λ∗
0

)
− m21,

m32 =

√
λ0R1R∗

2 +

√
λ∗

0
S1S∗

2 +
χR0R∗

2

2
√
λ0

− χS1

2
√
λ∗

0

(
S∗

1 +
χS∗

0

4λ∗
0

)
− m22 − m31,

m33 =

√
λ0 |R2 |2 +

√
λ∗

0
|S2 |2 +

χR∗
2

2
√
λ0

(
R1 −

χR0

4λ0

)
− χS2

2
√
λ∗

0

(
S∗

1 +
χS∗

0

4λ∗
0

)
− m23 − m32.

(A6)

It should be noted that in the above formulas for mi j , one can use
√
λ0 = β/a + iγa and√

λ∗
0
= β/a − iγa, which have been separated into real and imaginary parts. As one might check,

the solutions given by Eqs. (A3)–(A5) have no singularity problems.
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