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Super class AB RFC OTA with adaptive 
local common-mode feedback 

M. P. Garde, A. J. Lopez-Martin, R. G. Carvajal and
J. Ramirez-Angulo

A super class AB recycling folded cascode operational transconductance 
amplifier is presented. It employs local common-mode feedback using 
two matched tuneable active resistors, allowing to adapt the amplifier to 
different process variations and loads. Measurement results from a test 
chip prototype fabricated in a 0.5 μm CMOS process validate the 
proposal. 

Introduction: Super Class AB Operational Transconductance 
Amplifiers (OTAs) are single-stage topologies that feature dynamic 
current boosting both at the bias current source and active load of the 
input differential pair. As a result, dynamic performance is much better 
than in conventional class AB amplifiers. Moreover, small-signal 
performance and current efficiency are also improved thanks to the 
local common-mode feedback technique employed [1]. Originally, only 
the current mirror OTA topology was suitable to implement super class 
AB operation [1]. Recently, it was also extended by the authors to the 
Recycling Folded Cascode (RFC) OTA [2]. However, performance of 
the super class AB OTAs in [1]-[2] relies on the resistance value R of 
two matched passive resistors, which can suffer from process and 
temperature variations. Moreover, R is chosen to optimize slew rate 
(SR), gain-bandwidth product (GBW) and phase margin (PM) for a 
given load capacitance CL. Since R is fixed once the OTA is fabricated, 
the use of a different CL leads to a suboptimal performance. Lastly, R in 
[1]-[2] is implemented using a high resistance non-silicided polysilicon 
layer which may not be available in some low-cost CMOS processes. 

In this Letter, a simple modification to the RFC OTA in [2] which 
solves these issues is proposed. Active resistors replace these passive 
resistors, leading to a more flexible approach able to adapt to process 
and temperature variations and to different load conditions, and 
requiring less silicon area and no high resistive layer.  

Circuit Description: Fig. 1a and 1b show the Folded Cascode (FC) 
OTA and Recycling Folded Cascode (RFC) OTA [3], respectively. 
PMOS input transistors and NMOS current sources in the FC OTA have 
been split into two transistors to ease comparison. The GBW and SR of 
the FC OTA are: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹 = 2𝑔𝑔𝑚𝑚1𝐴𝐴
2𝜋𝜋𝐹𝐹𝐿𝐿

 (1) 

𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 = 2𝐼𝐼𝐵𝐵
𝐹𝐹𝐿𝐿

 (2) 

where gm1A is the transconductance of M1A. The RFC OTA replaces the 
NMOS current sources of the FC OTA by current mirrors with ratio 1:K 
and adds an extra signal path. The resulting GBW and SR become: 

𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅𝐹𝐹𝐹𝐹 = (1+𝐾𝐾)𝑔𝑔𝑚𝑚1𝐴𝐴
2𝜋𝜋𝐹𝐹𝐿𝐿

 (3) 

𝑆𝑆𝑆𝑆𝑅𝑅𝐹𝐹𝐹𝐹 = 2 𝐾𝐾 𝐼𝐼𝐵𝐵
𝐹𝐹𝐿𝐿

 (4) 

Despite the improvement versus the FC OTA, SR is still proportional 
to IB and current efficiency is poor due to the internal replication of 
large dynamic currents [1]. Moreover, this enhancement is limited since 
in practice K ≤4 to avoid excessive PM degradation [3]. Further 
improvement is obtained with the super class AB version of the RFC 
OTA [2], but at the expense of the drawbacks mentioned in the 
Introduction. Fig. 1c shows the proposed modification avoiding these 
drawbacks. An adaptive biasing stage formed by transistors M1C-M2C 
and M1D-M2D is used, as in [2]. However, local common mode feedback 
in transistors M3B-M4B is implemented by matched transistors MR1-MR2 
operating in triode region as active resistors. Without input signal no 
current flows through MR1-MR2 and the circuit operates as in Fig. 1b, 
with the same well-defined quiescent currents. However, a differential 
input voltage Vid>0 leads to identical voltage drops in MR1 and MR2 that 
increase the VGS of M3A and decrease the VGS of M4A, yielding a large 
output current flowing to the load. When Vid<0 the VGS of M3A decreases 
and the VGS of M4A increases, sinking a large current from the load. 
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Fig. 1 Single-stage folded cascode OTAs 
a Conventional class A FC OTA 
b RFC OTA 
c Proposed super class AB RFC OTA 

The GBW and SR of the OTA of Fig. 1c are: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴 ≈
2𝑔𝑔𝑚𝑚1𝐴𝐴
2𝜋𝜋𝐹𝐹𝐿𝐿

[1 + 𝑔𝑔𝑚𝑚3𝐴𝐴𝑆𝑆𝐷𝐷𝐷𝐷]   (5) 

𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 ≈
𝛽𝛽3𝐴𝐴,4𝐴𝐴
2𝐹𝐹𝐿𝐿

��
𝛽𝛽1𝐵𝐵,2𝐵𝐵
2𝛽𝛽3𝐵𝐵,4𝐵𝐵

𝐴𝐴 + 𝑅𝑅𝐷𝐷𝐷𝐷𝛽𝛽1𝐵𝐵,2𝐵𝐵
4

𝐴𝐴2�
2

 (6) 

where A is the amplitude of the differential input step, βi=µCox(W/L)i 
the transconductance factor of transistor Mi, and RDS the drain source 
resistance of MR1 and MR2 controlled by DC voltage VBIAS: 

𝑆𝑆𝐷𝐷𝐷𝐷 ≈
1

𝛽𝛽𝑅𝑅1,2�𝑉𝑉𝐵𝐵𝐵𝐵𝐴𝐴𝐷𝐷−𝑉𝑉𝐺𝐺,3𝐵𝐵−𝑉𝑉𝑇𝑇𝑇𝑇�
= 1

𝛽𝛽𝑅𝑅1,2�𝑉𝑉𝐵𝐵𝐵𝐵𝐴𝐴𝐷𝐷−�
𝐵𝐵𝐵𝐵
𝛽𝛽3𝐵𝐵

−𝑉𝑉𝐷𝐷𝐷𝐷−2𝑉𝑉𝑇𝑇𝑇𝑇�
 (7) 

Note that both GBW and SR increase for larger RDS, but PM is degraded 
when RDS increases. For moderately large RDS (few kΩ) the lowest non-
dominant pole (gate node of M3A,4A) becomes ωpND ≈ -1/(RDS·Cgs3A) and 

𝑃𝑃𝑃𝑃 ≈ 90º − tan−1 �
𝐺𝐺𝐺𝐺𝐺𝐺
𝑓𝑓𝑝𝑝𝑝𝑝𝐷𝐷

� 

≈ 90º − tan−1 �2𝑔𝑔𝑚𝑚1𝐴𝐴𝑆𝑆𝐷𝐷𝐷𝐷
𝐹𝐹𝑔𝑔𝑔𝑔3𝐴𝐴
𝐹𝐹𝐿𝐿

[1 + 𝑔𝑔𝑚𝑚3𝐴𝐴𝑆𝑆𝐷𝐷𝐷𝐷]�  (8) 
Adjusting RDS by VBIAS allows optimization of GBW, SR and PM for 

a given CL, and compensation from process or temperature variations. 

Simulation and Measurement Results: A test chip prototype with the 
OTAs of Fig. 1 was fabricated in a 0.5 μm CMOS process. Transistor 
aspect ratios W/L (μm/μm) were 190/0.6 (M1A, M1B, M1C, M2A, M2B, 
M2C), 60/0.6 (M1D, M2D, M3B, M3C, M4B, M4C), 180/0.6 (M3A, M4A) 
120/0.6 (M5, M6), 200/0.6 (M7, M8, M9, M10) and 30/1 (MR1, MR2). A 
microphotograph of the proposed OTA of Fig. 1c is shown in Fig. 2. 
Supply voltage was ±1 V, IB = 10 µA, VCP = -0.5 V and VCN = 0.3 V. 

Figure 3 shows the simulated GBW and PM for VBIAS between 0.6 V 
and 0.9 V. As expected from (5), (7)-(8), GBW is inversely proportional 
to VBIAS and PM decreases for lower VBIAS (i.e., larger RDS).  

Measurements were done using the amplifiers in unity-gain negative 
feedback as voltage followers. An external load capacitor of 47 pF was 
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employed, which added to the capacitance of the test setup (pad, board 
and test probe) leads to CL ≈ 70 pF. The measured transient response of 
the three OTAs of Fig. 1 is shown in Fig. 4. A 1 MHz 0.5 V periodic 
input square wave with -0.6 V DC level was used and VBIAS = 660 mV. 
Note the highly improved SR of the OTA of Fig. 1c. Table 1 
summarizes the performance of the OTAs of Fig. 1. Note the enhanced 
small and large signal performance at the expense of slightly lower PM 
and 20 % extra quiescent power of the adaptive biasing circuit. 
 

Proposed OTA

100 µm

 
 

Fig. 2 Microphotograph of the OTA of Fig. 1c 

 
 

Fig. 3 GBW and PM vs VBIAS 

 

 
 

Fig. 4 Measured transient response of the OTAs of Fig. 1 
 
Table 1: Measured performance summary (CL = 70 pF) 
 

Parameter Fig. 1a Fig. 1b Fig. 1c 
SR+ 0.26 V/μs 0.48 V/μs 16.04 V/μs 
SR- -0.86 V/μs -1.5 V/μs -18.2 V/μs 
THD @ 25 kHz, 0.5 Vpp -37.37 dB -44.08 dB -46.54 dB 
DC gain (*) 63.81 dB 71.88 dB 76.43 dB 
PM (*) 89º 86.39º 81.32º 
GBW (*) 530 kHz 980 kHz 2.5 MHz 
CMRR @ DC 97 dB 111 dB 112 dB 
PSRR+ @ DC 73 dB 82 dB 91 dB 
PSRR- @ DC 93 dB 104 dB 111 dB 
Eq. input noise @ 1 MHz 49 nV/√Hz 35 nV/√Hz 23 nV/√Hz 
Power 80 μW 80 μW 100 μW 
Area 0.020 mm2 0.024 mm2 0.025 mm2 
(*) Simulation 

A comparison with other class AB amplifiers is shown in Fig. 5, 
using two figures of merit (FoM): FoML=SR·CL/Isupply=ImaxL/Isupply, 
where Isupply is the total static current consumption, and 
FoMS=GBW·CL/Isupply (MHz·pF/mA). Note the improvement of the 
proposed OTA of Fig. 1c in both FoMs. 
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Fig. 5 Performance comparison 
 
Conclusion: Adaptive local common-mode feedback by active resistors 
adds flexibility to super class AB RFC OTAs, allowing different GBW, 
SR and PM trade-offs and providing optimal performance despite 
process and temperature variations. 
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