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We propose and experimentally show the mechanism of beam super-collimation by axisymmetric

photonic crystals, specifically by periodic (in propagation direction) structure of layers of concentric

rings. The physical mechanism behind the effect is an inverse scattering cascade of diffracted wave

components back into on- and near-axis angular field components, resulting in substantial enhancement

of intensity of these components. We explore the super-collimation by numerical calculations and

prove it experimentally. We demonstrate experimentally the axial field enhancement up to 7 times in

terms of field intensity.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4881839]

It is known that Photonic Crystals (PhCs) can display

exotic wave propagation properties such as anomalous

refraction and diffraction of Bloch modes.1,2 Flat PhC lens-

ing is perhaps a best known realisation of anomalous diffrac-

tion/refraction, which has been recently demonstrated in

normal3 and sub-wavelength4 resolution. The wave propaga-

tion principles in flat PhC lensing are similar to those in

metamaterials with negative refraction.5,6 These flat lensing

effects,3,4 also flat mirror focusing effects,7,8 are the near

field phenomena, as the flat, transversally invariant PhC

lenses and mirrors do not affect the far field distributions of

the transmitted radiation.9 The beam manipulation with

PhCs in the far field domain get less attention: perhaps the

only known effect of PhC action on the spatial frequency

spectrum is a spatial (angular) filtering of the beams due to

the angular band-gaps.10–12

In spatial filtering, a range of the angular components of

a beam can be removed due to the angular band-gaps, i.e.,

the waves can be reflected in backward direction10,11 or

deflected at large angles in forward direction.12 In the latter

case, the angular distribution of the transmitted field is modi-

fied as illustrated in Fig. 1(a). Some angular components of

transmitted field can be attenuated (see the formation of dips

in Fig. 1(a), however, obviously, no angular components can

be amplified.

We report here an unexpected phenomenon observed in

axisymmetric PhCs, where the on- or around-axis field com-

ponents are strongly amplified. The structure which we con-

sider consists of the periodic planes of concentric rings, as

illustrated in Fig. 1(b). The axisymmetric deflection of the

angular components is possible, resulting in axisymmetric

angular filtering,13 similarly to the spatial filtering in conven-

tional periodic PhCs. However, unexpectedly, bear-axis field

components of transmitted radiation were observed to

increase strongly, and an intense bright peak was observed in

the far field of the transmitted radiation, as shown in

Fig. 1(b). This, as discussed in detail further on, occurs for a

precise matching between the longitudinal and transverse

periods of the axisymmetric PhC. This enhancement of the

field in the central area of the far field distribution, as

detailed below, was measured experimentally up to 7 times

in terms of intensity. The output of the experiment was a

well collimated beam, with the divergence of approximately

20 mrad. The report and interpretation of the effect are the

main message of this Letter.

Before moving to the details, we note that the phenom-

enon is possible only in the case of axisymmetric PhCs. No

enhancement in far field can be achieved in purely periodic

conventional PhCs, two-dimensional or three-dimensional,

what follows from experimental and numerical studies, and

also from plane-wave expansion analysis. This means that

Bloch modes propagating in different directions (correspond-

ing to different angular components) are uncoupled in con-

ventional PhCs. The effect we report in the Letter is based

on a diffusive mixing of different radial wave-components in

axisymmetric PhCs.

Axisymmetric photonic microstructures were fabricated

in a standard microscope soda-lime glass slides (n ¼ 1.52)

FIG. 1. Illustration of the spatial filtering in: (a) periodic two-dimensional

PhC (periodic array of parallel rods) and (b) and in axisymmetric PhC.

Dashed lines indicate the far field profile without the structure. Arrows indi-

cate diffractive scattering of the field components in forward direction

(angular filtering), and in backward direction.
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by a point-by-point modification of the refractive index using

tightly focused femtosecond laser beam. Such direct laser

writing technique is used for inscription of various micro-

optical and photonic components in glass such as wave-

guides,14 Bragg gratings,15 and others. Also the PhC spatial

filters in Refs. 12 and 13 were fabricated using this method.

The fabrication parameters are provided, e.g., in Ref. 13.

The resolution of the inscribed structure (the voxel size) was

�9lm in longitudinal direction and �1 lm in transverse

direction. The change of refractive index of irradiated areas

was estimated to be Dn � 8� 10�3.

The layers of the axisymmetric microstructures contain

30 concentric circles at 2 lm increment of radii of rings in a

layer. In every second layer, the structure of rings is recipro-

cal, i.e., the radii with refractive index maxima correspond to

radii with index minima in the next layer (next longitudinal

half-period). The longitudinal period of the structure was cal-

culated following the spatial filtering theory,12,13 where the

angle of the filtered out components is given (in paraxial

approximation) by

sin að Þ ¼
q?

2k0
Q� 1ð Þ ¼

k

2d?
Q� 1ð Þ: (1)

Here, Q ¼ 2d2?n= kdjj
� �

is the geometry factor, q? ¼ 2p=d?
and qk ¼ 2p=dk are the transverse and longitudinal wavenum-

bers of the index modulation, k0 ¼ 2p=k is the wavenumber

of electromagnetic wave, and n is the average refractive index.

In order to achieve optimum super-collimation effect, we

work in the range of small filtering angles a � 0; therefore,

the longitudinal period according to (1) was varied around the

value dk � 19lm for the 633 nm wavelength of HeNe laser

beam.

The key experimental observation results are summar-

ized in Fig. 2. The laser beam was focused just in front of

the PhC sample with a 0.3 NA objective. The beam half-

width at waist was 2lm, which corresponded to angular

divergence of 180 mrad. We recorded the far field profiles of

the beam by CCD camera positioned at approximately

10 mm distance behind the sample. Figs. 2(a) and 2(b) show

the far field distributions (together with their axial cross-

sections taken at each 45� angle) at optimum geometry for

the super-collimation. The far-fields at different propagation

lengths (different lengths of the structure in experiments)

show the formation of the super-collimated beam. For com-

parison, the beam propagation in PhC with a geometry

designed for spatial filtering (Fig. 2(c)) shows no super-

collimation effects (for the identical fabrication conditions of

the structure, except for the different longitudinal periods,

i.e., different geometry parameters and lower number of peri-

ods N ¼ 12). The latter distribution shows spatial filtering,

similarly to that reported in Ref. 13 for this geometry, but no

super-collimation.

The detailed mechanism for super-collimation remains

unclear. Evident is that the effect is related with axisymmet-

ric diffusion in far field domain, i.e., with intermixing of dif-

ferent radial field components, as also schematically

illustrated in Fig. 1.

Let us consider first the perfectly periodic PhC, with trans-

verse period d? (q? ¼ 2p=d?), see Fig. 1(a). Then the arbitrary

plane wave component with transverse k? (k20 ¼ k2jj þ k2?) can

be scattered into k? þ q?n (n ¼ 61;62; :::). The set of

coupled plane waves with given k? builds the Bloch mode

propagating invariantly along the modulated structure.

Important is that different Bloch modes (the ones with different

k?’s), being orthogonal, do not couple in between in propaga-

tion, i.e., propagate independently one from another. The char-

acter of the Bloch mode depends also on the longitudinal

period: at the resonance condition, the coupling between the

plane wave components building the Bloch mode is strong, so

the angular filtering is obtained for particular range of k? (the

angular range). In this way, different angular field components

do not mix, i.e., the excitations do not diffuse across the angular

spectrum in periodic structures. In axisymmetric structures,

FIG. 2. The 2D far field intensity pro-

files together with their axial (vertical,

horizontal, and both diagonal) cross-

sections for the parameters correspond-

ing to super-collimation (a) and (b),

and deviated from the self-collimation

regime (c). (a) and (b) contains 20

periods of 20.4 lm and 18.1 lm,

respectively, and (c) has 12 periods of

13.7 lm.
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however, the backward diffraction does not bring the radiation

back to initial k?, but, to a particular range of k?6Dk?, which

results in a kind of diffusion in far field domain.

This interpretation has been checked by a series of nu-

merical calculations. For numerical study, a split step tech-

nique was used, where in one step the scattering by one

modulated layer was calculated by applying the phase modu-

lation profile for the propagating wave: Dw rð Þ ¼ Dn rð Þk0Dlk,
where Dn rð Þ is the radial modulation profile of the refractive

index in the structure, and Dlk is the voxel size along the

structure. In the next step, the paraxial propagation between

the layers is calculated by applying the paraxial propagation

operator: �dkk
2
r = 4k0ð Þ in the Fourier space (propagation over

a half of longitudinal period is considered; we note that dk is

the full longitudinal period). Next the scattering by reciprocal

layer was calculated, and then once more the propagation of

half period, which completes the full longitudinal period of

the PhC. We used the radial Fourier transformation, which is

in fact the Bessel-Hankel transformation. The change of

refraction index was estimated approximately Dn � 8� 10�3

for our samples fabricated with the optimum parameters. A

more convenient parameter, however, is the scattering coeffi-

cient by one layer: s ¼ pDndlk= 2kð Þ. The convenience of

using s is that the filtering efficiency depends directly on this

parameter and on the number of longitudinal periods for the

arbitrary spatial periods of the modulation.

The scattering coefficient of one layer was estimated

from the above expression s� 0.15, which means that

approximately s2� 2% of radiation energy is deflected by

each layer. This estimation was checked a posteriori com-

paring the experimental results with the results of numerical

analysis with varied scattering coefficient s. The above inter-

pretation of the super-collimation is supported by numerical

calculations of the beam propagation along the structure,

presented in Fig. 3. On the left side, the wave propagation

along the 2D PhC is shown proving the well-established

theory that the Bloch modes do not couple. The dips appear

according to the angular filtering theory at the optimum

propagation distance, and are afterwards filled back due to

back-scattering for longer than optimum propagation dis-

tance. On the right side of Fig. 3, for axisymmetric struc-

tures, the initial formation of the dip (the forward scattering)

is similar to that in conventional 2D PhCs. The

back-scattering process, however, results in a kind of diffu-

sion, i.e., the mixing of the angular wave-components, and

eventually to the formation of the super-collimation.

The effect of super-collimation, as can be expected,

depends strongly on the geometric parameters. Fig. 4 sum-

marizes that dependence: the maximum-intensity of the

super-collimated beam has been plotted in 2D parameter

space of (geometry parameter Q, length in periods N). The

area of optimum super-collimation is clearly seen at around

Q ¼ 1. In fact, this area is split into two, one for Q < 1 and

one for Q> 1. The experimental results in Fig. 2 are obtained

for the parameters approximately corresponding to these two

peaks. Note that the numerical map was calculated for a

fixed s and for fixed width of the beam. From the study also

follows that the length of the structure has an optimum.

Longer than optimal structures do not improve, but rather di-

minish the super-collimation.

FIG. 3. Comparison of the spatial filtering in conventional 2D PhC, and in axisymmetric PhC. The far field angular distributions (blue solid lines) at indicated

propagated distances N (in periods), as well as the 2D maps attribute to (a) 2D PhC and (b) axisymmetric PhC. Dashed lines represent the far field intensity

profiles of the unity normalized Gaussian input beam.

FIG. 4. Map of on-axis intensity enhancement in the parameter plane of

(Q, N), showing the optimum geometry and the optimum length (in periods)

of the structure.
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In conclusion, we have predicted and experimentally

demonstrated the super-collimation effect in axisymmetric

photonic structures. We interpret the effect in terms of radial

diffusion of the radiation in the far field domain, during the

forward-backward diffractive scattering cascade.

In our experiments, the maximum enhancement of the

intensity of around 7 times was recorded, and the angular

distribution of super-collimated beam of around 20 mrad

was observed. In the numerical studies, we observed even

larger >20 times enhancement of the intensity, where

around 30% of energy was within the super-collimated

beam. The experimental deviation from numerical results is

most likely caused by spherical aberrations during fabrica-

tion process, which decreased the quality of our rather long

(�350 lm height) structures. Such aberrations could, in

principle, be compensated with spatial light modulator16 or

other techniques.

We note that the effect of super-collimation depends very

weakly on the position of focusing in front (or behind) the

crystal. The position could be changed by appr. 60:5mm

without a substantial influence on super-collimation. In usual

(or in Fresnel) lensing, the divergence of the collimated beam

would be very sensitive to the position of the focus (of source)

along the axis.

Finally, we note that the demonstrated effect could be

well utilized outside the optics, in other fields of wave dy-

namics. Recently, the spatial filtering has been shown for

acoustic beams17—the idea we promote can be well utilized

for the formation of super-collimated beams in acoustics

too.
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