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Abstract We formulate and establish a super duality which connects par-
abolic categories O for the ortho-symplectic Lie superalgebras and classical
Lie algebras of BCD types. This provides a complete and conceptual so-
lution of the irreducible character problem for the ortho-symplectic Lie su-
peralgebras in a parabolic category O, which includes all finite dimensional
irreducible modules, in terms of classical Kazhdan-Lusztig polynomials.
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1 Introduction

1.1

Finding the irreducible characters is a fundamental problem in representation
theory. As a prototype of this problem, consider a complex semisimple Lie
algebra g. The problem is solved in two steps, following the historical devel-
opment:

(1) The category of finite dimensional g-modules is semisimple and the cor-
responding irreducible g-characters are given by Weyl’s character for-
mula.

(2) A general solution to the irreducible character problem in the BGG cate-
gory O was given much later by the Kazhdan-Lusztig (KL) polynomials
(theorems of Beilinson-Bernstein and Brylinski-Kashiwara) [1, 3, 22].

1.2

The study of Lie superalgebras and their representations was largely mo-
tivated by the notion of supersymmetry in physics. A Killing-Cartan type
classification of finite dimensional complex simple Lie superalgebras was
achieved by Kac [19] in 1977. The most important subclass of the simple Lie
superalgebras (called basic classical), including two infinite series of types A

and osp, bears a close resemblance to the usual simple Lie algebras, so we
can make sense of root systems, Dynkin diagrams, triangular decomposition,
Cartan and Borel subalgebras, (parabolic) category O , and so on.

However, the representation theory of Lie superalgebras g has encountered
several substantial difficulties, as made clear by numerous works over the last
three decades (cf. [2, 13, 14, 20, 21, 24, 27] as a sample of earlier literature,
and some more recent references which can be found in the next paragraph):

(1) There exist non-conjugate Borel subalgebras for a given Lie superalge-
bra g.

(2) The category F of finite dimensional g-modules is in general not semi-
simple. A uniform Weyl type finite dimensional character formula does
not exist.

(3) One has a notion of a Weyl group associated to the even subalgebra of
g; however, the linkage in the category O (or in F ) of g-modules is not
solely controlled by the Weyl group.

(4) A block in the category O (or in F ) may contain infinitely many simple
objects.

The conventional wisdom of solving the irreducible character problem for
Lie superalgebras has been to follow closely the two steps for Lie algebras in
Sect. 1.1. As the problem is already very difficult in the category F , there has
been little attempt in understanding the category O .



Super duality and ortho-symplectic Lie superalgebras

For type A Lie superalgebra gl(m|n), there have been several different gen-
eral approaches over the years. Serganova [28] in 1996 developed a mixed
geometric and algebraic approach to solving the irreducible character prob-
lem in the category F . Brundan in 2003 [5] developed a new elegant purely
algebraic solution to the same problem in F using Lusztig-Kashiwara canon-
ical basis. Developing the idea of super duality [10] (which generalizes [11])
which connects the categories O for Lie superalgebras and Lie algebras of
type A for the first time, two of the authors [9] very recently established
the super duality conjecture therein. In particular they provided a complete
solution to the irreducible character problem for a fairly general parabolic
category O (including F as a very special case) in terms of KL polynomials
of type A. Independently, Brundan and Stroppel [6] proved the super duality
conjecture in [11], offering yet another solution of the irreducible character
problem in F .

1.3

The goal of this paper is to formulate and establish a super duality which con-
nects parabolic category O for Lie superalgebra of type osp with parabolic
category O for classical Lie algebras of types BCD, vastly generalizing the
type A case of [9–11]. In particular, it provides a complete solution of the
irreducible character problem for osp in some suitable parabolic category O ,
which includes all finite dimensional irreducibles, in terms of parabolic KL
polynomials of BCD types (cf. Deodhar [15]).

1.4

Before launching on a detailed explanation of our main ideas below, it is
helpful to keep in mind the analogy that the ring of symmetric functions (or its
super counterpart) in infinitely many variables carries more symmetries than
in finitely many variables, and a truncation process can easily recover finitely
many variables. The super duality can be morally thought as a categorification
of the standard involution ω on the ring of symmetric functions and it only
becomes manifest when the underlying Lie (super)algebras pass to infinite
rank. Then truncation functors can be used to recover the finite rank cases
which we are originally interested in.

Even though the finite dimensional Lie superalgebras of type osp depend
on two integers m and n, our view is to fix one and let the other, say n, vary,
and so let us denote an osp Lie superalgebra by gn. By choosing appropriately
a Borel and a Levi subalgebra of gn, we formulate a suitable parabolic cat-
egory On of gn-modules. It turns out that there are four natural choices one
can make here which correspond to the four Dynkin diagrams b,b•, c,d in
Sect. 2.1 (the type a case has been treated in [9]). There is a natural sequence
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of inclusions of Lie superalgebras:

g1 ⊂ g2 ⊂ · · · ⊂ gn ⊂ · · · .

Let g := ⋃∞
n=1 gn. A suitable category O of g-modules can be identified with

the inverse limit lim←− On. On the other hand, we introduce truncation func-

tors trkn : Ok → On for k > n, as analogues of the truncation functors stud-
ied in algebraic group setting (cf. Donkin [16]). These truncation functors
send parabolic Verma modules to parabolic Vermas or zero and irreducibles
to irreducibles or zero. In particular, this allows us to derive the irreducible
characters in On once we know those in O.

Corresponding to each of the above choices of gn and On, we have the Lie
algebra counterparts gn and parabolic categories On for positive integers n.
Moreover, we have natural inclusions of Lie algebras gn ⊂ gn+1, for all n,
which allow us to define the Lie algebra g := ⋃

n gn and the parabolic cat-
egory O of g-modules. Similarly, the category O can be identified with the
inverse limit lim←− On. In the main body of the paper, we actually replace g,g

et cetera by their (trivial) central extensions. The reason is that the truncation
functors depend implicitly on a stabilization scalar, which is interpreted con-
ceptually as a level of representations with respect to the central extensions.

To establish a connection between O and O, we introduce another infinite
rank Lie superalgebra g̃ and its parabolic category ˜O. The Lie superalgebra g̃

contains g and g as natural subalgebras (though not as Levi subalgebras), and
this enables us to introduce two natural functors T : ˜O → O and T : ˜O → O.
Using the technique of odd reflections among others, we establish in Sect. 4 a
key property that T and T respect the parabolic Verma and irreducible mod-
ules, respectively. This result is already sufficient to provide a complete so-
lution of irreducible osp-characters in the category On in the first half of the
paper (by the end of Sect. 4.4). We remark that the idea of introducing an
auxiliary Lie superalgebra g̃ and category ˜O has been used in the type A

superalgebra setting [9].
Recall that for the usual category O of Lie algebras, the KL polynomials

were interpreted by Vogan [34] in terms of Kostant u-homology groups. The
u-homology groups make perfect sense for Lie superalgebras, and we may
take this interpretation as the definition for the otherwise undefined KL poly-
nomials in category O for Lie superalgebras (cf. Sect. 1.2 (3)), as Serganova
[28] did in the category F of gl(m|n)-modules. In Sect. 4.5, we show that
the functors T and T match the corresponding u-homology groups and hence
the corresponding KL polynomials (compare [8]). Actually the computation
in [8] of the u-homology groups with coefficients in the Lie superalgebra os-
cillator modules via Howe duality was the first direct supporting evidence for
the super duality for osp as formulated in this paper.
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Section 5 of the paper is devoted to proving that both T and T are indeed
category equivalences. As a consequence, we have established that the cat-
egories O and O are equivalent, which is called super duality. A technical
difference here from [9] is that we need to deal with the fact that parabolic
Verma modules in O may not have finite composition series. An immediate
corollary of the super duality is that any known BGG resolution in the cate-
gory O gives rise to a BGG type resolution in the category O, and vice versa.

1.5

The finite dimensional irreducible osp-modules are of highest weight, and
they are classified in terms of the Dynkin labels by Kac [20]. We note that the
finite dimensional irreducible modules of non-integral highest weights are
typical and so their characters are known [20, Theorem 1]. It turns out that
a more natural labeling of the remaining finite dimensional irreducible osp-
modules (of integral highest weights) is given in terms of Young diagrams
just as for classical Lie algebras (see e.g. [31] for such a formulation and a
new proof using odd reflections).

As Borel subalgebras are not conjugate to each other, it becomes a nontriv-
ial problem to find the extremal weights, i.e. highest weights with respect to
different Borel, of a given finite dimensional irreducible osp-module. We pro-
vide an elegant and simple answer in terms of a combinatorial notion which
we call block Frobenius coordinates associated to Young diagrams.

We observe that our solution of the irreducible character problem in On

includes solutions to all finite dimensional irreducible osp-characters.
The category F for a general osp (with the exception of osp(2|2n)) is

not a highest weight category and does not admit an abstract KL theory
in the sense of Cline, Parshall and Scott [12], as indicated in the case of
osp(3|2) [17, Sect. 2]. For a completely independent and different approach
to the finite dimensional irreducible osp-characters in the category F , see
Gruson and Serganova [18]. The finite dimensional irreducible characters of
osp(2|2n) were obtained in [13]. The finite dimensional irreducible charac-
ters of osp(k|2) were also computed in [32].

1.6

In hindsight, here is how our super duality approach overcomes the difficulties
as listed in Sect. 1.2.

(1) The existence of non-conjugate Borel subalgebras for a Lie superalge-
bra is essential for establishing the properties of the functors T and T .
Choices of suitable Borel subalgebras are crucial for a formulation of the
compatible sequence of categories On for n > 0.

(2) The category F of finite dimensional gn-modules does not play any spe-
cial role in our approach. Even the “natural” osp(M|2n)-modules C

M|2n
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do not correspond well with each other under truncation functors, as they
are natural with respect to the “wrong” Borel.

(3) In the n → ∞ limit, the linkage in the category O of g-modules is com-
pletely controlled by the Weyl group of the corresponding Lie algebra g

(which contains the even subalgebra of g as a subalgebra).
(4) In the n → ∞ limit, it is no surprise for a block to contain infinitely many

simple objects.

In the extreme cases described in Sect. 2.3, we indeed obtain an equiva-
lence of module categories between two classical (non-super!) Lie algebras
of types C and D of infinite rank at opposite levels. If one is willing to regard
osp(1|∞) as classical (recall that the finite dimensional osp(1|2n)-module
category is semisimple), there is another equivalence of categories which re-
lates osp(1|∞) to the infinite rank Lie algebra of type B . In this sense, our
super duality has a flavor of the Langlands duality.

The super duality approach here can be further adapted to the setting of
Kac-Moody superalgebras (including affine superalgebras) and this will shed
new light on the irreducible character problem for these superalgebras. The
details will appear elsewhere.

It is well known that the proof of KL conjectures involves deep geometric
machinery and results on D-modules of flag manifolds. The formulation of
super duality suggests potential direct connections on the (super) geometric
level behind the categories O and O, which will be very important to develop.

1.7

The paper is organized as follows. In Sect. 2 the Lie superalgebras g, g and g̃

are defined, with their respective module categories O, O and ˜O introduced
in Sect. 3. In Sect. 4, we provide a complete solution of the irreducible osp

character problem in category On for all n, including all finite dimensional
irreducible osp-characters, in terms of the KL polynomials of classical type.
We establish in Sect. 5 equivalence of the categories O and O. Section 6 offers
a diagrammatic description of the extremal weights of the finite dimensional
irreducible osp-modules with integral highest weights.

Throughout the paper the symbols Z, N, and Z+ stand for the sets of all,
positive and non-negative integers, respectively. All vector spaces, algebras,
tensor products, et cetera, are over the field of complex numbers C.

2 Lie superalgebras of infinite rank

In this section, we introduce infinite rank Lie (super)algebras gx, g
x and g̃x

associated to the 3 Dynkin diagrams in (2.2) below, where x denotes one of
the four types b,b•, c,d.



Super duality and ortho-symplectic Lie superalgebras

2.1 Dynkin diagrams of gx, g
x and g̃x

Let m ∈ Z+. Consider the free Abelian group with basis {ε−m, . . . , ε−1} ∪
{εr |r ∈ 1

2N}, with a symmetric bilinear form (·|·) given by

(εr |εs) = (−1)2rδrs, r, s ∈ {−m, . . . ,−1} ∪ 1

2
N.

We set

α× := ε−1 − ε1/2, αj := εj − εj+1, −m ≤ j ≤ −2,

β× := ε−1 − ε1, αr := εr − εr+1/2, βr := εr − εr+1, r ∈ 1

2
N.

(2.1)
For x = b,b•, c,d, we denote by kx the contragradient Lie (super)algebras

[19, Sect. 2.5] whose Dynkin diagrams
�

�

�

�kx together with certain distin-
guished sets of simple roots �(kx) are listed as follows:

© © © © ©©⇐= · · ·b:
−ε−m α−m α−3 α−2

� © © © © ©⇐= · · ·b•:
−ε−m α−m α−3 α−2

© © © © © ©=⇒ · · ·c:
−2ε−m α−m α−3 α−2

© © © © ©
©

©
��

��
· · ·d:

−ε−m−ε−m+1

α−m

α−m+1 α−3 α−2

According to [19, Proposition 2.5.6] these Lie (super)algebras are so(2m+1),
osp(1|2m), sp(2m) for m ≥ 1 and so(2m) for m ≥ 2, respectively. We will use
the same notation

�

�

�

�kx to denote the diagrams of all the degenerate cases for
m = 0,1 as well. (See Sects. 2.2 and 2.3 below.) We have used � to denote
an odd non-isotropic simple root. So osp(1|2m) is actually a Lie superalgebra
(instead of Lie algebra), but it is classical from the super duality viewpoint in
this paper.

For n ∈ N let
�

�

�

�
Tn ,

�

�

�

�
Tn and

�

�

�

�
˜Tn denote the following Dynkin diagrams,

where
⊗

denotes an odd isotropic simple root:

© © © ©© · · ·�

�

�

�
Tn

β× β1 β2 βn−2 βn−1

© © © ©⊗ · · ·�

�

�

�Tn
α× β3/2β1/2 βn−5/2 βn−3/2

⊗ ⊗ ⊗ ⊗⊗ · · ·�

�

�

�
˜Tn

α× α1/2 αn−1 αn−1/2α1
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The Lie superalgebras associated with these Dynkin diagrams are gl(n + 1),
gl(1|n) and gl(n|n + 1), respectively. In the limit n → ∞, the associated Lie
superalgebras are direct limits of these Lie superalgebras, and we will simply
drop ∞ to write

�

�

�

�
T = �

�

�

�
T∞ and so on.

Any of the head diagrams
�

	




�kx may be connected with the tail dia-
grams

�

�

�

�
Tn ,

�

�

�

�
Tn and

�

�

�

�
˜Tn to produce the following Dynkin diagrams

(n ∈ N ∪ {∞}):
�

�

�

�kx
�

�

�

�
Tn

�

�

�

�kx
�

�

�

�Tn

�

�

�

�kx
�

�

�

�
˜Tn (2.2)

We will denote the sets of simple roots of the above diagrams accordingly by
�

x
n, �

x

n and ˜�
x
n. For n = ∞, we also denote the sets of positive roots by �

x
+,

�
x

+ and ˜�
x
+, and the sets of roots by �x, �

x
and ˜�x, respectively.

2.2 Realization

Let us denote the 3 Dynkin diagrams of (2.2) at n = ∞ by
�

�

�

�
gx ,

�

�

�

�
g
x and�

�

�

�
g̃x . We provide a realization for the corresponding Lie superalgebras.
For m ∈ Z+ consider the following totally ordered set˜Im

· · · < 3

2
< 1 <

1

2
< −1 < −2 < · · · < −m

︸ ︷︷ ︸

m

< 0 < −m < · · · < −1
︸ ︷︷ ︸

m

<
1

2
< 1 <

3

2
< · · · .

For m ∈ Z+ define the following subsets of˜Im:

Im := {−1, . . . ,−m
︸ ︷︷ ︸

m

,0,−m, . . . ,−1
︸ ︷︷ ︸

m

} ∪ {1,2,3, . . .} ∪ {1,2,3, . . .},

Im := {−1, . . . ,−m
︸ ︷︷ ︸

m

,0,−m, . . . ,−1
︸ ︷︷ ︸

m

} ∪
{

1

2
,

3

2
,

5

2
, . . .

}

∪
{

1

2
,

3

2
,

5

2
, . . .

}

,

˜I
+
m :=

{

−m, . . . ,−1,
1

2
,1,

3

2
,2, . . .

}

.

For a subset X of˜Im, define X
× := X \ {0},X

+ := X ∩˜I
+
m.

2.2.1 General linear Lie superalgebra

For a homogeneous element v in a super vector space V = V0̄ ⊕V1̄ we denote
by |v| its Z2-degree.

For m ∈ Z+ consider the infinite dimensional super space ˜Vm over C with
ordered basis {vi |i ∈˜Im}. We declare |vr | = |vr | = 0̄, if r ∈ Z\{0}, and |vr | =
|vr | = 1̄, if r ∈ 1

2 + Z+. The parity of the vector v0 is to be specified. With
respect to this basis a linear map on ˜Vm may be identified with a complex
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matrix (ars)r,s∈˜Im . The Lie superalgebra gl(˜Vm) is the Lie subalgebra of linear
transformations on ˜Vm consisting of (ars) with ars = 0 for all but finitely
many ars ’s. Denote by Ers ∈ gl(˜Vm) the elementary matrix with 1 at the r th
row and sth column and zero elsewhere.

The vector spaces Vm and V m are defined to be subspaces of ˜Vm with
ordered basis {vi} indexed by Im and Im, respectively. The corresponding
subspaces of Vm, V m and ˜Vm with basis vectors vi , with i indexed by I

×
m,

I
×
m and˜I

×
m, respectively, are denoted by V ×

m , V
×
m and ˜V ×

m , respectively. This

gives rise to Lie superalgebras gl(Vm), gl(V m), gl(V ×
m ), gl(V

×
m) and gl(˜V ×

m ).

Let W be one of the spaces ˜Vm, ˜V ×
m ,Vm,V ×

m ,V m or V
×
m. The standard

Cartan subalgebra of gl(W) is spanned by the basis {Err}, with correspond-
ing dual basis {εr}, where r runs over the index sets˜Im,˜I×m, Im, I

×
m, Im, I

×
m,

respectively.

2.2.2 Skew-supersymmetric bilinear form on W

In this subsection we set |v0| = 1̄. For m ∈ Z+ define a non-degenerate skew-
supersymmetric bilinear form (·|·) on ˜Vm by

(vr |vs) = (vr |vs) = 0, (vr |vs) = δrs = −(−1)|vr |·|vs |(vs |vr),

r, s ∈˜I
+
m, (2.3)

(v0|v0) = 1, (v0|vr) = (v0|vr) = 0, r ∈˜I
+
m.

Restricting the form to ˜V ×
m , Vm, V ×

m , V m and V
×
m gives rise to non-degenerate

skew-supersymmetric bilinear forms that will again be denoted by (·|·).
Let W be as before. The Lie superalgebra spo(W) is the subalgebra of

gl(W) preserving the bilinear form (·|·). The standard Cartan subalgebra of
spo(W) is spanned by the basis {Er := Err − Er,r}, with corresponding dual
basis {εr}. We have realizations of the corresponding Lie superalgebras for
x = b•, c and m > 0 shown in Table 1.

The sets �x, �
x

and ˜�x give rise to the following sets of positive roots:

˜�b•
+ = {±εr − εs |r < s (r, s ∈˜I

+
m)} ∪ {−2εi (i ∈ I

+
m)} ∪ {−εr (r ∈˜I

+
m)},

˜�c+ = {±εr − εs |r < s (r, s ∈˜I
+
m)} ∪ {−2εi (i ∈ I

+
m)},

Table 1

Lie superalgebra Dynkin diagram Lie superalgebra Dynkin diagram

spo(˜Vm)

�

�

�

�
g̃b•

spo(˜V ×
m )

�

�

�

�
g̃c

spo(Vm)

�

�

�

�
gb•

spo(V ×
m )

�

�

�

�
gc

spo(V m)
�

�

�

�
gb•

spo(V
×
m)

�

�

�

�
gc
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�b•
+ = {±εi − εj |i < j (i, j ∈ I

+
m)} ∪ {−εi,−2εi (i ∈ I

+
m)},

�c+ = {±εi − εj |i < j (i, j ∈ I
+
m)} ∪ {−2εi (i ∈ I

+
m)},

�
b•
+ = {±εr − εs |r < s (r, s ∈ I

+
m)} ∪ {−2εi (−m ≤ i ≤ −1)}

∪ {−εr (r ∈ I
+
m)},

�
c

+ = {±εr − εs |r < s (r, s ∈ I
+
m)} ∪ {−2εi (−m ≤ i ≤ −1)}.

The corresponding subsets of simple roots can be read off from the corre-
sponding diagrams in (2.2) (here we recall the notation of roots α’s and β’s
from (2.1)).

2.2.3 Supersymmetric bilinear form on W

Let W be as before. In this subsection we set |v0| = 0̄. Define a supersym-
metric bilinear form (·|·) on ˜Vm by

(vr |vs) = (vr |vs) = 0, (vr |vs) = δrs = (−1)|vr |·|vs |(vs |vr),

r, s ∈˜I
+
m, (2.4)

(v0|v0) = 1, (v0|vr) = (v0|vr) = 0, r ∈˜I
+
m.

Restricting the form to ˜V ×
m , Vm, V ×

m , V m and V
×
m gives respective non-

degenerate supersymmetric bilinear forms that will also be denoted by (·|·).
The Lie superalgebra osp(W) is the subalgebra of gl(W) preserving the re-
spective bilinear form determined by (2.4). The standard Cartan subalgebra of
osp(W) is also spanned by the basis {Er := Err − Er,r}, with corresponding
dual basis {εr}. We have realizations of the corresponding Lie superalgebras
for x = b,d and m > 0 shown in Table 2. The sets �x, �

x
and ˜�x give rise to

the following sets of positive roots:

˜�b+ = {±εr − εs |r < s (r, s ∈˜I
+
m)} ∪ {−2εs (s ∈ I

+
0 )} ∪ {−εr (r ∈˜I

+
m)},

˜�d+ = {±εr − εs |r < s (r, s ∈˜I
+
m)} ∪ {−2εs (s ∈ I

+
0 )},

Table 2

Lie superalgebra Dynkin diagram Lie superalgebra Dynkin diagram

osp(˜Vm)

�

�

�

�
g̃b

osp(˜V ×
m )

�

�

�

�
g̃d

osp(Vm)
�

�

�

�
gb

osp(V ×
m )

�

�

�

�
gd

osp(V m)

�

�

�

�
gb

osp(V
×
m)

�

�

�

�
gd
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�b+ = {±εi − εj |i < j (i, j ∈ I
+
m)} ∪ {−εi (i ∈ I

+
m)},

�d+ = {±εi − εj |i < j (i, j ∈ I
+
m)},

�
b

+ = {±εr − εs |r < s (r, s ∈ I
+
m)} ∪ {−2εs (s ∈ I

+
0 )} ∪ {−εr (r ∈ I

+
m)},

�
d

+ = {±εr − εs |r < s (r, s ∈ I
+
m)} ∪ {−2εs (s ∈ I

+
0 )}.

Again, the subsets of simple roots can be read off from the corresponding
diagrams in (2.2).

2.3 The case m = 0

The Dynkin diagrams of spo(W) with a distinguished set of simple roots,
for W = ˜V0, ˜V ×

0 ,V0,V
×
0 ,V 0,V

×
0 are listed in order as follows (see also Re-

mark 2.1 below):
⊗ ⊗ ⊗ ⊗ ⊗©⇐= · · · · · ·
α1/2 α1 αr−1/2 αr αr+1/2−ε1/2

�

�

�

�g̃b•

⊗ ⊗ ⊗ ⊗ ⊗

⊗

⊗

��

��
· · · · · ·

α1 α3/2 αr−1/2 αr αr+1/2

α1/2

−ε1/2 − ε1

�

�

�

�
g̃c

© © © © ©�⇐= · · · · · ·
β1 β2 βn−1 βn βn+1−ε1

�

�

�

�gb• =
�

�

�

�g
b

© © © © ©©=⇒ · · · · · ·
β1 β2 βn−1 βn βn+1−2ε1

�

�

�

�
gc =

�

�

�

�
g
d

© © © © ©©⇐= · · · · · ·
β1/2 β3/2 βr−1 βr βr+1−ε1/2

�

�

�

�g
b• =

�

�

�

�gb

© © © © ©
©

©
��

��
· · · · · ·

β3/2 β5/2 βr−1 βr βr+1

β1/2

−ε1/2 − ε3/2

�

�

�

�
g
c =

�

�

�

�
gd

For the sake of completeness we also list the corresponding sets of positive
roots.

˜�b•
+ = {±εr − εs |r < s (r, s ∈˜I

+
0 )} ∪ {−2εi (i ∈ I

+
0 )} ∪ {−εr (r ∈˜I

+
0 )},

˜�c+ = {±εr − εs |r < s (r, s ∈˜I
+
0 )} ∪ {−2εi (i ∈ I

+
0 )},

�b•
+ = {±εi − εj |i < j (i, j ∈ I

+
0 )} ∪ {−εi,−2εi (i ∈ I

+
0 )},

�c+ = {±εi − εj |i < j (i, j ∈ I
+
0 )} ∪ {−2εi (i ∈ I

+
0 )},
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�
b•
+ = {±εr − εs |r < s (r, s ∈ I

+
0 )} ∪ {−εr (r ∈ I

+
0 )},

�
c

+ = {±εr − εs |r < s (r, s ∈ I
+
0 )}.

Remark 2.1 It is easy to see that we have the following isomorphisms
of Lie superalgebras with identical Dynkin diagrams: osp(V0) ∼= spo(V 0),
osp(V 0) ∼= spo(V0), osp(V ×

0 ) ∼= spo(V
×
0 ), osp(V

×
0 ) ∼= spo(V ×

0 ).

2.4 Central extensions

We will replace the above matrix realization of the Lie superalgebras with
Dynkin diagrams

�

�

�

�
gx ,

�

�

�

�
g
x and

�

�

�

�
g̃x by their central extensions, for

x = b,b•, c,d. These central extensions will be convenient and conceptual
for later formulation of truncation functors and super duality.

Let m ∈ Z+. Consider the central extension ̂gl(˜Vm) of gl(˜Vm) by the one-
dimensional center CK determined by the 2-cocycle

τ(A,B) := Str([J,A]B), A,B ∈ gl(˜Vm),

where J = E00 + ∑

r≤ 1
2
Err and Str denotes the supertrace. Observe that the

cocycle τ is a coboundary. Indeed, as a vector space, ̂gl(˜Vm) = gl(˜Vm)⊕CK ,
and let us denote by ̂X for X ∈ gl(˜Vm) to indicate that it is in ̂gl(˜Vm). Then the
map from ̂gl(˜Vm) to the direct sum of Lie superalgebras gl(˜Vm)⊕CK , which
sends ̂X to X′ := X − Str(JX)K, is an algebra isomorphism, i.e., [X′, Y ′] =
[X,Y ]′ + τ(X,Y )K .

For W = ˜V ×
m ,Vm,V ×

m ,V m,V
×
m the restrictions of τ to the subalgebras

gl(W) give rise to respective central extensions, which in turn induce cen-
tral extensions on osp(W) and spo(W). We denote such a central extension
of spo(W) or osp(W) by gx (respectively, g

x and g̃x) when it corresponds to
the Dynkin diagram

�

�

�

�
gx in Tables 1 and 2 (respectively,

�

�

�

�
g
x and

�

�

�

�
g̃x ).

We make a trivial yet crucial observation that gx and g
x are naturally subal-

gebras of g̃x. The standard Cartan subalgebras of gx, gx and g̃x will be denoted
by hx, h

x
and ˜hx, respectively. hx, h

x
or ˜hx has a basis {K, ̂Er} with dual ba-

sis {
0, εr} in the restricted dual (hx)∗, (h
x
)∗ or (˜hx)∗, where r runs over the

index sets I
+
m, I

+
m or˜I+m, respectively. Here 
0 is defined by letting


0(K) = 1, 
0(̂Er) = 0,

for all relevant r in each case.
In the remainder of the paper we shall drop the superscript x. For example,

we write g, g and g̃ for gx, g
x and g̃x, with associated Dynkin diagrams

�

�

�

�
g ,

�

�

�

�
g and

�

�

�

�
g̃ , respectively, where x denotes a fixed type among b,b•, c,d.
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3 Categories O, O and ˜O

In this section, we first introduce the categories O, O and ˜O of g-modules, g-
modules and g̃-modules, respectively. Then we study the truncation functors
which relate g to finite dimensional Lie superalgebras of osp type.

Let m ∈ Z+ be fixed.

3.1 The weights

We fix an arbitrary subset Y0 of �(k).
Let Y , Y and ˜Y be the union of Y0 and the subset of simple roots of

�

�

�

�
T ,

�

�

�

�T and
�

�

�

�
˜T , respectively, with the leftmost one removed. We have Y0 = ∅

for m = 0. As Y , Y and ˜Y are fixed, we will make the convention of sup-
pressing them from notations below. Set l, l and ˜l to be the standard Levi
subalgebras of g, g and g̃ corresponding to the subsets Y , Y and ˜Y , respec-
tively. The Borel subalgebras of g, g and g̃, spanned by the central element
K and upper triangular matrices, are denoted by b, b and ˜b, respectively. Let
p = l+ b, p = l+ b and p̃ =˜l+˜b be the corresponding parabolic subalgebras
with nilradicals u, u and ũ and opposite nilradicals u−, u− and ũ−, respec-
tively.

Given a partition μ = (μ1,μ2, . . .), we denote by �(μ) the length of μ and
by μ′ its conjugate partition. We also denote by θ(μ) the modified Frobenius
coordinates of μ:

θ(μ) := (θ(μ)1/2, θ(μ)1, θ(μ)3/2, θ(μ)2, . . .),

where

θ(μ)i−1/2 := max{μ′
i − i + 1,0}, θ(μ)i := max{μi − i,0}, i ∈ N.

Let λ−m, . . . , λ−1 ∈ C and λ+ be a partition. The tuple (λ−m, . . . , λ−1;λ+)

is said to satisfy a dominant condition if 〈∑−1
i=−m λiεi, hα〉 ∈ Z+ for all α ∈

Y0, where hα denotes the coroot of α. Associated to such a dominant tuple
and each d ∈ C, we define the weights (which will be called dominant)

λ :=
−1
∑

i=−m

λiεi +
∑

j∈N

λ+
j εj + d
0 ∈ h

∗, (3.1)

λ� :=
−1
∑

i=−m

λiεi +
∑

s∈ 1
2 +Z+

(λ+)′
s+ 1

2
εs + d
0 ∈ h

∗
, (3.2)

λθ :=
−1
∑

i=−m

λiεi +
∑

r∈ 1
2 N

θ(λ+)rεr + d
0 ∈˜h
∗. (3.3)
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We denote by P + ⊂ h∗, P̄ + ⊂ h
∗

and ˜P + ⊂ ˜h∗ the sets of all dominant
weights of the form (3.1), (3.2) and (3.3) for all d ∈ C, respectively. By defi-
nition we have bijective maps

� : P + −→ P̄ +, λ �→ λ�,

θ : P + −→ ˜P +, λ �→ λθ .

For μ ∈ P +, let L(l,μ) denote the highest weight irreducible l-module of
highest weight μ. We extend L(l,μ) to a p-module by letting u act trivially.
Define as usual the parabolic Verma module �(μ) and its irreducible quotient
L(μ) over g:

�(μ) := Indg
pL(l,μ), �(μ) � L(μ).

Similarly, for μ ∈ P +, we define the irreducible l-module L(l,μ�), the par-
abolic Verma g-module �(μ�) and its irreducible g-quotient L(μ�), as well
as the irreducible˜l-module L(˜l,μθ ), the parabolic Verma g̃-module ˜�(μθ)

and its irreducible g̃-quotient ˜L(μθ).

3.2 The categories O, O and ˜O

Lemma 3.1 Let μ ∈ P +.

(i) The restrictions to l of the g-modules �(μ) and L(μ) decompose into
direct sums of L(l, ν) for ν ∈ P +.

(ii) The restrictions to l of the g-modules �(μ�) and L(μ�) decompose into
direct sums of L(l, ν�) for ν ∈ P +.

(iii) The restrictions to˜l of the g̃-modules ˜�(μθ) and ˜L(μθ) decompose into
direct sums of L(˜l, νθ ) for ν ∈ P +.

Proof Part (i) is clear.
The proofs of (ii) and (iii) are analogous, and so we shall only give the

proof for (ii). The l-module u− is a direct sum of irreducible modules of
the form L(l, ν�). Now the category of l-modules that have an increasing
composition series with composition factors isomorphic to L(l, ν�), with ν ∈
P +, is a semi-simple tensor category [7, Sect. 3.2]. Thus �(μ�) ∼= U(u−) ⊗
L(l,μ�) also decomposes into a direct sum of L(l, ν�) with ν ∈ P +, and so
does its irreducible quotient L(μ�). �

Let O be the category of g-modules M such that M is a semisimple h-
module with finite dimensional weight subspaces Mγ , γ ∈ h∗, satisfying

(i) M decomposes over l into a direct sum of L(l,μ) for μ ∈ P +.
(ii) There exist finitely many weights λ1, λ2, . . . , λk ∈ P + (depending on M)

such that if γ is a weight in M , then γ ∈ λi − ∑

α∈� Z+α, for some i.
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The parabolic Verma modules �(μ) and irreducible modules L(μ) for μ ∈
P + lie in O, by Lemma 3.1. Analogously we define the categories O and
˜O of g- and g̃-modules, respectively. They also contain suitable parabolic
Verma and irreducible modules. The morphisms in O, O and ˜O are all (not
necessarily even) g-, g- and g̃-homomorphisms, respectively.

3.3 The Lie superalgebras gn, gn and g̃n of finite rank

For n ∈ N, recall the sets �n,�n, ˜�n of simple roots for the Dynkin dia-
grams (2.2). The associated Lie superalgebras gn, gn and g̃n can be iden-
tified naturally with the subalgebras of g, g and g̃ generated by K and the
root vectors of the corresponding Dynkin diagrams in (2.2), and moreover,
gn ⊂ gn+1,gn ⊂ gn+1 for all n. Observe that the gn’s (modulo the trivial
central extensions) are exactly all the finite dimensional Lie superalgebras
of osp type. Since g = ⋃

n gn, the standard Cartan subalgebra of gn equals
hn = h ∩ gn. Similarly, we use the notation hn and˜hn for the standard Cartan
subalgebras of gn and g̃n, respectively.

Recall the notation λ ∈ P +, λ�, and λθ from (3.1), (3.2) and (3.3). Given
λ ∈ P + with λ+

j = 0 for j > n, we may regard it as a weight λn ∈ h∗
n in a

natural way. Similarly, for λ ∈ P + with (λ+)′j = 0 for j > n, we regard λ� as

a weight λ
�
n ∈ h

∗
n. Finally, for λ ∈ P + with θ(λ+)j = 0 for j > n, we regard

λθ as a weight λθ
n ∈˜h∗

n. The subsets of such weights λn,λ
�
n, λ

θ
n in h∗

n, h
∗
n and

˜h∗
n will be denoted by P +

n , P̄ +
n and ˜P +

n , respectively.
The corresponding parabolic Verma and irreducible gn-modules are de-

noted by �n(μ) and Ln(μ), respectively, with μ ∈ P +
n , while the correspond-

ing category of gn-modules is denoted by On. Similarly, we introduce the
self-explanatory notations �n(μ

�), Ln(μ
�), On, and ˜�n(μ

θ), Ln(μ
θ), ˜On

for gn- and g̃n-modules, respectively.

3.4 The truncation functors

Let ∞ ≥ k > n. For M ∈ Ok , we can write M = ⊕

γ Mγ , where γ runs over

γ ∈ ∑−1
i=−m Cεi + ∑

0<j≤k Cεj + C
0. The truncation functor

tr
k
n : Ok → On

is defined by sending M to
⊕

ν Mν , summed over
∑−1

i=−m Cεi +∑

0<j≤n Cεj

+ C
0. When it is clear from the context we shall also write trn instead of
trkn. Analogously, truncation functors trkn : Ok → On and trkn : ˜Ok → ˜On are
defined.
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Lemma 3.2 Let ∞ ≥ k > n and X = L,�.

(i) For μ ∈ P +
k we have

trn
(

Xk(μ)
) =

{

Xn(μ), if 〈μ, ̂Ej 〉 = 0,∀j > n,

0, otherwise.

(ii) For μ ∈ P̄ +
k we have

trn
(

Xk(μ)
) =

{

Xn(μ), if 〈μ, ̂Ej 〉 = 0,∀j > n,

0, otherwise.

(iii) For μ ∈ ˜P +
k we have

trn
(

˜Xk(μ)
) =

{

˜Xn(μ), if 〈μ, ̂Ej 〉 = 0,∀j > n,

0, otherwise.

Proof We will show (i) only. The proofs of (ii) and (iii) are similar.
Since trkn ◦ trlk = trln, it is enough to show (i) for k = ∞. Suppose that

〈μ, ̂Ej 〉 = 0 for all j > n. Let l′ denote the standard Levi subalgebra of g

corresponding to the removal of the vertex βn of the Dynkin diagram of g.
Then l′ ∼= gn ⊕ gl(∞). Now L(μ) is the unique irreducible quotient of the
g-module obtained via parabolic induction from the l′-module Ln(μ) (where
the gn-module Ln(μ) is extended to an l′-module by a trivial action of gl(∞)).
Our choice of the Levi subalgebra and of the opposite nilradical assures that
this parabolically induced module truncates to Ln(μ). Thus its irreducible
quotient L(μ) also truncates to Ln(μ). The remaining case in (i) is clear. �

Remark 3.3 The central extensions introduced in Sect. 2.4 allow us to study,
in a uniform fashion, modules whose weights stabilize at any d ∈ C (not just
at d = 0). For example, if μ is a weight with μ(Er) = d �= 0, for r � 0,
then, without central extensions, the usual truncation functors would always
truncate an irreducible or parabolic Verma of such a highest weight to zero.
A way around central extensions is to define truncation functors depending
on each d ∈ C. This approach, although equivalent, looks less elegant.

4 The character formulas

In this section we introduce two functors T : ˜O → O and T : ˜O → O, and
then establish a fundamental property of these functors (Theorem 4.6). As a
consequence, we obtain an irreducible osp-character formula in a parabolic
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category O in terms of the KL polynomials of BCD types (Theorem 4.8 and
Remark 4.9). The Kazhdan-Lusztig polynomials in the categories O, O and
˜O in terms of Kostant u-homology groups are shown to match perfectly with
one another (Theorem 4.13).

4.1 Odd reflections

Let G be a Lie superalgebra with a Borel subalgebra B with corresponding
sets of simple and positive roots �(B) and �+(B), respectively. As usual, for
a positive root β , we let fβ denote a root vector associated to root −β .

Let α be an isotropic odd simple root in �(B) and hα be its corresponding
coroot. The set �+(Bα) := {−α} ∪ �+(B) \ {α} forms a new set of positive
roots whose corresponding set of simple roots is

�(Bα) = {β ∈ �(B)|〈β,hα〉 = 0, β �= α}
∪ {β + α|β ∈ �(B), 〈β,hα〉 �= 0} ∪ {−α}.

We shall denote by Bα the corresponding new Borel subalgebra. The process
of such a change of Borel subalgebras is referred to as odd reflection with
respect to α [24].

The following simple and fundamental lemma for odd reflections has been
used by many authors (cf. e.g. [21]).

Lemma 4.1 Let L be a simple G -module of B-highest weight λ and let v be
a B-highest weight vector. Let α be a simple isotropic odd root in �(B).

(1) If 〈λ,hα〉 = 0, then L is a G -module of Bα-highest weight λ and v is a
Bα-highest weight vector.

(2) If 〈λ,hα〉 �= 0, then L is a G -module of Bα-highest weight λ − α and fαv

is a Bα-highest weight vector.

4.2 The Borel subalgebras˜bc(n) and˜bs(n)

Fix n ∈ N. Starting with the third Dynkin diagram in (2.2) associated to g̃,
we apply the following sequence of n(n+1)

2 odd reflections. First we apply
one odd reflection corresponding to α1/2, then we apply two odd reflections
corresponding to α3/2 and α1/2 + α1 + α3/2. After that we apply three odd
reflections corresponding to α5/2, α3/2 + α2 + α5/2, and α1/2 + α1 + α3/2 +
α2 + α5/2, et cetera, until finally we apply n odd reflections corresponding
to αn−1/2, αn−3/2 +αn−1 +αn−1/2, . . . ,

∑2n−1
i=1 αi/2. The resulting new Borel

subalgebra for g̃ will be denoted by ˜bc(n) and its corresponding simple roots
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are listed in the following Dynkin diagram:

⊗ © © ⊗ ⊗· · · · · ·
−∑2n−1

i=1 αi/2

β1/2 βn−1/2 αn+1/2 αn+1

�

�

�

�
k

�

�

�

�
Tn

The crucial point here is that the subdiagram to the left of the first
⊗

is the
Dynkin diagram of gn.

On the other hand, starting with the third Dynkin diagram in (2.2) as-
sociated to g̃, we apply the following new sequence of n(n+1)

2 odd reflec-
tions. First we apply one odd reflection corresponding to α1, then we ap-
ply two odd reflections corresponding to α2 and α1 + α3/2 + α2. After that
we apply three odd reflections corresponding to α3, α2 + α5/2 + α3, and
α1 + α3/2 + α2 + α5/2 + α3, et cetera, until finally we apply n odd reflec-
tions corresponding to αn,αn−1 +αn−1/2 +αn, . . . ,

∑2n
i=2 αi/2. The resulting

new Borel subalgebra for g̃ will be denoted by ˜bs(n) and its corresponding
simple roots are listed in the following Dynkin diagram:

⊗ © © ⊗ ⊗· · · · · ·
−∑2n

i=2 αi/2

β1 βn αn+1 αn+3/2

�

�

�

�
k

�

�

�

�Tn+1

We remark that the subdiagram to the left of the odd simple root −∑2n
i=2 αi/2

above becomes the Dynkin diagram of gn+1.

4.3 Highest weights with respect to˜bc(n) and˜bs(n)

Recall the standard Levi subalgebra˜l of g̃ with (opposite) nilradical ũ and ũ−
(see Sect. 3.1).

Lemma 4.2 The sequences of odd reflections in Sect. 4.2 leave the sets of
roots of ũ and ũ− invariant.

Proof This follows from the fact that the simple roots used in the sequences
of odd reflections in Sect. 4.2 are all roots of˜l. �

We denote by ˜bc
˜l
(n) and ˜bs

˜l
(n) the Borel subalgebras of˜l corresponding

to the sets of simple roots ˜�c(n) ∩ ∑

α∈˜Y Zα and ˜�s(n) ∩ ∑

α∈˜Y Zα, re-
spectively. The sequences of odd reflections in Sect. 4.2 only affect the tail
diagram

�

�

�

�
˜T and leaves the head diagram

�

�

�

�k invariant. Since the tail dia-
gram is of type A, the proofs of [9, Lemma 3.2] and [9, Corollary 3.3] can be
adapted in a straightforward way to prove the following (where Lemma 4.2 is
used).
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Proposition 4.3 Let λ ∈ P + and n ∈ N.

(i) Suppose that �(λ+) ≤ n. Then the highest weight of L(˜l, λθ ) with respect
to the Borel subalgebra ˜bc

˜l
(n) is λ. Furthermore, ˜�(λθ) and ˜L(λθ ) are

highest weight g̃-modules of highest weight λ with respect to the new
Borel subalgebra˜bc(n).

(ii) Suppose that �(λ′+) ≤ n. Then the highest weight of L(˜l, λθ ) with respect
to the Borel subalgebra ˜bs

˜l
(n) is λ�. Furthermore, ˜�(λθ) and ˜L(λθ) are

highest weight g̃-modules of highest weight λ� with respect to the new
Borel subalgebra˜bs(n).

4.4 The functors T and T

By definition, g and g are naturally subalgebras of g̃, l and l are subalgebras
of˜l, while h and h are subalgebras of ˜h. Also, we may regard h∗ ⊂˜h∗ and
h

∗ ⊂˜h∗.
Given a semisimple ˜h-module ˜M = ⊕

γ∈˜h∗ ˜Mγ , we define

T ( ˜M) :=
⊕

γ∈h∗
˜Mγ , and T ( ˜M) :=

⊕

γ∈h
∗

˜Mγ .

Note that T ( ˜M) is an h-submodule of the ˜M , and T ( ˜M) is an h-submodule
of ˜M . One checks that if ˜M = ⊕

γ∈˜h∗ ˜Mγ is an˜l-module, then T ( ˜M) is an

l-submodule of ˜M and T ( ˜M) is an l-submodule of ˜M . Furthermore, if ˜M =
⊕

γ∈˜h∗ ˜Mγ is a g̃-module, then T ( ˜M) is a g-submodule of ˜M and T ( ˜M) is a

g-submodule of ˜M .
The direct sum decomposition in ˜M gives rise to the natural projections

T
˜M : ˜M −−−→ T ( ˜M) and T

˜M : ˜M −−−→ T ( ˜M)

that are h- and h-module homomorphisms, respectively. If ˜f : ˜M → ˜N is an
˜h-homomorphism, then the following induced maps

T [ ˜f ] : T ( ˜M) −−−→ T (˜N) and T [ ˜f ] : T ( ˜M) −−−→ T (˜N)

are also h- and h-module homomorphisms, respectively. Also if ˜f : ˜M → ˜N

is a g̃-homomorphism, then T
˜M and T [ ˜f ] (respectively, T

˜M and T [ ˜f ]) are g-
(respectively, g-) homomorphisms.

Lemma 4.4 For λ ∈ P +, we have T (L(˜l, λθ )) = L(l, λ), and T (L(˜l, λθ )) =
L(l, λ�).
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Proof We shall prove the first formula using a character argument, and the
second one can be proved similarly.

Associated to partitions ν ⊂ λ, we denote by sλ(x1, x2, . . .) and
sλ/ν(x1, x2, . . .) the Schur and skew Schur functions in the variables x1,

x2, . . .. The hook Schur functions associated to λ is defined to be (cf. [4, 30])

hsλ(x1/2, x1, x3/2, x2, . . .) :=
∑

μ⊂λ

sμ(x1/2, x3/2, . . .)sλ′/μ′(x1, x2, . . .). (4.1)

For a dominant tuple (λ−m, . . . , λ−1;λ+), we have (cf. [7])

chL(˜l, λθ ) = chL(˜l ∩ k, λ|k)hsλ′+(x1/2, x1, x3/2, x2, . . .). (4.2)

Here xr := eεr for each r , and L(˜l∩k, λ|k) denotes the irreducible˜l∩k-module
of highest weight λ|k = ∑−1

i=−m λiεi . Note that˜l ∩ k = l ∩ k.
As an l-module, L(˜l, λθ ) is completely reducible. On the character level,

applying T to L(˜l, λθ ) corresponds to setting x1/2, x3/2, x5/2, . . . in the char-
acter formula (4.2) to zero. By (4.1), T (L(l, λθ )) is an l-module with charac-
ter chL(˜l ∩ k, λ|k) sλ+(x1, x2, . . .), which is precisely the character of L(l, λ).
This proves the formula. �

Corollary 4.5 T and T define exact functors from ˜O to O and from ˜O to O,
respectively.

The following theorem can be regarded as a weak version of the super
duality which is to be established in Theorem 5.4.

Theorem 4.6 Let λ ∈ P +. If ˜M is a highest weight g̃-module of highest
weight λθ , then T ( ˜M) and T ( ˜M) are highest weight g- and g-modules of
highest weights λ and λ�, respectively. Furthermore, we have

T
(

˜�(λθ)
) = �(λ), T

(

˜L(λθ )
) = L(λ);

T
(

˜�(λθ)
) = �(λ�), T

(

˜L(λθ )
) = L(λ�).

Proof We will prove only the statements involving T , and the statements
involving T can be proved in the same way.

By Proposition 4.3, ˜M contains a˜bc(n)-highest weight vector vλ of highest
weight λ for n � 0. The vector vλ clearly lies in T ( ˜M), and it is a b-singular
vector since b = g ∩˜bc(n). Now T ( ˜M) is completely reducible over l with
all highest weights of its irreducible summands lying in P +. Thus to show
that T ( ˜M) is a highest weight g-module it remains to show that any vector
in T ( ˜M) of weight in P + is contained in U(g)vλ. This follows by the same
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argument in [9, Lemma 3.5], which only relies on the A-type tail diagram
of g̃.

Let us write �(λ) = U(u−) ⊗C L(l, λ) and ˜�(λθ) = U(̃u−) ⊗C L(˜l, λθ ).
We observe that all the weights in U(u−), L(l, λ), U(̃u−), and L(˜l, λθ ) are
of the form

∑

j<0 aj εj + ∑

r>0 brεr with br ∈ Z+. Since also T (U(̃u−)) =
U(u−), it follows by Lemma 4.4 that chT (˜�(λθ)) = ch�(λ). Since T (˜�(λθ))

is a highest weight module of highest weight λ, we have T (˜�(λθ)) = �(λ).
To show that T sends irreducibles to irreducibles we show that T (˜L(λθ ))

has no singular vector apart from the scalar multiples of a highest weight
vector. We argue by assuming otherwise and derive a contradiction. If we
have another singular vector of weight different from λ, then we can show,
following the second part of the proof of [9, Theorem 3.6], that we also have
a singular vector in ˜L(λθ ) of weight different from λθ . The argument there is
applicable here, since it again only depends on the tail diagram, which is of
type A. �

Remark 4.7 It can be shown that tilting modules exist in categories O, O, ˜O
(cf. [10, 11] for type A) and that the functors T and T respect the tilting
modules. We choose not to develop the details in order to keep the paper to a
reasonable length.

By standard arguments Theorem 4.6 implies the following character for-
mula.

Theorem 4.8 Let λ ∈ P +, and write chL(λ) = ∑

μ∈P + aμλ ch�(μ), aμλ ∈ Z.
Then

(i) chL(λ�) = ∑

μ∈P + aμλ ch�(μ�),
(ii) ch˜L(λθ ) = ∑

μ∈P + aμλ ch ˜�(μθ).

Remark 4.9 The transition matrix (aμλ) in Theorem 4.8 is known according
to the Kazhdan-Lusztig theory. This is because the Kazhdan-Lusztig poly-
nomials in the BGG category O also determine the composition factors of
generalized Verma modules in the corresponding parabolic subcategory (see
e.g. [29, p. 445 and Proposition 7.5]). Hence Theorem 4.8 and Lemma 3.2
provide a complete solution to the irreducible character problem in the cate-
gory On for the ortho-symplectic Lie superalgebras.

4.5 Kostant type homology formula

For a precise definition of homology groups of Lie superalgebras with coef-
ficients in a module and a precise formula for the boundary operator we refer
the reader to [9, Sect. 4] or [33].
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For ˜M ∈ ˜O we denote by M = T ( ˜M) ∈ O and M = T ( ˜M) ∈ O. Fur-
thermore let ˜d : 
(̃u−) ⊗ ˜M → 
(̃u−) ⊗ ˜M be the boundary operator of
the complex of ũ−-homology groups with coefficients in ˜M , regarded as a
ũ−-module. The map ˜d is an ˜l-module homomorphism and hence the ho-
mology groups Hn(̃u−, ˜M) are˜l-modules, for n ∈ Z+. Accordingly we let
d : 
(u−) ⊗ M → 
(u−) ⊗ M and d : 
(u−) ⊗ M → 
(u−) ⊗ M stand
for the boundary operator of the complex of u−-homology with coefficients
in M and the boundary operator of the complex of u−-homology with coef-
ficients in M , respectively. Similarly, d and d are l- and l-homomorphisms,
respectively.

Lemma 4.10 For ˜M ∈ ˜O and λ ∈ P +, we have

(i) T (
(̃u−)⊗ ˜M) = 
(u−)⊗M , and thus T (
(̃u−)⊗˜L(λθ )) = 
(u−)⊗
L(λ). Moreover, T [˜d] = d .

(ii) T (
(̃u−)⊗ ˜M) = 
(u−)⊗M , and thus T (
(̃u−)⊗˜L(λθ )) = 
(u−)⊗
L(λ�). Moreover, T [˜d] = d .

Proof We will prove (i) only. It follows by definition of T and ũ− that
T (
(̃u−)) = 
(u−). Now, since all modules involved have weights of the
form

∑

i<0 aiεi +∑

r>0 brεr with br ∈ Z+, it follows that T (
(̃u−)⊗ ˜M) and

(u−) ⊗ M have the same character. Complete reducibility of the l-modules
T (
(̃u−) ⊗ ˜M) and 
(u−) ⊗ M implies that T (
(̃u−) ⊗ ˜M) = 
(u−) ⊗ M

as l-modules. Theorem 4.6 completes the proof of the first part of (i).
The second part of (i) follows from the definitions of ˜d and d (see e.g.

[9, (4.1)]). �

By Lemma 4.10 we have the following commutative diagram.

· · · ˜d−−−−→ 
n+1(̃u−) ⊗ ˜M
˜d−−−−→ 
n(̃u−) ⊗ ˜M

˜d−−−−→ 
n−1(̃u−) ⊗ ˜M · · ·
⏐

⏐

�

T

n+1 (̃u−)⊗ ˜M

⏐

⏐

�

T
n(̃u−)⊗ ˜M

⏐

⏐

�

T

n−1 (̃u−)⊗ ˜M

· · · d−−−−→ 
n+1(u−) ⊗ M
d−−−−→ 
n(u−) ⊗ M

d−−−−→ 
n−1(u−) ⊗ M · · ·
(4.3)

Thus T induces an l-homomorphism from Hn(̃u−; ˜M) to Hn(u−;M). Simi-
larly, T induces an l-homomorphism from Hn(̃u−; ˜M) to Hn(u−;M).

As an ˜l-module, 
(̃u−) is a direct sum of L(˜l,μθ), μ ∈ P +, each
appearing with finite multiplicity [7, Sect. 3.2.3]. By [7, Theorem 3.2],

(̃u−) ⊗ ˜M as an˜l-module is completely reducible. Write 
(̃u−) ⊗ ˜M ∼=
⊕

μ∈P + L(˜l,μθ)m(μ) as ˜l-modules. It follows by Lemmas 4.4 and 4.10

that 
(u−) ⊗ M ∼= ⊕

μ∈P + L(l,μ)m(μ), as l-modules. Similarly, 
(u−) ⊗



Super duality and ortho-symplectic Lie superalgebras

M ∼= ⊕

μ∈P + L(l,μ�)m(μ), as l-modules. The commutativity of (4.3) and
Lemma 4.10 now allow us to adapt the proof of [9, Theorem 4.4] to prove
the following.

Theorem 4.11 We have for n ≥ 0

(i) T (Hn(̃u−; ˜M)) ∼= Hn(u−;M), as l-modules.
(ii) T (Hn(̃u−; ˜M)) ∼= Hn(u−;M), as l-modules.

Setting ˜M = ˜L(λθ ) in Theorem 4.11 and using Theorem 4.6 we obtain the
following.

Corollary 4.12 For λ ∈ P + and n ≥ 0, we have

(i) T (Hn(̃u−;˜L(λθ ))) ∼= Hn(u−;L(λ)), as l-modules.
(ii) T (Hn(̃u−;˜L(λθ ))) ∼= Hn(u−;L(λ�)), as l-modules.

We define parabolic Kazhdan-Lusztig polynomials in the categories O, O
and ˜O for μ,λ ∈ P + by letting

�μλ(q) :=
∞
∑

n=0

dimC

(

Homl

[

L(l,μ),Hn

(

u−;L(λ)
)]

)

(−q)−n,

�μ�λ�(q) :=
∞
∑

n=0

dimC

(

Hom
l

[

L(l,μ�),Hn

(

u−;L(λ�)
)]

)

(−q)−n,

˜�μθλθ (q) :=
∞
∑

n=0

dimC

(

Hom̃l

[

L(˜l,μθ ),Hn

(

ũ−;L(λθ)
)]

)

(−q)−n.

By Vogan’s homological interpretation of the Kazhdan-Lusztig polynomi-
als [34, Conjecture 3.4] and the Kazhdan-Lusztig conjectures [22], proved in
[1, 3], �μλ(q) coincides with the original definition and moreover �μλ(1) =
aμλ (cf. Theorem 4.8). The following reformulation of Corollary 4.12 is a
generalization of Theorem 4.8.

Theorem 4.13 For λ,μ ∈ P + we have �μλ(q) = ˜�μθλθ (q) = �μ�λ�(q).

5 Equivalences of categories

5.1 Some preliminary results

The following is standard (see, for example, [23, Lemma 2.1.10]).
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Proposition 5.1 Let M ∈ O. Then there exists a (possibly infinite) increasing
filtration 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · of g-modules such that

(i)
⋃

i≥0 Mi = M ,
(ii) Mi/Mi−1 is a highest weight module of highest weight νi with νi ∈ P +,

for i ≥ 1.
(iii) The condition νi − νj ∈ ∑

α∈� Z+α implies that i < j .
(iv) For any weight μ of M , there exists an r ∈ N such that (M/Mr)μ = 0.

Similar statements hold for M ∈ O and ˜M ∈ ˜O.

Let ˜Of denote the full subcategory of ˜O consisting of finitely generated

U(̃g)-modules. The categories Of
and Of are defined in a similar fashion.

Proposition 5.1 implies the following.

Proposition 5.2 Let M ∈ O. Then M ∈ Of if and only if there exists a finite
increasing filtration 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mk = M of g-modules such
that Mi/Mi−1 is a highest weight module of highest weight νi with νi ∈ P +,
for 1 ≤ i ≤ k. Similar statements hold for M ∈ O and ˜M ∈ ˜O.

The following proposition is the converse to Theorem 4.6.

Proposition 5.3

(i) If V (λ) is a highest weight g-module of highest weight λ ∈ P +, then
there is a highest weight g̃-module ˜V (λθ ) of highest weight λθ such that
T (˜V (λθ )) = V (λ).

(ii) If V (λ�) is a highest weight g-module of highest weight λ� with λ ∈
P +, then there is a g̃-module ˜V (λθ ) of highest weight λθ such that
T (˜V (λθ )) = V (λ�).

Proof We shall only prove (i), as (ii) is similar. We let W be the kernel of
the natural projection from the �(λ) to V (λ). Now Theorem 4.6 says that
T (˜�(λθ)) = �(λ). Thus, by the exactness of functor T , it suffices to prove
that W lifts to a submodule ˜W of ˜�(λθ) such that T ( ˜W) = W .

There is an increasing filtration 0 = W0 ⊂ W1 ⊂ W2 ⊂ · · · of g-modules
for W satisfying the properties of Proposition 5.1. For each i > 0, let vi

be a weight vector in Wi such that vi + Wi−1 is a non-zero highest weight
vector of Wi/Wi−1. Observe that ˜�(λθ) = ⊕

μ∈P + L(˜l,μθ)m(μ) and �(λ) =
⊕

μ∈P + L(l,μ)m(μ) are completely reducible˜l- and l-modules, respectively.

Then, for each i > 0, there is a highest weight vector ṽi of the˜l-module U(˜l)vi

with respect to the Borel subalgebra˜b∩˜l. Let ˜Wi be the submodule of ˜�(λθ)

generated by ṽ1, ṽ2, . . . , ṽi and set ˜W0 = 0. It is easy to see ṽi is a highest
weight vector of the g̃-module ˜Wi/ ˜Wi−1. Let ˜W = ⋃

i≥1
˜Wi . It is clear that
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T ( ˜Wi/ ˜Wi−1) ∼= Wi/Wi−1 for all i. This implies T ( ˜Wi) = Wi for all i and
hence T ( ˜W) = W . �

5.2 The categories ˜Of,0̄ and Of,0̄

Define an equivalence relation ∼ on ˜h∗ by letting μ ∼ ν if and only if μ − ν

lies in the root lattice Z˜� of g̃. For each such equivalence class [μ], fix a
representative [μ]o ∈˜h∗ and declare [μ]o to have Z2-grading 0̄. For ε = 0̄, 1̄,
set (cf. [5, §4-e] and [9, Sect. 2.5] for type A)

˜h
∗
ε =

{

μ ∈˜h
∗
∣

∣

∣

∣

∑

r∈1/2+Z+
(μ − [μ]o)(̂Er) ≡ ε (mod 2)

}

, for x = b, c,d,

˜h
∗
ε =

{

μ ∈˜h
∗
∣

∣

∣

∣

m
∑

i=1

(μ − [μ]o)(̂E−i ) +
∑

r∈N

(μ − [μ]o)(̂Er) ≡ ε (mod 2)

}

,

for x = b
•.

Recall that ˜V ∈ ˜O is a semisimple ˜h-module with ˜V = ⊕

γ∈˜h∗ ˜Vγ . Then ˜V

acquires a natural Z2-grading ˜V = ˜V0̄ ⊕ ˜V1̄ given by

˜Vε :=
⊕

μ∈˜h∗
ε

˜Vμ, ε = 0̄, 1̄, (5.1)

which is compatible with the Z2-grading on g̃.
We define ˜O0̄ and ˜Of,0̄ to be the full subcategories of ˜O and ˜Of , respec-

tively, consisting of objects with Z2-gradation given by (5.1). Note that the
morphisms in ˜O0̄ and ˜Of,0̄ are of degree 0̄. For ˜M ∈ ˜O, let ̂

˜M ∈ ˜O0̄ denote
the g̃-module ˜M equipped with the Z2-gradation given by (5.1). It is clear that
̂
˜M is isomorphic to ˜M in ˜O. Thus ˜O and ˜O0̄ have isomorphic skeletons and
hence they are equivalent categories. Similarly, ˜Of and ˜Of,0̄ are equivalent
categories.

Analogously define O0̄, Of,0̄, O0̄
and Of,0̄

to be the respective full subcat-

egories of O, Of , O and Of
consisting of objects with Z2-gradation given

by (5.1). Similarly, O0̄ ∼= O, O0̄ ∼= O, and also Of,0̄ ∼= Of , Of,0̄ ∼= Of
. (In

case of O and Of , these remarks are trivial except for the type b• which
corresponds to a Lie superalgebra.)

5.3 Equivalence of the categories

Recall the functors T and T from Sect. 4.4. The following is the main result
of this section.
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Theorem 5.4

(i) T : ˜O → O is an equivalence of categories.
(ii) T : ˜O → O is an equivalence of categories.

Hence, the categories O and O are equivalent.

Since O0̄ ∼= O and ˜O0̄ ∼= ˜O it is enough to prove Theorem 5.4 for O0̄

and ˜O0̄. In order to keep notation simple we will from now on drop the su-

perscript 0̄ and use O, ˜O, Of
and ˜Of to denote the respective categories

O0̄
, ˜O0̄, Of,0̄

and ˜Of,0̄ for the remainder of Sect. 5. Henceforth, when we
write ˜�(λθ),˜L(λθ ) ∈ ˜Of , λ ∈ P +, we will mean the corresponding modules
equipped with the Z2-gradation (5.1). Similar convention applies to �(λ�)

and L(λ�).
For M,N ∈ O and i ∈ N the ith extension group ExtiO(M,N) can be

understood in the sense of Baer-Yoneda (see e.g. [25, Chap. VII]) and
Ext0O(M,N) := HomO(M,N). In a similar way extensions in O and ˜O are
interpreted. From this viewpoint the exact functors T and T induce natural
maps on extensions by taking the projection of the corresponding exact se-
quences.

Theorem 5.5 We have the following.

(i) T : ˜Of → Of is an equivalence of categories.

(ii) T : ˜Of → Of
is an equivalence of categories.

(iii) The categories Of and Of
are equivalent.

Theorem 5.5 can be proved following a similar strategy as the one used
to prove [9, Theorem 5.1]. To avoid repeating similar arguments at great
length we will just point out the main differences between their proofs. In
[9, Sect. 5] the main point is to prove that the functor T induces isomor-
phisms Hom

˜O( ˜M, ˜N) ∼= HomO(M,N) and Ext1
˜O(˜L, ˜N) ∼= Ext1O(L,N), for

˜L irreducible, and ˜M, ˜N having finite composition series. From this [9, The-
orem 5.1] is derived easily. As the isomorphism of the Hom spaces imply the
isomorphism of the Ext1 spaces [9, Lemma 5.12], we are reduced to establish
the isomorphism of the Hom spaces. To prove the isomorphism of the Hom
spaces therein, the idea is to prove this isomorphism first for ˜M irreducible,
and then to use induction on the length of the composition series of ˜M to
establish the general case.

Now, thanks to Proposition 5.3, we can proceed similarly as in [9, Sect. 5]
to prove Theorem 5.5. For this purpose we replace ˜L by a highest weight
module, and ˜M and ˜N by finitely generated modules. As finitely generated
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modules possess finite filtrations whose subquotients are highest weight mod-
ules (cf. Proposition 5.2), we can now borrow the same type of induction ar-
guments from [9], now inducting on the length of such a filtration instead of
the length of a composition series. Therefore, the proof of the isomorphisms
is again reduced to a special case, namely when ˜M is a highest weight mod-
ule. This case can then be proved using similar arguments as the ones given
in the proof of [9, Lemmas 5.8]. The case of T is completely analogous.

Having Theorem 5.5 at our disposal we can now prove Theorem 5.4.

Proof of Theorem 5.4 Since the proofs of (i) and (ii) are similar, we shall
only prove (i). (iii) follows from (i) and (ii). For every M ∈ O, there is an
increasing filtration 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · of g-modules for M with Mi ∈
Of satisfying the properties of Proposition 5.1. The filtration {Mi} of M lifts
to a filtration { ˜Mi} with ˜Mi ∈ ˜Of such that T ( ˜Mi) ∼= Mi by Theorem 5.5. It
is clear that we have ˜M := ⋃

i≥0
˜Mi ∈ ˜O and T ( ˜M) ∼= M .

It is well known that a full and faithful functor F : C �→ C′, satisfying the
property that for every M ′ ∈ C′ there exists M ∈ C with F(M) ∼= M ′, is an
equivalence of categories (see e.g. [26, Proposition 1.5.2]).

Therefore it remains to show that T is full and faithful. By Proposition 5.1,
for ˜M ∈ ˜O, we may choose an increasing filtration of g̃-modules 0 = ˜M0 ⊂
˜M1 ⊂ ˜M2 ⊂ · · · such that

⋃

i≥0
˜Mi = ˜M and ˜Mi/ ˜Mi−1 is a highest weight

module of highest weight νθ
i with νi ∈ P +, for i ≥ 1. Then the direct limit

of ˜Mi is lim−→ ˜Mi
∼= ˜M and Hom

˜O( ˜M, ˜N) ∼= lim←−Hom
˜O( ˜Mi, ˜N) for every ˜N ∈

˜O. Similarly we have lim−→Mi
∼= M and HomO(M,N) ∼= lim←−HomO(Mi,N)

for N = T (˜N). Furthermore, we have the following commutative diagram
(where ϕ = lim←−T

˜Mi,˜N
):

Hom
˜O
(

˜M, ˜N
) ∼=−−−→ lim←−Hom

˜O
(

˜Mi, ˜N
)

⏐

⏐

�

T
˜M,˜N

⏐

⏐

�

ϕ

HomO
(

M,N
) ∼=−−−→ lim←−HomO

(

Mi,N
)

Using a similar argument as the one given in [9, Lemma 5.10], where we
replace the induction on the length of composition series therein by induction
on the length of finite increasing filtration 0 = ˜M0 ⊂ ˜M1 ⊂ ˜M2 ⊂ · · · ⊂ ˜Mi ,
we show that T

˜Mi,˜N
: Hom

˜O( ˜Mi, ˜N) → HomO(Mi,N) are isomorphisms for
each i. Therefore ϕ is an isomorphism and hence T

˜M,˜N is an isomorphism.
This completes the proof. �
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6 Finite dimensional representations

The main purpose of this section is to determine the extremal weights of finite
dimensional irreducible modules over the ortho-symplectic Lie superalgebras
with integral highest weights. It follows that all such finite dimensional ir-
reducible modules for the ortho-symplectic Lie superalgebras are in the cat-
egory On. We note that the finite dimensional irreducible modules of non-
integral highest weights are typical and so their characters are known [20,
Theorem 1].

6.1 Extremal weights for osp(2m + 1|2n)

Let us denote the weights of the natural osp(2m+1|2n)-module C
2n|2m+1 by

±δi,0,±ε̄j for 1 ≤ i ≤ n,1 ≤ j ≤ m. We call a weight integral, if it lies in
Z-span of the δi’s and εj ’s. The standard Borel subalgebra Bst of osp(2m +
1|2n) is the one associated to the following set of simple roots

© © · · · © ⊗ © · · · © ©=⇒
δ1 − δ2 δ2 − δ3 δn−1 − δn

δn − ε̄1

ε̄1 − ε̄2 ε̄m−1 − ε̄m ε̄m

An arbitrary Dynkin diagram for osp(2m + 1|2n) always has a type A end
while the other end is a short (even or odd) root. Starting from the type A

end, the simple roots for a Borel subalgebra B of osp(2m + 1|2n) give rise to
a sequence of d1 δ’s, e1 ε̄’s, d2 δ’s, e2 ε̄’s, . . . , dr δ’s, er ε̄’s and sequences
of ±1’s: (ξi)1≤i≤n ∪ (ηj )1≤j≤m (all the di and ej are positive except possibly
d1 = 0 or er = 0). Note that a Dynkin diagram contains a short odd root
exactly when er = 0. Let

du =
u

∑

a=1

da, eu =
u

∑

a=1

ea

for u = 1, . . . , r , and let d0 = e0 = 0. Note dr = n,er = m. More precisely,
there exist a permutation s of {1, . . . , n} and a permutation t of {1, . . . ,m}, so
that the simple roots for B are given by

ξiδs(i) − ξi+1δs(i+1), 1 ≤ i ≤ n, i �∈ {du|u = 1, . . . , r};
ηj ε̄t (j) − ηj+1ε̄t (j+1), 1 ≤ j ≤ m, j �∈ {eu|u = 1, . . . , r};

ξduδs(du) − η1+eu−1 ε̄t (1+eu−1), for 1 ≤ u ≤ r if er > 0

(or 1 ≤ u < r if er = 0);
ηeu ε̄t (eu) − ξ1+duδs(1+du), u = 1, . . . , r − 1;

ηer ε̄t (er ), if er > 0 (or ξdr δs(dr ) if er = 0).
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Recall a partition λ = (λ1, λ2, . . .) is called an (n|m)-hook partition, if
λn+1 ≤ m (cf. [4, 30]). For such a λ, we define

λ# = (λ1, . . . , λn, ν1, . . . , νm),

where (ν1, . . . , νm) is the conjugated partition of (λn+1, λn+2, . . .).

Lemma 6.1 [20] The irreducible osp(2m + 1|2n)-module of integral highest
weight

∑n
i=1 λiδi +∑m

j=1 λj ε̄j with respect to the standard Borel subalgebra

is finite dimensional if and only if (λ1, . . . , λn, λ1, . . . , λm) = λ# for some
(n|m)-hook partition λ.

We denote by L′(osp(2m + 1|2n),λ#) these irreducible osp(2m + 1|2n)-
modules with respect to the standard Borel subalgebra, to distinguish from
earlier notation used for irreducible modules with respect to different Borel
subalgebra. Actually the finite dimensionality criterion was given in [20] in
terms of Dynkin labels, which is known to be equivalent to the more nat-
ural labeling above in terms of (n|m)-hook partitions (cf. [31]). Same remark
applies to the finite dimensionality criterion for osp(2m|2n) in Lemma 6.8
below.

Example 6.2 Suppose that the corresponding Dynkin diagram of a Borel sub-
algebra of osp(9|10) is as follows:

© ⊗ © ⊗ © ⊗ © ⊗

�=⇒
δ2 + δ1

−δ1 + ε̄1

−ε̄1 − ε̄2

ε̄2 − δ3

δ3 − δ4

δ4 − ε̄4

ε̄4 − ε̄3

ε̄3 + δ5 −δ5

We read off from the above a signed sequence with indices δ2(−δ1)(−ε̄1)ε̄2δ3
δ4ε̄4ε̄3(−δ5). In particular, we obtain a sequence δδε̄ε̄δδε̄ε̄δ by ignoring the
signs and indices. In this case, d1 = d2 = 2, d3 = 1, and e1 = e2 = 2. Fur-
thermore, the sequences (ξi)1≤i≤5 and (ηj )1≤j≤4 are (1,−1,1,1,−1) and
(−1,1,1,1), respectively.

Define the block Frobenius coordinates (pi |qj ) of an (n|m)-hook partition
λ associated to B as follows. For 1 ≤ i ≤ n,1 ≤ j ≤ m, let

pi =max{λi − eu,0}, if du < i ≤ du+1 for some 0 ≤ u ≤ r − 1,

qj =max{λ′
j − du+1,0}, if eu + 1 < j ≤ eu+1 for some 0 ≤ u ≤ r − 1.

It is elementary to read off the block Frobenius coordinates of λ from the
Young diagram of λ in general, as illustrated by the next example.

Example 6.3 Consider the (5,4)-hook diagram λ = (14,11,8,8,7,4,3,2).

The block Frobenius coordinates associated with B from Example 6.2 for λ



S.-J. Cheng et al.

← p1 →
← p2 →
← p3 →
← p4 →
← p5 →↑

↓
q1

↑
↓

↑
↓

↑
↓q2 q3 q4n = 5

m = 4

Fig. 1 Young diagram for λ in Example 6.3

is:

p1 = 14, p2 = 11, p3 = p4 = 6, p5 = 3; q1 = q2 = 6,

q3 = 3, q4 = 2.

These are read off from the Young diagram of λ by following the ε̄δ sequence
δδε̄ε̄δδε̄ε̄δ as in Fig. 1.

Theorem 6.4 Let λ be an (n|m)-hook partition. Let B be a Borel subalgebra
of osp(2m + 1|2n) and retain the above notation. Then, the B-highest weight
of the simple osp(2m + 1|2n)-module L′(osp(2m + 1|2n),λ#) is

λB :=
n

∑

i=1

ξipiδs(i) +
m

∑

j=1

ηjqj ε̄t (j).

Proof Let us consider an odd reflection that changes a Borel subalgebra B1
to B2. Assume the theorem holds for B1. We observe by Lemma 4.1 that
the statement of the theorem for B2 follows from the validity of the theorem
for B1. The statement of the theorem is apparently consistent with a change
of Borel subalgebras induced from a real reflection, and all Borel subalgebras
are linked by a sequence of real and odd reflections. Hence, once we know
the theorem holds for one particular Borel subalgebra, it holds for all. We fi-
nally note that the theorem holds for the standard Borel subalgebra Bst, which
corresponds to the sequence of n δ’s followed by m ε̄’s with all signs ξi and
ηj being positive, i.e., λBst = λ#. �
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Example 6.5 With respect to the Borel B of osp(9|10) as in Example 6.2, the
B-extremal weight of L′(osp(9|10), λ#) for λ as in Example 6.3 equals to

−11δ1 + 14δ2 + 6δ3 + 6δ4 − 3δ5 − 6ε̄1 + 6ε̄2 + 2ε̄3 + 3ε̄4.

Corollary 6.6 Every finite dimensional irreducible osp(2m + 1|2n)-module
of integral highest weight is self-contragradient.

Proof Denote by Bop the opposite Borel to the standard one Bst. It follows
by Theorem 6.4 that the Bop-extremal weight of the module L′(osp(2m +
1|2n),λ#) is −λ#. �

Recall that the following Dynkin diagram of osp(2m + 1|2n) and of its
(trivial) central extension g

b
n has been in use from the point of view of super

duality and it is opposite to the one associated to the standard Borel Bst.

© © © ⊗ © © ©⇐= · · · · · ·
−ε−m α−m α−m+1 α−1 β1/2 β3/2 βn−3/2

�



�

�
g
b
n

Setting ε̄j = ε−m+j−1 and δi = εn−i+1/2 to match the notation in this sec-
tion with the one used earlier, we have the following immediate corollary of
Lemma 6.1 and Theorem 6.4.

Corollary 6.7 An irreducible integral highest weight osp(2m + 1|2n)-
module with respect to the Borel subalgebra corresponding to

�

�

�

�
g
b
n is finite

dimensional if and only if the highest weight is of the form

−
m

∑

j=1

max{λ′
j − n,0} ε−j −

n
∑

i=1

λn−i+1εi−1/2, (6.1)

where λ = (λ1, λ2, . . .) is an (n|m)-hook partition.

6.2 Extremal weights for osp(2m|2n)

Let us denote the weights of the natural osp(2m|2n)-module C
2n|2m by

±δi,±ε̄j for 1 ≤ i ≤ n,1 ≤ j ≤ m. The standard Borel subalgebra Bst of
osp(2m|2n) is the one associated to the following set of simple roots

© © © ⊗ © ©
©

©
�
�

�
�

· · · · · ·
δ1 − δ2 δ2 − δ3 δn−1 − δn

δn − ε̄1

ε̄1 − ε̄2 ε̄m−2 − ε̄m−1

ε̄m−1 − ε̄m

ε̄m−1 + ε̄m

There are two kinds of Dynkin diagrams and corresponding Borel subal-
gebras for osp(2m|2n):
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(i) Diagrams of |-shape, i.e., Dynkin diagrams with a long simple root ±2δi .
(ii) Diagrams of �-shape, i.e., Dynkin diagrams with no long simple root.

We will follow the notation for osp(2m + 1|2n) in Sect. 6.1 for sets of
simple roots in terms of signed ε̄δ sequences, so we have permutations s, t ,
and signs ξi, ηj . We fix an ambiguity on the choice of the sign ηm associated
to a Borel B of �-shape, by demanding the total number of negative signs
among ηj (1 ≤ j ≤ m) to be always even.

Let λ be an (n|m)-hook partition, and let the block Frobenius coordinates
(pi |qj ) be as defined in Sect. 6.1. Introduce the following weights:

λB :=
n

∑

i=1

ξipiδs(i) +
m

∑

j=1

ηjqj ε̄t (j),

λB− :=
n

∑

i=1

ξipiδs(i) +
m−1
∑

j=1

ηjqj ε̄t (j) − ηmqmε̄t (m).

The weight λB− will only be used for Borel B of �-shape. Note that λBst = λ#

and we shall denote λ#− := λBst

− .
Given a Borel B of |-shape, we define s(B) to be the sign of

∏m
j=1 ηj .

Lemma 6.8 [20] The irreducible osp(2m|2n)-module of integral highest
weight of the form

∑n
i=1 μiδi +∑m

j=1 μj ε̄j with respect to the standard Borel
subalgebra is finite dimensional if and only if (μ1, . . . ,μn,μ1, . . . ,μm) is ei-
ther λ# or λ#− for some (n|m)-hook partition λ.

We shall denote these irreducible osp(2m|2n)-modules with respect to the
standard Borel by L′(osp(2m|2n),λ#) and L′(osp(2m|2n),λ#−). By a similar
argument as for Theorem 6.4, we establish the following.

Theorem 6.9 Let λ be an (n|m)-hook partition.

(1) Assume B is of �-shape. Then,
(i) λB is the B-extremal weight for the module L′(osp(2m|2n),λ#).

(ii) λB− is the B-extremal weight for the module L′(osp(2m|2n),λ#−).
(2) Assume B is of |-shape. Then,

(i) λB is the B-extremal weight for L′(osp(2m|2n),λ#) if s(B) = +.
(ii) λB is the B-extremal weight for L′(osp(2m|2n),λ#−) if s(B) = −.

Corollary 6.10 For m even, every finite dimensional irreducible osp(2m|2n)-
module of integral highest weight is self-contragradient.

Remark 6.11 The remaining B-extremal weights for the modules
L′(osp(2m|2n),λ#) when s(B) = − or for the modules L′(osp(2m|2n),λ#−)
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when s(B) = + are rather complicated and do not seem to afford a uniform
simple answer.

The following Dynkin diagram of osp(2m|2n) or g
d
n that has been in use

for super duality is opposite to the standard Borel Bst.

©

©
© © ⊗ © ©

�
�

�
� · · · · · ·

−ε−m − ε−m+1

α−m

α−m+1 α−2 α−1 β1/2 βn−3/2

�

�

�

�
g
d
n

Setting ε̄j = ε−m+j−1 and δi = εn−i+1/2 to match notations, we record the
following corollary of Lemma 6.8 and Theorem 6.9.

Corollary 6.12 An irreducible integral highest weight osp(2m|2n)-module
with respect to the Borel subalgebra corresponding to

�

�

�

�
g
d
n is finite dimen-

sional if and only if the highest weight is of the form

±max{λ′
m −n,0} ε−m −

m−1
∑

j=1

max{λ′
j −n,0} ε−j −

n
∑

i=1

λn−i+1εi−1/2, (6.2)

where λ = (λ1, λ2, . . .) is an (n|m)-hook partition.

Remark 6.13 From Corollaries 6.7 and 6.12 it follows that, after passing to
the central extension gn on which the center K acts as a scalar multiplica-
tion by d ∈ Z, the weights in (6.1) and (6.2) lie in P̄ +

n whenever d ≤ −λ1.
Hence, Theorem 4.8 and Lemma 3.2 provide a complete solution to the fi-
nite dimensional irreducible character problem for the ortho-symplectic Lie
superalgebras.

Remark 6.14 Recall [4, 30] that finite dimensional irreducible polynomial
gl(n|m)-modules are exactly the highest weight modules L′(gl(n|m),λ#)

with respect to the standard Borel subalgebra parametrized by (n|m)-hook
partitions λ. One can assign to any Borel subalgebra B of gl(n|m) an ε̄δ

sequence as in Sect. 6.1, but now with ξi = ηj = 1, for all i, j . By the
same argument as for Theorem 6.4, we can show that the highest weights
of the polynomial representations of gl(n|m) with respect to B is given by
λB = ∑n

i=1 piδs(i) + ∑m
j=1 qj ε̄t (j).

6.3 Super duality based on opposite Dynkin diagrams

By flipping from the left to right the Dynkin diagram of
�

�

�

�kx and changing all
the simple roots therein to their opposites, we obtain a Dynkin diagram

�

�

�

�
okx
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corresponding to the opposite Borel subalgebras, where x = b,b•, c,d. Sim-
ilarly, by flipping the Dynkin diagrams

�

�

�

�
Tn ,

�

�

�

�
Tn and

�

�

�

�
˜Tn and changing

all signs of the simple roots for n ∈ N ∪ {∞}, we obtain the Dynkin diagrams
�

�

�

�

oTn ,
�

�

�

�
oTn and

�

�

�

�
o
˜Tn , respectively, of the opposite Borel subalgebras. We

form the diagrams corresponding to the Borel subalgebras opposite to (2.2)
as follows:

�

�

�

�

oTn

�

�

�

�
okx

�

�

�

�
oTn

�

�

�

�
okx

�

�

�

�
o
˜Tn

�

�

�

�
okx

The corresponding Lie superalgebras are again g, g and g̃, respectively.
The arguments in Sects. 3 and 4 can be adapted easily to allow us to

compare correspondingly defined parabolic categories oO, oO and o
˜O us-

ing these opposite Borel subalgebras, whose precise definitions are evident.
We note that for the corresponding set of weights oP + of the form

m
∑

i=1

λiε−i −
∑

j∈N

λ+
j εj + d
0, d ∈ C,

to satisfy the corresponding dominant condition we require, besides the ob-
vious dominant condition on the standard Levi subalgebra of

�

�

�

�
okx , also that

λ+ = (λ+
1 , λ+

2 , . . .) is a partition. This allows us to prove an analogous version
of Theorem 4.8 and thus to compute irreducible characters of Lie superalge-
bras in terms of irreducible characters of Lie algebras. Also the results in
Sects. 4.5 and 5 have fairly straightforward analogues in oO, oO and o

˜O as
well. In particular, we can prove equivalences of the corresponding finitely
generated module subcategories following the strategy of Sect. 5.

Besides of its own interest, another virtue of this opposite version of su-
per duality lies in the ease of calculation of finite dimensional irreducible
characters of modules over the finite dimensional ortho-symplectic Lie su-
peralgebras. As the highest weight modules over g in this setup already have
highest weights over the standard Borel subalgebras, the knowledge of ex-
tremal weights for finite dimensional irreducible modules is no longer needed
to imply that solution of the irreducible character problem in the category oO
and oOn also solves the finite dimensional irreducible character problem.
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