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SUPER EFFICIENCY IN VECTOR OPTIMIZATION

J. M. BORWEIN AND D. ZHUANG

Abstract. We introduce a new concept of efficiency in vector optimization.
This concept, super efficiency, is shown to have many desirable properties. In
particular, we show that in reasonable settings the super efficient points of a set
are norm-dense in the efficient frontier. We also provide a Chebyshev charac-
terization of super efficient points for nonconvex sets and a scalarization theory
when the underlying set is convex.

0. Introduction

Decision-making problems appearing in economics, management science and
operations research require frequently that decision making be based on opti-
mizing several criteria. Vector optimization has provided an organized con-
structive approach to these problems. Throughout this note, we consider mini-
mization problems. Efficient decisions are those decisions not minorized by any
others.

As observed by Kuhn and Tucker and later Geoffrion, a subset of an efficient
decision set may not be satisfactorily characterized by a scalar minimization
problem, so the concept of proper efficiency was introduced by Kuhn-Tucker,
Geoffrion, and modified and formulated in a more general framework by Bor-
wein, Benson, Henig, and Hartley among many other authors [Kuhn 1], [Benson
1], [Borwein 1, 2, 4, 6], [Geoffrion 1], [Henig 1], [Hartley 1] and the references
therein. The motivation for introducing proper efficiency is that it enables one
to eliminate certain anomalous efficient decisions and to prove the existence of
equivalent scalar problems whose solutions produce at least most of the efficient
decisions, namely the proper ones. It has been amply demonstrated that proper
efficiency is a natural concept in vector optimization.

In this note, we introduce a new kind of proper efficiency, namely super
efficiency. Super efficiency refines the notions of efficiency and other kinds of
proper efficiency, and provides a concise (and equivalent) scalar characterization
and duality results when the underlying decision problem is convex. We also
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106 J. M. BORWEIN AND D. ZHUANG

study density results for super efficiency and a Chebyshev scalar characterization
of super efficiency.

1. Preliminaries

For the sake of simplicity, we make the following assumptions (unless specifi-
cally stated otherwise). Throughout the paper, X will always be an ordered real
normed linear space and a subset C of X is always assumed to be nonempty.
The partial ordering cone S of X is always assumed to be closed, convex
(S + S cS) and pointed, that is S D -S = {0}.

We say that the ordering cone S of X is generating if X = S — S. We
associate a dual cone with S, denoted by S+ , in X* (the norm dual of X),

S+ :={<t>eX*\(j)(s)>0, VseS}.
Then S+ is a convex cone which is closed in a(X*, X), the weak-star topology,
and S+ is pointed if S is generating.

Recall that an ordering cone is normal if (B-S)n(S-B) is bounded, and so
is a basic neighborhood. Here B is the closed unit ball of the space S1. Order
intervals are defined by

[a, b]s := {x\a <s x <s b}.
Also S+ is a strict b-cone if for some e > 0,

4>£X*,        \\<t>\\<e^4> = h-h,       A,e5+ and \\kt\\ < 1, /= 1, 2.
In a Banach space, S is normal if and only if S+ is generating and if and only
if S+ is a strict b-cone [Peressini 1].

Recall that a base of a cone S is a convex subset 6 of S such that

S = (J{kd\k > 0 and 6 e 6}   and   0 i cl(6).
Of course, S is pointed whenever S has a base.

We say the ordering cone S has the Daniell property if the infimum of each
monotone decreasing net in S exists and is also the topological limit of the net.
In [Borwein 3] it is proved that S is Daniell if

(i) S has weakly compact intervals; or
(ii) if 5 has a closed bounded complete base.
A vector lattice is an ordered vector space in which max{a, b} always exists.

A normed lattice is a normed vector lattice in which the norm is absolute: \\x\\ =
|| |.x| || and monotone: 0 <s x <s y implies that ||x|| < ||v||. A Banach lattice
is a Riesz lattice over a Banach space.

Recall also that the recession cone of a set C, denoted by 0+(C), is the set
of all x such that

c + Xx eC   for all k > 0 and all c € C.
The generalized (weak) recession cone of a set C , denoted by R(C)   [R„(C)],
is the potentially larger set defined by

R{C) := {norm limits of Xncn\Xn —> 0 and c„ e C}
[Ra(C) := {weak limits of Àncn\À„ -* 0 and cn e C}].

The generalized (weak) recession cone of C is the recession cone of C when
C is closed and convex. Note that when C is bounded, Ra(C) = {0}.
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EFFICIENCY IN VECTOR OPTIMIZATION 107

We shall frequently use the following notations:
(1) cone(A) denotes the cone generated by the set A , i.e.

cone(A) :={J{tA\t>0};

while cl[cone(/4)] denotes the closure of cone(A).
(2) S+l denotes the set of all strictly positive linear functionals in S+ , that

is
S+i := {/ 6 X*\f(s) > 0, for all s in S and s ¿ 0}.

It follows directly from the Hahn-Banach theorem that S+l is nonempty exactly
when S has a base.

(3) We use int(C) to denote the interior of the set C and C° to denote the
polar of C,

C° := {/ e X*\f(c) < 1, for all c in C}.
(4) We denote the set of efficient points of C with respect to the partial

ordering cone S by E{C, S). Thus, x e E(C, S) if (C-x)n-S = {0}.
(5) PE(C, 5) denotes the set of all proper efficient points of C in the sense

of Borwein [Borwein 1]. That is, x £ PE(C, S) if

cl[cone(C - *)] n-S = {0}.

(6) Let S be an ordering cone in a normed linear space X with a base 6,
we can associate S with another convex cone S£(S) defined by

Se(e) :=cl[cone(6 + eß)].

Here B is the closed unit ball of X. We say x 6 C is Henig efficient, denoted
by x G HE{C,S), [more properly, x e HE{C, 6)] if

cl[cone(C-x)]n-S£(9) = {0}.

5£(6), called the Henig Dilating Cone, plays an important role in our develop-
ment. Some properties of SE{&) are summarized in the following theorem.

Theorem 1.1. Let X be a normed linear space, ScX a closed and convex cone
with a closed base 6. Let Ô := inf{||0|| |0 € 9}, then S>0. Define

Se := 5£(9) := cl[cone(9 + eB)].

Then for any ß > 0, Se c S£+ß . For 0 < e < ô we have
(1) Se(e) = cone[cl(e+ «/?)];
(2) S£(9) is pointed;
(3) n{S£(9)|e>0} = S;
(4) S is normal if and only if Se(&) is normal;
(5) If in addition, X is complete and 9 is bounded then SE{Q) is Daniell

and normal;
(6) If 9 is weakly compact and X is reflexive then SE(S) is locally weakly

compact;
(1) If X is reflexive and S is normal, then Se(Q) has weakly compact inter-

vals and so is Daniell.
Proof. ( 1 ) Let

9£ := cl(9 + eB).
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108 J. M. BORWEIN AND D. ZHUANG

Since S£(Q) is closed, cl[cone(9£)] = S£(@). Let d be in cl[cone(9£)]. Then
since 0 £ 9£ for e < ô,
(1.1) cl[cone(9£ ) ] = cone(9£ ) U R (9£ )
where R{G£) := {limia0*|iQ -► 0, ta > 0, 0* e 9£} . Indeed, x in cl[cone(9£)]
implies that x is either in cone(9£) or

x = lim tad£a   for ia > 0 and 0* e 9£.
Without loss of generality (taking subnets if necessary), we may assume that ta
converges. If ta tends to infinity, then t~l tends to zero, which implies that
0£ tends to zero. This is impossible as 0 is not in the closure of 9. Hence,
ta converges to t for some t < oo . If t = 0 then x is in R(@£) by definition.
If t t¿ 0 then as 9£ := cl(9 + eB),

Hence, x e cone(9£). Therefore, (1.1) is verified. Note that it is easy to check
that

R{e£) = R(S) cSc cone(9£)
because 9 is a base for 5 and S is closed. Whence cone(9£) = S£(Q).

(2) By (1), 5e(6) = cone(9£) has a closed base 9£, hence S£{@) is pointed.
(3) It is clear that ri£>o^ D $ • Let d be in fl£>o^e • We may assume that

d = ]imt„(6n + {\/n)b„)
with 0„ e 9, bn e B and /„ > 0. Then

lim||í-1ú?-9„|| = lim(l//i)||M =0.
Since 0 € 9, t„ is bounded. Assume that /„< -» ß < cxd . Note that since 9 is
closed, we have d = fid € S for some 0 e 9. Hence ú? is in S.

(4) By [Peressini 1, p. 64; Borwein 6] the normality of 5 is equivalent to
the uniform boundedness of order intervals. Suppose that S is normal, then
order intervals of S are uniformly norm-bounded. Let 0 <se x <se a be given.
Since

x e S£ - cone(9£) = cone[cl(9 + eB)] c cone(9 + e'B)
for any ô > e' > e, we may assume that

x = ti(di+e'bi);       a- x = t2{d2 + e'b2)
with 0, € 9, bj€B, t¡ > 0  (i = l,2). Thus
(1.2) a = {ti+t2)(e + e'b)
where 0 = (tidi+t2d2)/(ti+t2) and b = {t\b\+t2b2)l{t\+t2). Define s¡ := í,0,
for i = l,2. Then

Si <sSi +s2 = (/, -M2)0.
By the normality of S, there exists a k > 0, independent of x, such that

||5í||<*||(/l+Í2)0||
and so

IWI<*||(íi + Í2)e|| + e,(íi + Í2)
< *||(í, + t2)6 + (/, + ?2)e'¿)|| + A:||(íi + f2)e'ô|| + e'(í, + í2)
< fc||fl|| + k{t\ + t2)e' + e'(ti + t2) < k\\a\\ + e'(l + k){U + h) ■
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Since 9£< is a base, the coefficient t\ + t2 in (1.2) is uniformly bounded, say
by iV||a|| independent of x. Thus

M{a):=k\\a\\ + e\\ +k)N\\a\\
is a constant independent of the choice of x. Hence, [0, a]sc is uniformly
bounded in norm. Therefore S£ is normal. Conversely, if S£ is normal for
some e > 0, then as Se d S, S is normal.

(5) If 9 is bounded, then S£ = cone[cl(9 + eB)] has a closed and bounded
base. Since X is complete, S£ is Daniell [Borwein 3]; Se is also normal
[Borwein 3].

(6) When 9 is weakly compact and X is reflexive, Q+eB is weakly compact.
Hence S£ is locally weakly compact by a theorem of Klee [Klee 1].

(7) By (4), S being normal implies that S£ is normal for e < ô . Thus order
intervals of Se are norm-bounded. They are also closed (because S£ is closed)
and convex. Hence, intervals are weakly compact as X is reflexive.   D

2. Super efficiency

In this section, we introduce a new efficiency concept, namely super efficiency.
After defining the concept in a general setting we provide equivalent formula-
tions of super efficiency for several important special cases. Existence results
are then presented.

Definition 2.1. Let X be a real normed linear space. We say that x is a super
efficient point of a nonempty subset C of X with respect to the ordering cone
S, written x e SE(C, S), if there is a real number M > 0 such that

(2.1) Kf]{B-S)cMB

where K := cl[cone(C - x)] and B is the closed unit ball of X .
Since X is a normed linear space, (2.1) is unchanged if K is replaced by

cone(C - x). Thus, (2.1) can be expressed explicitly in terms of the norm on
X:

for any c in C and t > 0, whenever t(c - x) <s b for some b e B,

\\t(c - x)\\ < M.
This is equivalent to saying that for each c in C, if y is in X and c-x <s y ,
then

(2.2) ||C-x||<M||y||

with a uniform constant M (depending only on x, not on y or c).
Note that when y = 0, (2.2) becomes

c -x <s 0 => ||c - x|| = 0,     for all ceC,

which implies that super efficient points are efficient, i.e.

SE(C,S)CE{C,S).

The relationships between super efficiency and other efficiencies will be ex-
plored in detail in the following sections.
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110 J. M. BORWEIN AND D. ZHUANG

Super efficiency has a very simple description in a normed lattice. In this
setting, x e SE(C, S) is equivalent to the existence of some M with

(2.3) ||c-x||<M||(c-x)+||

for each c e C, where (c - x)+ is the positive part of c - x , see [Jameson 1].
To see this, we put y :— (c - x)+ in (2.2) and have (2.3) immediately. On

the other hand, if c - x <s y for y in X, then (c - x)+ <$ y+ . Hence

Ik - x\\ < M\\(c - x)+\\ < M\\{y)+\\   (as || • || is monotone)
< M\\ \y\ || = M||y||    (as || • || is absolute)

which is exactly (2.3).
When the set C is convex, our definition of super efficiency has a concise

dual form. Indeed, we prove in the following proposition that (2.1 ) is equivalent
to

(2.4) X* = K+-S+= {C-x)+-S+.

Proposition 2.2. Let X be a Banach space, C c X a convex subset and S a
closed cone (S as always is convex). Then (2.1) is equivalent to (2.4).
Proof. When C is convex, K :— cl[cone(C - x)] is also convex. Hence

«*~{TxeK,
xiK,

is a closed convex process. It follows from direct calculations that for any y in
X, H~l(y) = K D (y - S) and the adjoint process [Borwein 5] is

H{y)-\0, y**S+.

By definition, x is in SE{C, S) if and only if H~l is bounded which is
equivalent, by the dual version of Corollary 2.1 in [Borwein 5] (as H is closed),
to H* being open at 0, which in turn is equivalent to H* being surjective:

H*(K+) = K+ -S+ = X*.

This is (2.4).    D

The following corollary gives a characterization of super efficiency by scalar
optimization.

Corollary 2.3. Let S be a normal cone in a normed space X. For any convex
set C of X, x0 is in SE(C, S) if and only if for any y/ in S+ (or in X*),
one can find (p in S+ such that 4> >s+ ¥ and

(2.5) inf <¡>{x) = 4>(x0).

Proof. Note that S is normal in a normed space if and only if S+ is generating
[Peressini 1, pp. 72 and 76] while (2.5) is equivalent to S+ C (C - Xq)+ - S+ .
(Moreover, (2.5) implies that X* = S+ - S+ .)   □

Now we present our first existence result for super efficiency.
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Proposition 2.4. Let X be a normed space, S c X an ordering cone with a
bounded base and C a weakly compact subset of X. Then SE(C, S) / 0.
Proof. Since S has a bounded base 9,

norm-int(5'+) / 0.

[Jameson 1, p. 122]. Let y/ be in int^"1"), then y/ + eB* c S+ for some e > 0,
where B* is the closed unit ball in X*. Thus for any I G X*, we can always
find n > 0 so that k <s+ n y/. Moreover, since C is weakly compact, there is
Xo in C such that

min y/(x) = y/{xo).
x£C

In other words, for all c in C we always have y/(c - Xo) > 0. Note also that
since S has a bounded base, it is normal [Borwein 3]. The fact that Xo is in
SE(C, S) now follows from Corollary 2.3.   D

The following proposition and its corollary describes super efficiency in terms
of the Henig dilating cone S£.

Proposition 2.5. Let X be a normed linear space, S c X a closed ordering cone,
C c X a nonempty subset and xq e C. Define K := cl[cone(C -xo)] as before.
Suppose that S has a bounded base 9 and let â := inf{||0|| |0 g 9} . Suppose
also that for some 0 < e < S,

(2.6) Kn-S£ = {0}.
Then x0eSE{C,S).
Proof. Suppose that Xo is not in SE(C, S). Then we can select a sequence
{y„} in K n (B - S) with ||y„|| approaching to infinity, where B is again the
closed unit ball of X. Since y„ is in B - S and S has a base 9, y„ can be
written as

yn = bn-k„Qn   and   yn e K

with 0„ g 9, ||è„|| < 1, and k„ >0, n = 1,2.
Since 9 is bounded, we may assume that ||0„|| < M, n = 1, 2, ... . Now

l|y»ll-i < \\yn - bn\\ < knM.
Hence k„ tends to infinity. Therefore,

0 ¿ k~lyn = k-lbn-d„eKC\(eB-e)cKn -S£

for n sufficiently large, which contradicts (2.6).   G

Corollary 2.6. Let X be a normed space and suppose the ordering cone S have
a closed base. Let S := inf{||0|| |0 g 9} and let S£ := S£(@). Then for any set
C in X the following are equivalent:

( 1 ) Xo G E(C, S£) for some 0 < e < â ;
(2) xo G PE(C, S£) for some 0<e<S.

If, in addition, 9 is a bounded base, then the above are equivalent to
(3) x0£SE{C,S).

Proof. From the definitions

PE(C, Se) C E(C, S£)
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112 J. M. BORWEIN AND D. ZHUANG

is clear for any e > 0. On the other hand, Xo is in E(C, S£) if and only if

cone(C - xo) n -S£ = {0}.
By Theorem 1.1(1), for 0 < e < ô, cl(eB - 9) is a base and -S£ =

cone[cl(e5 - 9)]. Thus, for any 0 < e' < e , cone(C - x0) n {e'B - 9) = 0 .
This implies that

cone(C - x0) n [{2~le'B - 9) + 2~V int(fi)] = 0.

Noting that the second set is open, we have,

cl[cone(C-x0)]ncl(2-1e'5-9) = 0.

Therefore, by Theorem 1.1(1) again,

cl[cone(C - x0)] n cone[cl(2_1e'5 - 9)] = cl[cone(C - x0)] n -Se» = {0}

for e" := 2_1e'. This proves that Xo is in PE(C, S£"). Hence (1) implies (2).
Now let us assume that S has a bounded base. Then (2) => (3) follows from

Proposition 2.5. Conversely, suppose xo is in SE(C, S) while Kn-S£ = {0}
fails for all e > 0. Then for « = 1,2,...,

Kn{l/nB-e)¿0.
Take kn in K n ((\/n)B - 9). Note that for n sufficiently large,

IIM ><5- l/n>0.
Now nk„ is in KD(B-S) with \\nk„\\ —> oo . This contradicts the assumption
that x0 is in SE(C, S).   O

Our next theorem says that every bounded closed set in a Banach space has
super efficient points provided the ordering cone has a bounded base.
Theorem 2.7. Let X be a Banach space and let S have a closed bounded base
9. Then every bounded closed set C possesses super efficient points.
Proof. Let S := inf{||0|| |0 G 9}. Let S£(9) be the Henig cone for 0 < e < S .
Then S£ has a closed bounded base and int(5£) is nonempty. Thus S£ is
Daniell [by Theorem 1.1(5)] and C is bounded below in S£. By Theorem
2.1 in [Borwein 4], E(C, S£) is nonempty. Hence, SE(C, S) is nonempty by
Corollary 2.6.    D

Example 2.8. (a) Let X = /](N) and S = /i+(N) (the natural ordering cone).
Then S has a bounded base. Let C be the closed unit ball of X, i.e.,

C = {xg/,(N)|||x||,< 1}.

Let 0 = (1, 1,...) be in /«(N) = [/,(N)]*. Then
inf{0(x)|xGC} = -l.

Note that 4> attains its minima on T := {x G C| ||x|| = 1 and x <s 0}. Note
also that for any k in /oo(N)  we can always find an integer n > 0 so that
X <s+ n<f). Thus SE(C, S) contains T by Corollary 2.3. On the other hand,
if x is in C\T, then x is not even efficient. Thus, SE(C, S) = T.

(b) If we let
C, = {xg/,(N)|]Tx„/2" = 0}.
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Then SE(Ci, S) = 0 while PE(Q , S) = Q . Indeed,
C\- x = C\ = cl[cone(Ci - x)] =: K

for all x in C\ (since C\ is a closed subspace) and K n -S = {0}. Hence
PE{Ci ,S) = Q. But, since (1/2") £ int(S+),

C,+ -5+ = i?(2-'I)-5+^/00(N),

where, (Ci)+ = R(2~") is the set of all scalar multiples of (2~") as Cj is the
kernel of (2~"). In particular, ( 1, 1, 1, ... ) is not in (C\ )+ - S+ . Therefore,
SE{Ci, S) = 0 by Proposition 2.2.   D

Note that C is bounded while C\ is not. So the example shows that the
boundedness of C is needed in Theorem 2.7. The following proposition gives
a scalar characterization of super efficient points in an important case.

Proposition 2.9. Let X be a normed space. If S has a closed bounded base
9 and C is convex then x is in SE(C, S) if and only if there is 4> ¡n the
norm-interior of S+ such that </>(C - x) > 0.
Proof. If x is in SE(C, S) then

{C-x)+ -S+ = X*

(by Proposition 2.2). Since 9 has a bounded base, int(S+) ^ 0 [Jameson 1].
Therefore,

(C - x)+ - int(S+) = X*,
since (C - x)+ - int(5'+) is a convex set with nonempty interior whose closure
is X*. (It then must be equal to X* otherwise, it is contained in a closed
half-space.) This implies that

0G(C-x)+-int(S+).

So there is </> in X* such that

4>£ (C-x)+nint(5'+).
Conversely,

(f>£ (C-x)+nint(5'+)
implies that

0 G (C - x)+ - int(S+) c int[(C - x)+ - S+],
which gives X* = K+ - S+ and hence x is in SE{C, S).   O

3. Super efficiency via other efficiencies
In this section, we shall consider in detail the relationships between super

efficiency and other efficiencies such as Borwein efficiency, Henig efficiency,
and Hartley efficiency. By exploring such relationships, we show that super
efficiency is indeed a central kind of proper efficiency.

Proposition 3.1. Let X be a normed space, S an ordering cone and C a subset
of X. Then,

(3.1) SE{C,S)cPE(C,S).
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114 J. M. BORWEIN AND D. ZHUANG

Proof. Let x be in SE(C, S). For each d in cl[cone(C-x)]n-S\ we assume
that d = limdn with dn in cone(C - x). Let dn = t„(c„ - x) with cn in C,
t„ > 0. For all n , we have

d„e-S + \\d„-d\\B.
Thus for some bn in B,

c„-x<st-l\\dn-d\\b„.

As x is in SE(C, S), there exists M > 0 with ||c„ - x|| < Mt~x\\dn - d\\, or

\\dn\\<M\\dn-d\\,
which implies that ||úf|| < 0. Therefore

cl[cone(C - x)] n -S = {0} .   D
Our next proposition indicates the important fact that in a finite dimensional

space, super efficiency is the same as proper efficiency.

Proposition 3.2. Let X be a normed linear space with S a closed and convex
ordering cone. Let C be a closed subset of X and lie in a finite dimensional
subspace of X. Then

(3.2) SE(C,S) = PE(C,S).
Proof. It suffices to prove that

PE(C,S)cSE(C,S).
Let x be in PE(C, S) which is contained in E(C, S). If x is not in SE(C, S),
then for n = 1, 2,... we can select cn in C , hn in X with cn <$ x + h„ and

(3.3) ||c„-*||> 21**11.
If \\h„\\ = 0, then cn <$ x. This violates the fact that x is in E(C, S). So
\\h„\\ t¿ 0. Let dn := (c„ - x)/||c„ - x||, then we have

(3.4) d„<shn/\\c„-x\\.
As {dn} is in a finite dimensional space and is bounded, we may assume (by
extracting a subsequence if necessary) that d„ —* do . Then

d0 £ cl[cone(C - x)] = K,

and do = \imd„ <s lim/z„/||c„ -x|| = 0 by (3.4) and (3.3). Since \\d„\\ = 1 for
all n , do ^ 0. This contradicts our assumption that x G PE(C, S).   D

The next two propositions show that every super efficient point is a Henig
efficient point; when the base of the cone is bounded, the two efficiencies are
the same.

Proposition 3.3. Let X be a normed linear space with an ordering cone S. If
S has a closed base 9, then
(3.5) SE(C,S)cHE(C,e).
Proof. Let ô := inf{||0|| |0 G 9}. Then S > 0. Suppose x is in SE(C, S),
then there exists a constant M > 0 such that for each c in C ,

c - x <s y => ||c - x|| < M\\y\\   for all y in X.
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Let e be chosen so that e <3/(l + M). Suppose there is z such that
z G cone(C - x) n (eB - 9),

it then follows that
z = k(c - x) = eb - 6 <s eb

for b in B and 0 in 9 and k > 0. Thus, A~'||z|| < k~lMe because x is in
SE(C,S). Hence,

k-i{S-e)<k-l\\6-eb\\=k-[\\z\\ <k~xMe,
and ô/(M + 1) < e . This is a contradiction. Therefore,

cone(C - x) n (eB - 9) = 0.
This implies that

cone(C - x) n cone(e5 - 9) = {0}.
Thus, as cone[cl(e'ß - 9)] c cone(e5 - 9) for some 0 < e' < e , one has

cone(C - x) n -Se> = {0}.
Thus x£E(C,S£l)cHE(C,e).   a
Proposition 3.4. If X is a normed linear space and S c X is an ordering cone
with a norm-bounded base 9, then

HE(C,e) = SE{C,S).
Proof. If x G HE(C, 9), then x G E(C, S£) for small e > 0. Thus
(3.6) cone(C-x)n(£#-9) = 0.
Take any y in X with c - x <s y, then we may assume that

c - x = y - k0
for some 0 in 9 and k > 0. If k = 0, then ||c - x|| = ||y||. If k > 0,

k-\c-x) = (k-xy-d).
Now by (3.6) \\k~ly\\ > e , or

(3.7) k/\\y\\ < e-1.
If we define m := sup{||0|| |0 G 9}   (m is finite as 9 is bounded) then

||c-x||<||y||+Asup||0||
<||y||+Am = ||y||(l+Am/||y||)
<||y||(l+e-1m) = M||y||,     [by (3.7)]

where M := l+e~lm. Therefore we have ||c-x|| < M\\y\\ whenever c-x <$
y. In other words, x is in SE(C, S).   D

Let us recall Hartley's notion of proper efficiency which is extended in [Bor-
wein 2]: a point x of a set C in a normed space X with an ordering cone S is
a Hartley efficient point, denoted by x G HPE(C, S), if there exists a constant
M > 0 such that whenever there is </> G S+ with 4>(c - x) < 0 for some c in
C one can find y/ £ S+ with

4>(c-x)/\\<t>\\>-My,(c-x)/\\ys\\.
In our next two propositions, we compare Hartley efficiency with super effi-

ciency. Again, super efficient points are Hartley efficient. The two efficiencies
coincide when the ordering cone is normal.
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Proposition 3.5. In a normed linear space setting we always have

SE(C,S)cHPE{C,S).
Proof. Suppose that x is in SE(C, S). Then there is M > 0 such that for
each c in C and h in X,

c <s * + h   implies   ||c - x|| < M\\h\\.
If x is not in HPE(C, S) and e > 0, the definition of HPE{C, S) fails for
M + e. Then there exist s£ £ S+ with \\Sq\\ = 1 and x ^ c0 £ C such that
s£(c0 - x) < 0 ; and for all s+ in 5+ , ||5+|| = 1,

s¿(x - Co) >(M + e)s+(c0 - x).

This implies that for all s+ in S+ n dB*   {dB* is the unit sphere in X*),

\\x-Co\\>(M + e)s+(c0-x).

Thus for all s+ in S+ n ß*
j+(c0-x)/||c0-x|| < l/(M + e).

Therefore, a standard polarity argument shows

(c0 - x)/||c0 - x|| £{M + e)~l(S+ nB*)° = (M + e)"1 c\(B - S).

Hence, c0-xg ||c0 - x\\(M + e/2)~l{B - S), and as x£SE(C,S),

\\co - x\\ < [M/(M + e/2)]\\co - x\\ < \\c0 - x||.
This is a contradiction.    □

Proposition 3.6. Let X be a normed linear space with a normal ordering cone
S. Then for any subset C of X, HPE(C, S) = SE{C, S).
Proof. Let x be in HPE(C,S). Set

\\y\\s := sup{|s+(y)|: s+ £ S+,\\s+\\ = 1} < ||y||.
By the normality of S, there is a constant M0 > 0 such that for all y in X ,
||y|| < M)||y||s> (since S+ is a strict ¿-cone, [Peressini 1, p. 76]). Suppose
that c-x <s y, then for each s+ in 5+ n dB*, s+(c - x) < s+(y). By the
definition of || • \\s, there is, for each e > 0, an sf  in S+ n dB* such that
Ik-xlls < \sf(c-x)\(\ +e). If 5+(c-x) > 0, then

(l+£)-1||c-x|U<5+(c-x)<5+(y)<||y||.

If s~t(c - x) < 0, then as x is in HPE(C, S), there exists s¿ in S+ n dB*
and M i > 0 such that,

5+(x - c) < M,52+(c - x) < M,52+(y) < M, ||y|U < M, ||y||.

Thus in both cases, we have for all e > 0, ||c - x\\s < (1 + e)M2||y||, with
M2 := max{l, Mx]. Therefore, ||c-x||s < M2||y||. Finally, we have ||c-x|| <
M0||c-x||s < Af||y||, where M = M0M2. Hence x belongs to SE{C, S).   D

When X is R" and S is the nonnegative orthant R" , the definition of
Hartley efficiency (equivalently super efficiency) coincides with Geoffrion's def-
inition of proper efficiency [Geoffrion 1]. This emphasizes again that super
efficient points are indeed the right subclass of efficient points. This is also the
point of the following proposition.
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Proposition 3.7. Let X be a normed linear space whose ordering cone S has a
weakly compact base. Then for any subset C of X, PE(C, S) = SE(C, S).
Proof. It suffices to show that any proper efficient point is super efficient. Let
x be in PE(C, S). If we define K := cl[cone(C-x)] as usual, then Kn-S =
{0} . We claim that there is an e > 0 such that

(3.8) Kn{eB-S)c(l/e)B.
Indeed, if (3.8) is not true, then we can y„ G {(l/n)B - S) n K such that
||y„|| > n. Assume that y„ = b„/n - sn with bn in B and sn in S. Now
consider 5„/||yn||,

||5„||/||y„||<l + l/(«||y„||),
so {WHy«||} is bounded. As S is locally weakly compact, it has a weakly
compact base 9 [Klee 1], we may assume that 5n/||y„|| = k„0„ where kn > 0
and bounded. Now 0„ = ^'[^«(«ll^nll)-1 -ynllynll-1] converges weakly to
some 0 t¿ 0o in 9. Hence y«||yw||_1 converges weakly to some 0 ^ -so in
Kn-S. This contradicts our assumption that x is in PE(C, S). Therefore
(3.8) is verified. And so is PE(C, S) C SE(C, S).   □

4. Density theorems for super efficiency
We have seen that in general the set of super efficient points is strictly con-

tained in that of the efficient points. In this section we provide the answer to
the question of "how many" efficient points are super efficient. First we need
another definition.

Definition 4.1. Let C be a subset of a normed linear space X with a closed
ordering cone S and let B be the closed unit ball in X. We say that C is
S-lower bounded if there is some constant M > 0 such that

(4.1) CcMB + S.
Note that if C is ¿Mower bounded then

(4.2) Ra(C)cS.
(See §1 for the definition of Ra{C).) Indeed, let d £ Ra(C). By the definition
of Ra(C), there exist /„ —> 0 and cn £ C such that tnc„ tends to d weakly. As
C is S-lower bounded there are b„ £ B and M > 0 such that c„ - Mbn £ S.
Now, tncn - tnMbn £ S and t„Mbn —► 0 implies that d is in S as S is closed
and convex, hence weakly closed. Hence (4.2) holds. As S is pointed we also
see that R0(C)n-S = {0} .

Note that (4.1) holds if either C is bounded topologically or C has an
S-lower bound, that is, there is m such that m <s c for all c in C.

Theorem 4.2. Let X be a Banach space, S an ordering cone and C a nonempty
subset of X. Assume that S has a closed and bounded base 9. // either of
the following is satisfied, then SE(C, S) is norm-dense in the nonempty set
E(C,S):

( 1 ) C is weakly compact;
(2) C is weakly closed and S-lower bounded while 9 is weakly compact.

Proof. Since S has a closed and bounded base, S is closed. Moreover, it is
Daniell [Borwein 3].  According to Theorem 2.1 in [Borwein 4], E(C, S) is
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then nonempty if either C is weakly compact or C is (weakly) closed and
S-lower bounded. Let x0 be in E(C, S). Then
(4.3) (C-x0)n-S = {0}.
Since S has a base 9, for all ô > 0, one has

(4.4) (C - x0) n -OS = 0.

We claim that for any ô > 0, there is an e > 0 such that

(4.5) (C-x0)n-SEcSB.

Indeed, if (4.5) were false for some â > 0, we would be able to find c„ in C,
9„ in 9, bn in B and k„ > 0 such that ||c„ -x0|| > ô and

(4.6) cn-xo = -Xn(0n + (l/n)bn).

Without loss of generality, we may assume k„ converges. We consider two cases
separately.

(1) When C is weakly compact, (c„) c C is bounded. Extracting subse-
quences if necessary we may assume that c„ converges weakly to some c in
C. If kn —> oc , then by (4.6) we have

-9n=kñl(cn-xo) + (l/n)b„^0.

This is impossible because 0 £ cl(9). Thus k„ —> k < oc . It is clear that k > 0
as ||c„ -xoll > ô . Hence

w-lim0„ = /l~'(xo - c)

is in 9 because 9 is weakly closed. Thus

(C - x0) n-S ^ {0}.
This contradicts (4.3). Therefore (4.5) holds.

(2) Suppose now that C is weakly closed and S-lower bounded, and 9 is
weakly compact. Then by the weak-compactness of 9, we may assume that 0„
converges weakly to some 0o in 9. If k„ —> oo , then

k~[{c„ -Xo) -> -0o G -S.

Since k~l -> 0 and c„ are in C, 0 ^ -0o is in Ra(C) n -S. This is a
contradiction because C is assumed to be S-lower bounded and hence

Ra(C)n-S={0}.
Thus, kn -> k < oo . Since 9 is bounded and ||c„ -Xo|| > S , (4.6) shows k > 0.
Now c„ converge weakly to c := xo - kdo . As C is weakly closed, c is in C .
But c-Xo = -kdo £ -S\{0} contradicts the fact that xo is in E(C, S). Thus
(4.5) holds in this case too.

Note (4.5) implies that for small e the set Ce := Cn(x0-S£) has arbitrarily
small diameter. In each case S£ is Daniell as S has a bounded closed base
(Theorem 1.1(5)), and so Theorem 2.1 in [Borwein 4] applies. Thus E(C£, S£)
is nonempty. Clearly any point in E(C£, S£) is actually in E(C, S£), and so
lies in SE(C, S), by Corollary 2.6. Finally, let y G C£ n E(C, S£), then y
belonging to C£ = C n (xo - S£) implies that y - x0 G (C - x0) n -S£. Hence
||y-xo|| < ô , and we conclude that there is a point in SE(C, S) arbitrarily close
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to Xo . As xo was arbitrarily chosen from E(C, S), we see that SE(C, S) is
dense in E(C, S).   D

Observe that the theorem can be viewed as giving density results for Bor-
wein efficiency, Henig efficiency and Hartley efficiency (as super efficient points
are in appropriate settings efficient in the sense of those authors). Even these
specializations extend many density results in the literature.

5. Chebyshev scalarizations

It is a fundamental principle in vector optimization that optimal elements
can be characterized as optimal solutions of certain scalar optimization prob-
lems. We have seen that in some important special cases super efficiency can be
satisfactorily characterized by scalar optimization problems. In the following
we characterize super efficiency by Chebyshev scalarizations, i.e. characterize
super efficiency in terms of certain equivalent norms on X.

Definition 5.1. We say that a norm || • || is S-monotone if

0 <s x <s y implies that ||x|| < ||y||.

In a normed linear space X, when the ordering cone S is normal and has
nonempty interior and a set C is contained in the interior of S, then each
efficient point in C can be expressed as those points in C with least norm for
the equivalent S-monotone norm defined by

(5.1) |||x||| := inf{? > 0|x g /[-x0 , x0]s},

where Xo G E(C, S). First, we prove a lemma which shows that the norm
defined by (5.1) is indeed a norm equivalent to the original norm || • || of the
space.

Lemma 5.2. Let X be an ordered normed space with the norm ||-||. Suppose that
the ordering cone S has nonempty interior and is normal. If xo is in int(S),
then the norm defined by (5.1) is S-monotone and equivalent to the norm || • ||.
Proof. The proof that ||| • III defined by (5.1) is a norm can be found in [Jahn
1, p. 27]; that

x' G [0, x]s => |||x'||| < |||x|||
is easy and can be seen in [Jahn 1, p. 112]. We show ||| • ||| is an equivalent
norm. Now as int(S) ^ 0, int([-x0, x0]s) / 0. We may assume that aB c
[-Xo, Xo]s , where B is the closed unit ball in X . Let 0 ^ x be in X , then
x||x||_1 is in B and hence qx||x||_1 g[-xo,Xo]s- By the definition of |||-|||,
aIIMII/IMI < 1- Hence, |||x||| < «"'HxH. The fact that for some k > 0
||x|| < fc|||x||| follows from the normality of S. Hence, ||| • ||| is an equivalent
norm.   D

Proposition 5.3. Let the ordering cone S be normal with nonempty interior. If
the set C is contained in int(S) and x0 is in E{C, S), then there exists an
equivalent S-monotone norm ||| • || with

(5.2) 1 = |||x0||| = min{|||x||| |x G C}.
Proof. Let

|||x||| :=inf{?>0|xG/[-x0,x0]s}.
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By Lemma 5.2, ||| • ||| is a monotone norm which is equivalent to || • || with
lll*ol|| < 1 ■ Suppose |||x||| < 1 for some x in C Then x lies in t[-Xo, Xo]s
for some 0 < t < 1 and so x <s xo , x ^ xo . But (xo - S) n C = {xo} because
x0 G E(C, S). Hence (5.2) holds.   D

Lemma 5.4. In an ordered Banach space whose ordering cone S has a bounded
base, there is an equivalent norm defined by

(5.4) |||x||| := inf{? > 0|x G t[-a, a]Sc}

(for any 0 ^ a in S and fixed e > 0 chosen sufficiently small) satisfies with the
property that for some ô > 0,

(5.5) 0 <s x <s y =► |||y||| > |||x||| +<5|||y -x|||.
Proof. Let </> be in S+l such that 4>(s) > \\s\\ for all 5 in S, as is possible
since S has a bounded base. Let 9* := </r'(l) nS. Then 9* is a bounded
base for S. Pick e > 0 small enough that 9* is a base. The norm defined by
(5.4) is indeed an equivalent S£-monotone norm by Lemma 5.2 because S£(9*)
is normal and has a in its interior. Thus, there are ß > 0, ß\ > 0 such that

All*ll> 111*111 > £11*11.
Suppose 0 <s<s y with y ^ x. Let so := y - x . Then so is in S/{0}. Set
x* := x/<p(s0), y* := y/(t>(s0), i* := s0/(f)(so). Then ^ G 9*. Now

So+eB ceB + @* cS£.
Thus, 5q - ey*/||y*|| g S£ and

(lly'll-^VIIyll = ** + *o -ev7l|y*ll >i£ x* >s o.
In particular, ||y*|| > e since y* G S£ and S£ is pointed while y is nonzero.
As HI-III is S£-monotone, (||y*|| - £)|||y*|||/||y*|| > |||x*||| and

llalli > 111**111 + «Hb'*lll/ll3'll> 111**111+ «£.
Therefore,

|||y|||>|||x||| + e^(y-x)>|||x||| + £y5||y-x||
>|||*||| + eM-,|||y-*||| = |||*||| + Ä|||j'-Jc|||

where ô := eßß^1 . If y = x this also holds and (5.5) is satisfied.   D

We observe that we could have used any equivalent S£(9*)-monotone norm.
Let us say that a norm satisfying (5.5) is strongly S-monotone. Clearly any

such norm is strictly S-monotone in the sense that

0 <s x <s y and x / y implies that ||x|| < ||y||.

Now we are able to give a characterization of xo being super efficient in
terms of Chebyshev scalar optimization.

Theorem 5.5. In an ordered Banach space, if the closed ordering cone S has a
bounded base 9 and C is contained in S\{0}, then the following are equivalent:

(i) x0£SE(C,S);
(ii) There is an equivalent strongly S-monotone norm ||| • III sucn mat

(5.6) |||x0||| = min{|||x||||xGC}.
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Proof. Let Xo G SE(C, S).   Consider 9 as built in Lemma 5.4.   Select a
sufficiently small e > 0 so that

(i) the norm defined in Lemma 5.4 with a := xo is strongly S-monotone and
(ii) Xo G E(C, S£(9)) ; since xo lies in intS£. As in the proof of Proposition

5.3 we see that (5.6) holds.
Conversely, suppose there exists an equivalent strongly S-monotone norm

such that (5.6) is satisfied. Suppose that y is in X with c - xo <s y for some
c in C. Then 0 <s c <s xo + y. This implies that

|||c||| + ¿|||xo + y-c|||<|||x0+y|||.

Hence, using (5.6),

|||*o||| + á|||xo+y-c|||<|||x0||| + |||y|||,

which, in turn, implies that

¿|||xo-c|||-á|||y|||<|||y|||.

Therefore, |||x0 - c||| < (1+<5-1)|||y|||, i.e. x0 G SE{C, S).   a

Note that when the cone S has a weakly compact base, the base 9 con-
structed above is also weakly compact (any other closed bounded base is). In
addition, super efficient and proper efficient points coincide (by Proposition 3.7)
and so we have the following corollary which extends a result in [Jahn 2].

Corollary 5.6. In an ordered Banach space, if the closed ordering cone S has a
weakly compact base 9 and C is contained in S\{0}, then the following are
equivalent:

(i) x0£PE(C,S);
(ii) There is an equivalent strongly S-monotone norm ||| • III sucn that

(5.6) |||x0||| = min{|||x||||xGC}.

Conclusion
It should be clear that super efficiency is a very flexible kind of proper effi-

ciency and that there is a lot more that can be said about this concept. Some
other results about super efficiency will be summarized in forthcoming papers.
Simple expressions of super efficiency in vector lattices and scalarization re-
sults of super efficiency provide promises of practical application of the theory.
Density results of super efficiency can be applied to establish some tangency
formulas in nonsmooth analysis as demonstrated in [Zhuang 1]. We hope that
super efficiency will enter the vector optimization literature and find its appli-
cation in optimization practice.
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