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Abstract. We propose an extension of the mixture of factor (or independent
component) analyzers model to include strongly super-gaussian mixture source
densities. This allows greater economy in representation of densities with (multi-
ple) peaked modes or heavy tails than using several Gaussians to represent these
features. We derive an EM algorithm to find the maximum likelihood estimate of
the model, and show that it converges globally to a local optimum of the actual
non-gaussian mixture model without needing any approximations. This extends
considerably the class of source densities that can be used in exact estimation,
and shows that in a sense super-gaussian densities are as natural as Gaussian
densities. We also derive an adaptive Generalized Gaussian algorithm that learns
the shape parameters of Generalized Gaussian mixture components. Experiments
verify the validity of the algorithm.

1 Introduction

We propose an extension of the mixture of factor [2], or independent component [6]
analyzers model that enlarges the flexibility of the source density mixture model while
maintaining mixtures of strongly super-gaussian densities. Mixture model source den-
sities allow one to model skewed and multi-modal densities, and optimization of these
models is subject to convergence to local optima, the mixture model is a generalization
of the unimodal model and may be built up by starting with uni- or bi-modal source
models, then adding components and monitoring the change in likelihood [8, 3, 6].

Variational Gaussian mixture models, proposed in [8, 2, 6, 5], are ultimately mix-
tures of Student’st distributions after the random variance is integrated out [19, 3]. In
[12] a mixture generalization of the Infomax algorithm is proposed in which a mixture
model is employed over sets basis vectors but not for the source component density
models. The means are updated by gradient descent or by a heuristic approximate EM
update. In [16] a variance mixture of Laplacians model is employed over the source
densities, in which the Laplacian components in each mixture have the same mean, but
differing variances. An EM algorithm is derived by exploiting the closed form solution
of the M-step for the variance parameters. In [17] a mixture of Logistic source density
model is estimated by gradient descent.



The property of strongly super-gaussian densities that we use, namelylog-convexity
in x2, has been exploited previously by Jaakkola [10, 11] in graphical models, and Giro-
lami [9] for ICA using the Laplacian density. The model we propose extends the work
in [9] in applying more generally to the (large) class of strongly super-gaussian densi-
ties, as well as mixtures of these densities. We also take the approach of [3] in allowing
the scale of the sources vary (actually a necessity in the mixture case) and fixing the
scale of the de-mixing filters to unity by an appropriate transformation at each iteration
in order to avoid the scale ambiguity inherent in factor analysis models.

The proposed model generalizes all of these algorithms, including Gaussian, Lapla-
cian, Logistic, as well as Generalized Gaussian, Student’st, and any mixture combi-
nation of these densities. The key to the algorithm is the definition of an appropriate
class of densities, and showing that the “complete log likelihood” that arises in the EM
algorithm can be guaranteed to increase as a result of an appropriate parameter update,
which thus guarantees increase in the true likelihood. It is thus a “Generalized EM”
(GEM) algorithm [7]. For a given number of mixture components, the EM algorithm
estimates the location (mode) and scale parameters of the mixture component.

Using the natural gradient [1] to update the un-mixing matrices (the inverses of
the basis matrices), we can further guarantee (in principle) increase of the likelihood.
Furthermore, it is possible, for densities that are parameterized besides the location
and scale parameters such that all densities in a range of the additional parameter are
strongly super-gaussian, e.g.Generalized Gaussian shape parameters less than2, to up-
date these parameters according to the gradient of the complete log likelihood, remain-
ing within the GEM framework and guaranteeing increase in the data likelihood under
the model. The un-mixing matrices and any other shape parameters will require a step
size to be specified in advance, but the mixture component locations and scales will be
updated in closed form. In the Gaussian case, the algorithm reduces to the classical EM
algorithm for Gaussian mixtures.

The practical situation in which we shall be interested is the analysis of EEG/MEG,
the characteristics of which are a large number of channels and data points, and mildly
skewed, occasionally multi-modal source densities. The large number of channels con-
strains the algorithm to be scalable. This along with the large number of data points sug-
gests the natural gradient maximum likelihood approach, which is scalable and asymp-
totically efficient. The large amount of data also dictates that we limit computational
and storage overhead to only what is necessary or actually beneficial, rather than doing
Bayesian MAP estimation of all parameters as in the variational Bayes algorithms [3,
6]. Also for computational reasons we consider only noiseless mixtures of complete
bases so that inverses exist.

In §2 we define strongly super-gaussian densities and mixtures of these densities. In
§3-5 we derive the EM algorithm for density estimation. In§6 we introduce an adaptive
generalized Gaussian algorithm.§7 contains experimental verification of the theory.

2 Strongly Super-Gaussian Mixtures

Definition 1 A symmetric probability densityp(x) isstrongly super-gaussianif g(x) ≡
− log p(

√
x) is concave on(0,∞), andstrongly sub-gaussianif g(x) is convex.



An equivalent definition is given in [4], where the authors definep(x) = exp(−f(x))
to be super-gaussian (sub-gaussian) iff ′(x)/x is increasing (decreasing) on(0,∞).
This condition is equivalent tof(x) = g(x2) with g concave, i.e.g′ decreasing, where
g′(x2) = f ′(x)/x.

In [15] we have discussed these densities in some detail, and derived relationships
between them and the hyperprior representation used in the evidence framework [13]
and the Variational Bayes framework [2]. Here we limit consideration to strongly super-
gaussian mixture densities. Ifp(s) is strongly super-gaussian, we havef(s) ≡ g(s2),
with g concave on(0,∞). This implies that,∀t,

f(t)− f(s) = g(t2)− g(s2) ≤ g′(s2)(t2 − s2) =
1
2

f ′(s)
s

(
t2 − s2

)
(1)

Examples of densities satisfying this criterion include: (i) Generalized Gaussian∝
exp(−|x|β), 0 < β ≤ 2, (ii) Logistic ∝ 1/ cosh2(x/2), (iii) Student’s t ∝ (1 +
x2/ν)−(ν+1)/2, ν > 0, and (iv) symmetricα-stable densities (having characteristic
function exp(−|ω|α), 0 < α ≤ 2). The property of being strongly sub- or super-
gaussian is independent of scale.

Mixture densities have the form,

p(s) =
m∑

j=1

αj pj

(
s− µj

σj

)
,

∑

j

αj = 1 , σj > 0

The probability density of thejith mixture component of theith source is denoted
piji(siji), with modeµiji , and scaleσiji .

3 The EM Algorithm

We follow the framework of [18, 14] in deriving the EM algorithm, which was originally
derived rigorously in [7]. The log likelihood of the data decomposes as follows,

log p(x; θ) =
∫

q(z|x; θ′) log
p(z,x; θ)
q(z|x; θ′)

dz + D
(
q(z|x; θ′)

∣∣∣∣ p(z|x; θ)
)

≡ −F (q; θ) + D(q||pθ)

whereq is an arbitrary density andD is the Kullback-Leibler divergence. The term
F (q; θ) is commonly called thevariational free energy[18, 14]. This representation is
useful ifF (q; θ) can easily be minimized with respect toθ. Since the KL divergence is
non-negative, we have,

− log p(x; θ) = min
q

F (q; θ)

where equality is obtained if and only ifq(z|x; θ′) = p(z|x; θ). The EM algorithm at
thelth iteration, givenql andθl, performs coordinate descent inq andθ,

θl+1 = min
θ

F
(
ql; θ

)
, ql+1 = p

(
z|x; θl+1

)



This algorithm is guaranteed to increase the likelihood since,

− log p(x; θl) = F (ql; θl) ≥ F (ql; θl+1) ≥ F (ql+1; θl+1) = − log p(x; θl+1)

Note however, that it is not necessary to actually minimizeF to guarantee that the like-
lihood increases. It is enough simply to guarantee thatF (ql; θl) ≥ F (ql; θl+1), i.e. to
guarantee thatF decreases as a result of updatingθ. This leads to the Generalized EM
(GEM) algorithm [7], and is the approach we follow here. We maintain the global con-
vergence (to a local optimum) property of the EM algorithm however by guaranteeing
a decrease inF by an efficient closed form update for the source density parameters.

4 ICA with Strongly Super-Gaussian Mixture Sources

Let the dataxk, k = 1, . . . , N be given, and consider the model,

xk = Ask

whereA ∈ Rn×n is non-singular, and the sources are independent mixtures of inde-
pendent strongly super-gaussian random variablessiji , ji = 1, . . . ,mi, where we allow
the number of source mixture componentsmi to differ for different sources.

The source mixture model is equivalent to a scenario in which for each sourcesi, a
mixture componentji is drawn from the discrete probability distributionP [ji = j] =
αij , 1 ≤ j ≤ mi, thensi is drawn from the mixture component densitypiji . We define
jik to be the index chosen for theith source in thekth sample.

We wish to estimate the parametersW = A−1 and the parameters of the source
mixtures, so we have,

θ = {wi, αiji , µiji , σiji} , i = 1, . . . , n , ji = 1, . . . , mi

wherewi is theith column ofWT . We defineX = [x1 · · ·xN ].
To use the EM algorithm, we define the random variableszijik as follows,

zijik =

{
1, jik = ji

0, otherwise

Let Z = {zijik}. Then we have,

p(X; θ) =
∑

Z

N∏

k=1

| detW|
n∏

i=1

mi∏

ji=1

α
zijik

iji

[
1

σiji

piji

(
wT

i xk − µiji

σiji

)]zijik

For the variational free energy,F , we have,

F (q; θ) =
N∑

k=1

n∑

i=1

mi∑

ji=1

ẑijik

[
− log αiji − log σiji + fiji

(
wT

i xk − µiji

σiji

)]

−N log | detW| (2)



whereq is the discrete distribution defining the expectationẑijik = E[zijik|xk], and
where we definefiji = − log piji .

Let us define,

yl
ijik ≡

wl
i
T
xk − µl

iji

σl
iji

(3)

The ẑl
ijik

= P [zijik = 1|xk; θl] are determined as in the usual Gaussian EM algorithm,

ẑl
ijik =

p(xk|zijik = 1; θl)P [zijik = 1; θl]∑mi

j′i=1 p(xk|zij′ik = 1; θl)P [zij′ik = 1; θl]
=

piji(y
l
ijik

)αl
iji

/σl
iji∑mi

j′i=1 pij′i(y
l
ij′ik

) αl
ij′i

/σl
ij′i

(4)

as are the optimalαiji
,

αl+1
iji

=

∑N
k=1 ẑl

ijik∑mi

j′i=1

∑N
k=1 ẑl

ij′ik

=
1
N

N∑

k=1

ẑl
ijik

Now, since thepiji are strongly super-gaussian, we can use the inequality (1) to
replacefiji(yijik) in (2) by

(
f ′iji

(yl
ijik

)/2yl
ijik

)(
y2

ijik
− yl 2

ijik

)
. Defining,

ξl
ijik ≡ f ′iji

(yl
ijik

)

yl
ijik

(5)

we replaceF by,

F̃ (q; θ) =
N∑

k=1

n∑

i=1

mi∑

ji=1

ẑijik

[
− log αiji − log σiji +

ξl
ijik

2

(
wT

i xk − µiji

σiji

)2
]

−N log | detW|

Minimizing F̃ with respect toµiji andσiji guarantees, using the inequality (1), that,

F (q; θl+1)− F (q; θl) ≤ F̃ (q; θl+1)− F̃ (q; θl) ≤ 0

and thus thatF (q; θ) is decreased as required by the EM algorithm.
As in the Gaussian case, the optimal value ofµiji does not depend onσiji , and we

can optimize with respect toµiji , then optimize with respect toσiji given µiji , and
guarantee an overall increase in the likelihood. The updates, using the definitions (3),
(4) and (5), are found to be,

µl+1
ij =

∑N
k=1 ẑl

ijkξl
ijkw

l
i
T
xk∑N

k=1 ẑl
ijkξl

ijk

, σl+1
ij =

(∑N
k=1 ẑl

ijkξl
ijk(wl

i
T
xk − µl+1

ij )2
∑N

k=1 ẑl
ijk

)1/2

(6)
We adaptW according to the natural gradient ofF (equivalently ofF̃ ). Defining

the vectorul
k such that,

[
ul

k

]
i
≡

mi∑

ji=1

ẑl
ijikf ′iji

(yl
ijik)/σl

iji
(7)



we have,

∆W =

(
1
N

N∑

k=1

ul
kx

T
k Wl T − I

)
Wl (8)

5 Full ICA Mixture Model with Super-Gaussian Mixture Sources

We now consider the case where the data are generated by a mixture of mixing matrices,

p(xk; θ) =
M∑

h=1

γhp(xk; θh) ,

M∑

h=1

γh = 1, γh > 0

where now we have,

θ = {γh,whi, αhij , µhij , σhij} , h = 1, . . . ,M, i = 1, . . . , n, j = 1, . . . , mhi

The EM algorithm for the full mixture model is derived similarly to the case of source
mixtures. Due to space constraints the details are omitted.

6 Adaptive Generalized Gaussian Mixture Model

We can obtain further flexibility in the source model by adapting mixtures of a parame-
terized family of strongly super-gaussian densities. In this section we consider the case
of Generalized Gaussian mixtures,

p(siji ; µiji , σiji , βiji) =
1

2 σijiΓ
(
1 + 1

βiji

) exp

(
−

∣∣∣∣
siji − µiji

σiji

∣∣∣∣
βiji

)

The parametersβiji are adapted by scaled gradient descent. The gradient ofF with
respect toβiji is,

dF

dβiji

=
N∑

k=1

ẑijik

[
|yijik|βiji log |yijik| −

1
β 2

iji

Ψ

(
1 +

1
βiji

)]

We have found that scaling this byβ2
iji

/ (
Ψ(1 + 1

βiji
)
∑N

k=1 ẑijik

)
, which is positive,

leads to faster convergence. The update is then,

∆βiji =
β2

iji

∑N
k=1 ẑijik |yijik|βiji log |yijik|

Ψ
(
1 + 1

βiji

) ∑N
k=1 ẑijik

− 1



7 Experiments

We verified the convergence of the algorithm with toy data generated from Generalized
Gaussian mixtures with randomly generated parameters. The algorithm is subject to
local optima, and thus it is advisable to begin with simpler models and add complexity.
The “see-saw” method [2, 6] in whichW is adapted with fixed source parameters, then
the source model adapted with fixedW seems better able to handle local optima than
the “chase” method in which the updates are interleaved. Below we show an example
of a super-gaussian mixture that was learned by the adaptive Generalized Gaussian
mixture algorithm, including the shape parameter update. The shape parameters were
initialized to 2, the location and scale parameters were randomly initialized. The log
likelihood is monotonically increasing as expected.
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Fig. 1. Example of adaptive convergence of super-gaussian mixture model.
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