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Figure 1: Left, a Super-Helix. Middle and right, dynamic simulation of natural hair of various types: wavy, curly, straight. These hairstyles
were animated using N = 5 helical elements per guide strand.

Abstract

Simulating human hair is recognized as one of the most difficult
tasks in computer animation. In this paper, we show that the Kirch-
hoff equations for dynamic, inextensible elastic rods can be used for
accurately predicting hair motion. These equations fully account
for the nonlinear behavior of hair strands with respect to bending
and twisting. We introduce a novel deformable model for solving
them: each strand is represented by a Super-Helix, i.e., a piecewise
helical rod which is animated using the principles of Lagrangian
mechanics. This results in a realistic and stable simulation, allow-
ing large time steps. Our second contribution is an in-depth val-
idation of the Super-Helix model, carried out through a series of
experiments based on the comparison of real and simulated hair
motions. We show that our model efficiently handles a wide range
of hair types with a high level of realism.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Hair modeling, Physically-based simulation, Cosserat
model, Lagrangian dynamics

1 Introduction

Realistic hair simulation is one of the most difficult issues when
animating virtual humans. Human hair is a very complex mate-
rial, consisting of hundreds of thousands of very thin, inextensi-
ble strands that interact with each other and with the body. Unlike
solids or fluids, which have been studied for over a century and
well modeled by now classical equations, hair remains a largely

∗EVASION is a joint research project of CNRS, INPG, INRIA and UJF.
†LMM is a joint research lab of Univ. Pierre et Marie Curie and CNRS.

unsolved problem described by no well accepted model. Finding a
representation that provides an accurate simulation of hair motion
remains a challenge.

Modeling hair dynamics raises a number of difficulties. First, each
individual strand has a complex nonlinear mechanical behavior,
strongly related to its natural shape: smooth, wavy, curly or fuzzy.
Second, the dynamics of an assembly of strands takes on a collec-
tive behavior; however, to our knowledge there is no quantified data
regarding hair clustering and cohesion. Last, the simulation of a full
head of hair raises obvious issues in terms of efficiency.

This paper tackles the problem of accurately modeling hair dynam-
ics while keeping computational costs reasonable. Unlike prior
work in hair animation, we set up our model using studies from the
field of cosmetics on the physical properties of real hair. This allows
us to parameterize virtual hair from measured features, yielding re-
alistic simulations that we validated through a set of experiments.

1.1 Previous work

Three families of computational models have been used for simu-
lating the dynamics of individual hair strands: Mass-spring sys-
tems [Rosenblum et al. 1991; Plante et al. 2001], two dimensional
projective dynamics [Anjyo et al. 1992; Daldegan et al. 1993; Lee
and Ko 2001], and chains of rigid bodies [Hadap and Magnenat-
Thalmann 2001; Chang et al. 2002]. The first family of models is
well suited for animating long, extensible wisps of hair. The second
efficiently handles non-stretchable straight hair. The last increases
realism by handling the twisting motion of hair strands while still
preventing stretching. Although these models have led to very nice
visual results, several important hair features have not yet been
taken into account. For instance, the deformations of curly hair
are quite specific compared to straight hair, but previous work has
simply simulated straight extensible hair wisps, with curly strands
used only for rendering. Moreover, none of the previous models
demonstrated nonlinear behaviors such as bending-twisting insta-
bilities or buckling, which have a great impact on realism.

An accurate mechanical representation for hair strands is the Kirch-
hoff model [Audoly and Pomeau 2006], which relies on the notion
of Cosserat curves. This model was first introduced to the CG com-
munity by Pai [2002] who used an iterative integration in space to



get the statics of a surgical wire. In our previous work, we ap-
plied this model to hair, using energy minimization to compute the
equilibrium position of strands submitted to gravity and collision
forces [Bertails et al. 2005b]. The geometric features of strands
such as curliness were accurately modeled, providing a predictive
method for a variety of natural hairstyles. However, this approach
does not handle dynamics, making it of no use for hair animation.
To our knowledge, simulating the dynamics of Cosserat rods has
never been addressed in computer graphics. A major contribution
of this paper is a robust solution to this difficult problem.

For efficient hair animation, some assumptions need to be made
regarding the collective behavior of hair. Hair has been either ap-
proached as a continuous medium [Daldegan et al. 1993; Hadap
and Magnenat-Thalmann 2001; Chang et al. 2002; Bando et al.
2003] or as a set of disjoint hair wisps [Plante et al. 2001; Koh
and Huang 2001; Bertails et al. 2003; Ward and Lin 2003; Choe
et al. 2005]. Both approaches render hair from the simulation of
a limited number of guide strands. The former uses interpolation
to add extra strands at the rendering stage, while the latter extrap-
olates the positions of the wisp skeletons. Methods based on a
continuum are appropriate for smooth and fluid hair, while wisp-
based approaches achieve their best results for wavy or curly hair.
In the two approaches, self interactions are treated in dramatically
different ways. For instance, Hadap’s continuum model relies on
a fluid-like internal viscosity to model hair friction and prevent
self-intersections, whereas Plante sets up an anisotropic collision
response between hair wisps. None of these models accounts for
the specific state of the surface of hair strands when computing col-
lision response, and no attention is paid to modeling the variations
of collective hair behavior due to straight, curly or fuzzy types.

We specifically avoid making a choice between continuous and
wisp-based approaches by introducing a unified formulation. This
allows the collective behavior of hair to be parameterized from ob-
served geometric features whose effects on hair motion are modeled
through an adequate tuning of hair interactions.

1.2 Overview

This paper presents a novel mechanical model for hair, dedicated to
the accurate simulation of hair dynamics. In the spirit of work by
Marschner et al. [2003] in the field of hair rendering, we rely on the
structural and mechanical features of real hair to achieve realism.
This leads us to use Kirchhoff equations for dynamic rods. These
equations are integrated in time thanks to a new deformable model
that we call Super-Helices: A hair strand is modeled as a C1 contin-
uous, piecewise helical1 rod, with an oval to circular cross section.
We use the degrees of freedom of this inextensible rod model as
generalized coordinates, and derive the equations of motion by La-
grangian mechanics. As our validations show, the resulting model
accurately captures the nonlinear behavior of hair in motion, while
ensuring both efficiency and robustness of the simulation.

Our second contribution is an in-depth validation of the model with
respect to hair dynamics, contacts, and collective hair behavior. As
our results show, our method can reproduce typical nonlinear ef-
fects of hair dynamics, as well as cohesion between neighboring
hair clumps. Finally, our model is able to handle a wide range of
natural hair types: straight, wavy and curly. Meanwhile, compu-
tations are no more expensive than those of the recent hair models
presented in computer graphics.

1A helix is a curve with constant curvatures and twist. Note that this def-

inition includes straight lines (zero curvatures and twist), so Super-Helices

can be used for representing any kind of hair.

2 Hair structure and mechanics

Achieving realistic simulations of hair motion requires some un-
derstanding of hair structure. This section gives a summary of the
existing knowledge on hair, mostly issued from the field of cosmet-
ics. Further details can be found in [Lindelof et al. 1988; Robbins
2002].

2.1 Individual strands

A human hair fiber is a thin structure (about 0.1 mm in diameter)
with either a circular or oval cross section. The active part, called
the follicle, is located under the skin and produces the keratin pro-
teins that compose the hair material. The second part, the visible –
and dead – part of hair, is called the hair shaft, and corresponds to
the “hair strand” we are seeking to animate.

The hair shaft is entirely synthesized by the associated follicle,
which acts as a mold for shaping the strand [Lindelof et al. 1988].
It thus has almost uniform cross section, natural twist and natural
curvatures all along. These geometric parameters are associated
with commonsense notions of straight, curly, or fuzzy hair. Their
values are characteristic of the ethnic group from which the hair
comes [Robbins 2002]. Africans have follicles with a helical form
and an oval cross section, whereas Asians have follicles that are
completely straight with a larger and circular cross section. As a
result, Asian hair is thicker, with no natural curliness. It makes it
look smooth and regular. In contrast, African hair looks frizzy and
irregular. Caucasian hair stands between these two extremes.

The internal structure of the shaft consists of three concentric lay-
ers from the core to the periphery: a central canal called medulla;
the cortex, i.e. cells filled with keratin, contributing 90% of the to-
tal weight; and the cuticle, a thin coating covered by tilted scales.
Keratin is a remarkably stiff material, making the shaft extremely
difficult to shear and stretch. However, because its cross section is
very small, it can be easily bent and twisted.

Deformations of a hair strand involve rotations that are not infinitely
small and so can only be described by nonlinear equations [Audoly
and Pomeau 2006]. Physical effects arising from these nonlineari-
ties include instabilities called buckling. For example, when a thin
hair wisp is held between two hands that are brought closer to each
other (see Figure 2, right), it reacts by bending in a direction per-
pendicular to the applied compression. If the hands are brought
even closer, a second instability occurs and the wisp suddenly starts
to coil (the bending deformation is converted into twist).

Figure 2: Left, close view of a hair fiber (root upwards) showing the
cuticle covered by overlapping scales. Right, bending and twisting
instabilities observed when compressing a small wisp.

2.2 Collective behavior of hair

Hair is composed of around 150,000 strands that interact with each
other and with the body. Hair contacts have a complex nature due



to the tilted scales that pave the cuticle of the hair shaft (see Fig-
ure 2, left). This irregular surface causes anisotropic friction forces,
whose amplitude strongly depends on the direction of sliding with
respect to the orientation of the scales. This can be easily felt by
rubbing a fiber between thumb and forefinger. Due to the lightness
of a strand, these friction forces are much higher than other external
forces. This explains the strong cohesion observed in hair motion.

The type and shape of strands have a significant effect on collec-
tive hair behavior. The most obvious example of this is hair curli-
ness. Hair clumps are more likely to appear in curly hair, where
the greater number of contacts among hair strands increases the
probability that they will become entangled. In contrast, strands
of straight hair slide easily with their neighbors, and so they appear
as a continuum rather than as a set of disjoint wisps. In general,
as the complexity of hair geometry increases, there is more internal
friction and fewer available degrees of freedom for motion. Model-
ing these features is essential for yielding realistic motion of a full
head of hair, but it remains a challenging issue due to the lack of
quantitative studies on hair clustering.

3 Super-Helices

Figure 3: Left, geometry of Super-Helix. Right, animating Super-
Helices with different natural curvatures and twist: a) straight, b)
wavy, c) curly, d) strongly curly. In this example, each Super-Helix
is composed of 10 helical elements.

We shall first present the model that we used to animate individual
hair strands (guide strands). This model has a tunable number of
degrees of freedom. It is built upon the Cosserat and Kirchhoff the-
ories of rods. In mechanical engineering literature, a rod is defined
as an elastic material that is effectively one dimensional: its length
is much larger than the size of its cross section.

3.1 Kinematics

We consider an inextensible rod of length L. Let s ∈ [0,L] be the
curvilinear abscissa along the rod. The centerline, r(s, t), is the
curve passing through the center of mass of every cross section.
This curve describes the shape of the rod at a particular time t but
it does not tell how much the rod twists around its centerline. In
order to keep track of twist, the Cosserat model introduces a ma-
terial frame ni(s, t) at every point of the centerline2. By material,
we mean that the frame ‘flows’ along with the surrounding material
upon deformation. By convention, n0 is the tangent to the center-
line:

r′(s, t) = n0(s, t), (1a)

while (nα )α=1,2 span the plane of the cross section, see Figure 3,
left. We use primes to denote space derivatives along the center line,
f ′ = ∂ f /∂ s, while the overstruck notation is for time derivatives,
ḟ = d f /dt.

2By convention, lowercase Latin indices such as i are used for all spatial

directions and run over i = 0,1,2 while Greek indices such as α are for

spatial directions restricted to the plane of the cross section, α = 1,2.

The Kirchhoff model for elastic rod starts from this mathemati-
cal description of a Cosserat curve and adds the physical require-
ment of inextensibility and unshearability. In this case, the frame
(ni(s))i=0,1,2 is orthonormal for all s, and there exists a vector
ΩΩΩ(s, t), called the Darboux vector, such that:

n′
i(s, t) = ΩΩΩ(s, t)×ni(s, t) for i = 0,1,2. (1b)

Appropriate boundary conditions must be specified: one end of the
hair strand, s = 0, is clamped into the head while the other end,
s = L, is free. The position of the clamped end, together with the
orientation of the initial frame, are imposed by head motion (an
input in the simulations):

{

r(0, t) = rc(t)
ni(0, t) = ni,c(t) for i = 0,1,2,

(1c)

where subscript ‘c’ refers to the clamped end of the rod, s = 0.

The rod’s material curvatures (κα (s, t))α=1,2 with respect to the
two directions of the cross section and the twist τ(s, t) are defined
as the coordinates of the vector ΩΩΩ(s, t) in the local material frame:

ΩΩΩ(s, t) = τ(s, t)n0(s, t)+κ1(s, t)n1(s, t)+κ2(s, t)n2(s, t). (2)

By introducing a redundant notation for the twist, κ0 = τ , we can
refer to these parameters collectively as (κi(s, t))i=0,1,2.

3.2 Reconstruction, generalized coordinates

The degrees of freedom of a Kirchhoff rod are its material curva-
tures and twist (κi(s, t))i=0,1,2. A continuous model being of little
use for computer animation, we introduce a spatial discretization
as follows. Let us divide the strand s ∈ [O,L] into N segments SQ

indexed by Q (1 ≤ Q ≤ N). These segments may have different
lengths, and N is an arbitrary integer, N ≥ 1. We define the material
curvatures and twist of our deformable model with piecewise con-
stant functions over these segments. We write qi,Q(t) the constant
value of the curvature κi (for i = 1,2) or twist κ0 = τ (for i = 0)
over the segment SQ at time t. Therefore, an explicit formula for
the material curvatures and twist reads

κi(s, t) = ∑
N

Q=1
qi,Q(t)χQ(s) (3)

where χQ(s) is the characteristic function of segment Q, equal to
1 if s ∈ SQ and 0 otherwise. We collect the numbers qi,Q(t) into a
vector q(t) of size 3N, which we call the generalized coordinates
of our model.

These generalized coordinates q(t) can be used to reconstruct the
rod shape at any given time. Indeed, plugging equation (3) into
equation (2), and then equation (2) into equations (1a–c) yields a
differential equation with respect to s. By integration of this equa-
tion, one obtains the centerline r(s) and the material frames ni(s) as
a function of s and q(t). This process, called the reconstruction, can
be carried out analytically; as explained in Appendix A, the integra-
tion with respect to s has a symbolic solution over every segment
SQ. By patching these solutions, we find that our model deforms

as a helix over every segment SQ and, moreover, is C1-smooth (be-
tween adjacent helices, both the centerline and the material frames
are continuous). This is why we call this model a Super-Helix. We
write rSH(s,q) and nSH

i (s,q) as the parameterization of the Super-
Helix in terms of its generalized coordinates q. In Appendix A, we
explain how these functions rSH and nSH

i can be obtained in sym-
bolic form.

Imposing a uniform value to the material curvatures and twist over
the hair length would make it deform as a plain helix. This is in-
deed what happens when one chooses the coarsest possible spatial



discretization, that is N = 1. For other values of N, the rod is made
of several helices patched together. Large values of N yield arbi-
trarily fine space discretizations.

3.3 Dynamic equations for a Super-Helix

Given a deformable body whose configuration depends on general-
ized coordinates q(t), Lagrangian mechanics provides a systematic
method for deriving its equations of motion, q̈ = a(q, q̇, t). This is
done by feeding the Lagrangian equations of motion:

d

dt

(

∂T

∂ q̇iQ

)

−
∂T

∂qiQ
+

∂U

∂qiQ
+

∂D

∂ q̇iQ
=

∫ L

0
JiQ(s,q, t) ·F(s, t)ds

(4)
with the expressions for the kinetic energy T (q, q̇, t), for the inter-
nal energy U(q, t) and for the dissipation potential D(q, q̇, t) that
describe the physics of the system at hand. The right-hand side of
equation (4) is the generalized force fiQ deriving from the lineic
density F(s, t) of physical force applied on the rod, and JiQ defines

the Jacobian matrix, JiQ = ∂rSH(s,q)/∂qiQ. We consider three
force contributions, namely hair weight, viscous drag from ambi-
ent air (considered at rest for simplicity) with coefficient ν , and
interaction forces with surrounding strands and body:

F(s, t) = ρ Sg−ν ṙSH(s,q)+Fi(s, t), (5a)

where F(s, t) is the total external force applied to the rod per unit
length, ρS is the mass of the rod per unit length, and g is the accel-

eration of gravity. The interaction forces Fi are computed using the
model presented shortly in Section 4.

The three energies in the equations of motion (4) that are relevant
for an elastic rod are:

T (q, q̇, t) =
1

2

∫ L

0
ρ S

(

ṙSH(s,q)
)2

ds (5b)

U(q, t) =
1

2

∫ L

0
∑

2

i=0
(EI)i (κ

SH
i (s,q)−κn

i (s))2 ds (5c)

D(q, q̇, t) =
1

2

∫ L

0
γ∑

2

i=0

(

κ̇SH
i (s,q)

)2
ds. (5d)

The kinetic energy T is defined in terms of the rod velocity, ṙ =
dr/dt in the classical way. The internal energy U in equation (5c)
is the elastic energy of a rod, as derived, for instance, in [Audoly
and Pomeau 2006] and used in [Bertails et al. 2005b]. The co-
efficients (EI)i are the principal bending stiffness of the rod in the
directions ni (for i = 1,2) while (EI)0 is the torsional stiffness, clas-
sically written µ J (for i = 0). These parameters are given by text-
book formulas in terms of the material properties (Young’s modu-
lus and Poisson’s ratio) and of the geometry of the cross-section.
The quantities κn

i (s) are called the natural curvatures (i = 1,2) and
twist (i = 0) of the rod. They characterize the shape of the rod in
the absence of external force: for κi(s) = κn

i (s) the elastic energy
is vanishing and therefore minimum. Vanishing natural curvatures
(κn

α = 0 for α = 1,2) model straight hair. Nonzero values will result
in wavy, curly or fuzzy hair. In practice, tuning these parameters
allows one to choose for the desired hair style, as explained in Sec-
tion 2. Overall, the mechanical properties of the rod are captured
by only six entities, the stiffnesses (EIi)i=0,1,2 and the natural twist
and curvatures (κn

i (s))i=0,1,2. We neglect the dependence of the
stiffnesses on s, but not that of the natural twist and curvatures: we
found that slight variations of (κn

i (s))i with s allow for more real-
istic hair styles. Finally, we choose for the dissipation energy D in
equation (5d) a simple heuristic model for capturing visco-elastic
effects in hair strands, the coefficient γ being the internal friction
coefficient.

All the terms needed in equation (4) have been given in equa-
tions (5). By plugging the latter into the former, one arrives at
explicit equations of motion for the generalized coordinate q(t).

Although straightforward in principle, this calculation is involved3.
It can nevertheless be worked out easily using a symbolic calcula-
tion language such as Mathematica [Wolfram 1999]: the first step
is to implement the reconstruction of Super-Helices as given in Ap-
pendix A; the second step is to work out the right-hand sides of
equations (5), using symbolic integration whenever necessary; the
final step is to plug everything back into equation (4). This leads to
the equation of motion of a Super-Helix:

M[s,q] · q̈+K · (q−qn) = A[t,q, q̇]+
∫ L

0
JiQ[s,q, t] ·Fi(s, t)ds.

(6)
In this equation, the bracket notation is used to emphasize that all
functions are given by explicit formula in terms of their arguments.

In equation (6), the inertia matrix M is a dense square matrix of size
3N, which depends nonlinearly on q. The stiffness matrix K has the
same size, is diagonal, and is filled with the bending and torsional
stiffnesses of the rod. The vector qn defines the rest position in gen-
eralized coordinates, and is filled with the natural twist or curvature
κn

i of the rod over element labelled Q. Finally, the vector A collects
all remaining terms, including air drag and visco-elastic dissipa-
tion, which are independent of q̈ and may depend nonlinearly on q
and q̇.

3.4 Time discretization

The equation of motion (6) is discrete in space but continuous in
time. For its time integration, we used a classical Newton semi-
implicit scheme with fixed time step. Both the terms q̈ and q in the
left-hand side are implicited. Every time step involves the solution
of a linear system of size 3N. The matrix of this linear system
is square and dense, like M, and is different at every time step: a
conjugate-gradient algorithm is used. The density of M is the price
to be paid for incorporating the inextensibility constraint into the
parameterization. It results in degrees of freedom that are non local
in physical space.

3.5 Super-Helices for solving the Kirchhoff equa-

tions

The equations of motion for dynamic elastic rods were derived by
Kirchhoff in 1859. A modern derivation of these equations can be
found, for instance, in [Audoly and Pomeau 2006]: it follows the
same principles as the one for a Super-Helix. The main difference
is that we have constrained the material curvatures and twists to be
piecewise constant functions of s in equation (3); these functions
may depend arbitrarily on s for regular Kirchhoff rods. Apart from
this difference, the Super-Helix model is based on the same physi-
cal assumptions as the Kirchhoff equations. Therefore, the Super-
Helix method provides a discrete model for solving the Kirchhoff
equations.

We derived the Super-Helix model after we extensively tested ex-
isting integration schemes for the Kirchhoff equations, and eventu-
ally realized that they were not well suited for computer graphics
applications. We implemented an elegant algorithm, due to [Hou
et al. 1998], based on a discretization of these equations by finite
differences (this model is referred to as the ‘nodal approach’ in the
video). In this paper, Hou et al. discuss very clearly the difficulties

3The elements of M, for instance, read MiQ,i′Q′ = 1
2

∫∫

JiQ(s,q) ·

Ji′Q′ (s′,q)dsds′ where J is the gradient of rSH(s,q) with respect to q.



associated with the numerical integration of the Kirchhoff equa-
tions, which are numerically very stiff. They propose an attempt
for removing this stiffness. It brings a very significant improvement
over previous methods but we found that it was still insufficient
for hair animation purposes: there remain quite strong constraints
on the time steps compatible with numerical stability of the algo-
rithm. For instance, simulation of a 10 cm long naturally straight
hair strand using the algorithm given in [Hou et al. 1998] remained
unstable even with 200 nodes and a time step as low as 10−5 s. The
stiffness problems in nodal methods have been analyzed in depth
by [Baraff and Witkin 1992] who promoted the use of Lagrangian
deformable models (sometimes called ‘global models’ as opposed
to nodal ones). This is indeed the approach we used above to de-
rive the Super-Helix model, in the same spirit as [Witkin and Welch
1990; Baraff and Witkin 1992; Qin and Terzopoulos 1996].

We list a few key features of the Super-Helix model which con-
tribute to realistic, stable and efficient hair simulations. All space
integrations in the equations of motion are performed symbolically
off-line, leading to a quick and accurate evaluation of the coeffi-
cients in the equation of motion at every time step. The inextensibil-
ity constraint, enforced by equations (1a–1b), is incorporated into
the reconstruction process. As a result, the generalized coordinates
are free of any constraint and the stiff constraint of inextensibility
has been effectively removed from the equations. Moreover, the
method offers a well-controlled space discretization based on La-
grangian mechanics, leading to stable simulations even for small N.
For N → ∞, the Kirchhoff equations are recovered, making the sim-
ulations very accurate. By tuning the parameter N, one can freely
choose the best compromise between accuracy and efficiency, de-
pending on the complexity of hair motion and on the allowed com-
putational time. We are aware of another Lagrangian model4 used
in computer graphics that provides an adjustable number of de-
grees of freedom, namely the Dynamic NURBS model [Qin and
Terzopoulos 1996], studied in the 1D case by [Nocent and Remion
2001]. Finally, external forces can have an arbitrary spatial depen-
dence and do not have to be applied at specific points such as nodes,
thereby facilitating the combination with the interaction model.

4 Application and validation

In this section, our Super-Helix model is used to animate
sparse guide strands that define global hair motion, in a simi-
lar way to [Daldegan et al. 1993; Chang et al. 2002]. A new
scheme is first proposed for convincingly modelling a hair as-
sembly from this sparse set of guide strands. Then, we pro-
vide a validation of our physical model against a series of ex-
periments on real hair, and demonstrate that the Super-Helix
model accurately simulates the motion of hair. Images and
videos showing our set of results are available at http://www-
evasion.imag.fr/Publications/2006/BACQLL06/.

4.1 Modelling a hair assembly

Sparse set of guide hair strands: Realistically animating hair
from only a few hundreds of simulated strands is made possible by
the local coherence of hair motion. As in previous approaches, the
present model aims at mimicking the collective behavior of hair by
setting up adequate interaction forces between the simulated strands
(Super-Helices) and by adding extra strands at the rendering stage.

4In this model, geometric parameters, defined by the NURBS control

points and the associated weights, are used as generalized coordinates in

the Lagrangian formalism. In contrast, we opt here for mechanically-based

generalized coordinates: they are the values of the material curvatures and

twist, which are the canonical unknowns of the Kirchhoff equations.

In the following, we briefly explain how hair interactions are han-
dled, and propose a unified scheme for generating the hair geometry
from the set of sparse guide strands.

Hair interactions: Simulating a full head of hair requires an ef-
ficient and accurate scheme for handling hair-hair and hair-body
collisions. Detection is efficiently processed by exploiting tempo-
ral coherence, as in [Raghupathi et al. 2003]: we avoid the quadratic
cost of computing proximity of guide strands by keeping track of
pairs of closest points over time. As in [Choe et al. 2005], contacts
between hair volumes are handled by dissipative penalty forces.

Generating the rendered hair geometry: To be able to han-
dle both smooth and clumpy hairstyles, we avoid choosing between
continuum and wisp-based representations for hair. Many real
hairstyles display an intermediate behavior with hair strands being
more evenly spaced near the scalp than near the tips. Our solution
is based on a semi-interpolating scheme to generate non-simulated
hair strands from the guide strands (see Figure 4, and the video):
we range from full interpolation to generate the extra hair strands
near the scalp to no interpolation within a hair wisp near the tips.
The separation strongly depends on the level of curliness: straight
hair requires more interpolation than curly and clumpy hair. Note
that for smooth, interpolated hair, we avoid interpolation between
two guide strands having close roots but distant tips by adding a
criterion on the distance between tips, see Figure 4, (d).

Figure 4: Semi-interpolating scheme for generating the final hair
geometry: hair a) is smoothly interpolated, b) is interpolated near
the roots but clumpy near the tips, c) forms disjoint locks (no inter-
polation); d) interpolation across the right shoulder is prevented by
the criterion on the maximal distance between the tips.

In our animations, the final hair geometry was rendered using the
model of Marschner et al. [2003] for accurately shading a hair
strand, together with the algorithm of Bertails et al. [2005a] for
casting self-shadows inside hair.

4.2 Choosing the parameters of the model

In our model, each Super-Helix stands for an individual hair strand
placed into a set of neighboring hair strands, called hair clump,
which is assumed to deform continuously. To simulate the motion
of a given sample of hair, which can either be a hair wisp or a full
head of hair, we first deduce the physical and geometric parame-
ters of each Super-Helix from the structural and physical properties
of the hair strands composing the clump. Then, we adjust friction
parameters of the model according to the damping observed in real
motion of the clump. Finally, interactions are set up between the
Super-Helices to account for contacts occurring between the differ-
ent animated hair groups. In this section, we explain how we set all
the parameters of the Super-Helix model using simple experiments
performed on real hair.



Hair mass and stiffness: We set the density ρ to be equal to

a typical value for hair, 1.3 g · cm−3. The mean radius r and the
ellipticity e = rmax

rmin
of the Super-Helix cross-section are deduced by

direct microscopic observation of real hair fibers (see Figure 5, left)
whereas Young’s modulus and Poisson’s ratio are taken from exist-
ing tables, which report values for various ethnic origins [Robbins
2002]. These parameters are then used to compute the bending and
torsional stiffnesses (EI)i=0,1,2 of the Super-Helix, as given by text-
book formulas.

Natural curliness: The natural curvatures and twist parameters
of the Super-Helix model are set by:

κn
1 = 1/rh κn

2 = 0 τn =
∆h

2π r2
h

,

where rh is the radius and ∆h the step of the approximate helical
shape of the real hair clump, measured near the tips (see Figure 5,
right). Indeed, the actual curvatures and twist should be equal to
their natural value at the free end of the rod, where the role of grav-
ity becomes negligible. In practice, we add small random variations
to these values along each Super-Helix to get more natural results.
We have noted that in reality, most hair types have an almost zero
natural twist τn, except African hair (see Appendix B).

250 µm

Figure 5: Left, measuring the mean radius r and the ellipticity
e of the model by observation of real hair fibers with a video-
microscope. Right, measuring the radius rh and the step ∆h of the
natural helical shape at the tip of a real hair clump.

Internal friction γ: This parameter measures the amount of in-
ternal dissipation within a Super-Helix during motion. It espe-
cially accounts for the hair-hair dissipative interactions occurring
inside the hair clump whose motion is guided by the Super-Helix.
We found that, in practice, the internal friction can be easily ad-
justed by comparing the amplitude of deformation between the real
and the simulated hair clump when a vertical oscillatory motion
is imposed, see Figure 6. Typically, we obtained best results with
γ ∈ [5.10−10,5.10−11] kg ·m3 · s−1.

Air-hair friction coefficient: Once parameter γ is chosen, the
air-hair friction parameter can be fitted by comparing the damping
duration between the real and the simulated hair clump, for example
when imposing a pendulum motion. We noted the air-hair friction
parameter is strongly related to the local alignment of neighboring
hair strands, called the hair discipline in the field of cosmetics. As
shown in the video, fuzzy hair is more subject to air damping than
regular, disciplined hair. In practice, we chose the air-hair friction
coefficient ν between 5.10−6 kg · (m · s)−1 (disciplined hair) and

5.10−5 kg · (m · s)−1 (fuzzy hair).

Friction with another object: Contacts between hairs, and be-
tween our hair model and external objects (such as the body) are

Figure 6: Fitting γ for a vertical oscillatory motion of a disciplined,
curly hair clump. Left, comparison between the real (top) and vir-
tual (bottom) experiments. Right, the span ℓA of the hair clump
for real data is compared to the simulations for different values of
γ . In this case, γ = 1.10−10 kg ·m3 · s−1 gives qualitatively similar
results.

performed through penalty forces which include a normal elastic
response together with a tangential viscous friction force. For sim-
ulating realistic contacts between hair and external objects, we use
an anisotropic friction force, which accounts for the oriented scales
covering individual hair fibers. The friction parameter is directly
adjusted from real observations of sliding contacts between the hair
clump and a given material, and then multiplied by a cosine func-
tion to account for the orientation of hair fibers with respect to their
sliding motion over the external object. Our video shows some ex-
amples of simulated contacts between a hair clump and some fab-
rics of various roughnesses.

4.3 Visual comparisons

Hair clumps: With simulation we have reproduced a series of
real experiments on smooth and wavy hair clumps to show that our
model captures the main dynamic features of natural hair. We used
the technique presented previously to fit the parameters of the Super
Helix from the real manipulated hair clump. As shown in Figure 7,

Figure 7: Left, buckling effect caused by vertical oscillations of a
hair clump. Right, hair-hair interactions during fast motion.

left, and in the video, our Super-Helix model adequately captures
the typical nonlinear behavior of hair (buckling, bending-twisting
instabilities), as well as the nervousness of curly hair when submit-
ted to high speed motion (see Figure 6, left). These experiments
also allowed us to check the stability of the simulation, even for
high speed motion.

Full head of hair: We validated our collective hair behavior
model by comparing the details of the motion of a large real wisp
with that of a simulated hair volume controlled by three guide
strands. Our simulation was able to reproduce closely the motion
and the cohesion between neighboring strands (see Figure 7, right,



and our video). Finally, Figure 8 demonstrates that our model con-
vincingly captures the complex effects occurring in a full head of
hair submitted to a high speed shaking motion.

Figure 8: Comparison between a real full head of hair and our
model, on a head shaking motion (straight and clumpy hair type).

4.4 Results and simulation performance

Figure 1 and the last part of our video show three examples of mo-
tion for a full head of hair. Different hair types were simulated,
from long to short and curly to straight. To set up our simulations,
we used typical parameter values for real hair of different ethnic
origins. These parameters are given in Appendix B. We used one
hundred guide strands for the wavy and curly hairstyles, and two
hundred for the smooth Asian hairstyle.

For all hair types, even long or curly ones, we found it to be un-
necessary to use more than 5 to 10 helical elements per guide hair
strand. For higher values of N, the increase in accuracy becomes
imperceptible.

Our model was tested on a 3 GHz Pentium 4 processor. Up to 10
strands can be simulated in real-time. When simulating a full head
of hair, we obtained a very reasonable mean computational time of
0.3 s to 3 s per frame. The performance of our implementation is
thus as good as other recent approaches, such as [Choe et al. 2005].
This is due to the stability of the Super-Helix model, which allows
time steps of ≈ 1/30 s, even during high speed motion, and to the
high order of interpolation provided by the helices, which helps to
keep N small while offering a good accuracy.

4.5 Limitations and future work

The Super-Helix model remains stable for any number N of helical
elements in guide strands. However, the matrix M used in the dy-
namic computation is dense, and as a result, the computation time
increases quickly with N, as O(N2). This quadratic time complex-
ity prevents the use of Super-Helices for a very fine simulation.
However, this proves to be a minor concern for hair animation pur-
poses, as we find N does not have to be very large for generating
pleasant visual results. Moreover, once the number of helical parts
is chosen, the complexity of the whole simulation remains linear
with respect to the number of guide strands.

Besides this, constraints are currently treated using penalty meth-
ods. Analytical methods would be very useful, as they would allow
solid friction to be handled. This is one of the planned future exten-
sions of the model.

Although we could advance in the understanding on collective hair
behavior, not enough data were available for us to set up the really
strong model we would have dreamed of. Indeed, processing non-
simulated hair strands by a simple interpolating scheme between a
fixed set of sparse guide hair strands may lose fine-scale details;
moreover, when thin objects interact with such sparse hair strands,
the coarse granularity of hair may become obvious and distracting.

Quantifying the tendency of hair to cluster and separate according
to the hair type as well as to the collisions occurring between hair
and external objects would be a very interesting avenue for future
work. The relationship between this and the intuitive notions of
curliness and discipline could be investigated.

5 Conclusion

This paper introduced a deformable model able to simulate hair dy-
namics for a wide range of hair types, capturing the complex mo-
tions observed in real hair motions. In particular, the simulation of
curly hair, a notoriously difficult problem, has been demonstrated.
Super-Helices are based on Kirchhoff equations for elastic, inex-
tensible rods and on Lagrangian dynamics, and provide a freely ad-
justable number of degrees of freedom. They take into account im-
portant hair features such as the natural curvature and twist of hair
strands, as well as the oval shape of their cross section. To stress on
the powerful representation of moving hair by Super-Helices, we
have presented a rigorous validation of this model, supported by a
series of comparative experiments on real hair. We also noted that
Super-Helices are able to achieve realistic motions at a very rea-
sonable computational cost: this is permitted by the stability of the
method, which enables large time steps, and by the high order of
interpolation provided by the helices.

An interesting direction for future research would be to adapt our
hair model to a real-time framework, in order to perform interac-
tive hair-styling operations or to use it for character animation in
video-games. We could think of setting up an adaptive version of
the Super-Helices model, where the number of helical parts would
automatically vary over time according to the current deformation
and to the available computational power, following work in artic-
ulated body dynamics [Redon et al. 2005].

The Super-Helix model was invented and implemented by Basile
Audoly. Collective effects were modelled and implemented by
Florence Bertails who also undertook the validation of the model
through experiments and produced the hair animation results. Prior
to this, nodal models were implemented and assessed jointly by
Basile Audoly and Florence Bertails.
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A Helical solution
We show here that the reconstruction of the rod can be carried out over any particular

element SQ = [sL
Q,sR

Q] of the Super-Helix, over which the functions (κi(s))i are constant

by construction. By equations (1), ΩΩΩ′ = ∑iκ
′
i ni +ΩΩΩ×ΩΩΩ = 0, which means that the

Darboux vector is constant along each element. For a given element Q, let us therefore

introduce Ω the norm of the vector ΩΩΩ and ωωω = ΩΩΩ/Ω the unit vector aligned with ΩΩΩ (the

case ΩΩΩ = 0 is considered separately, see below). Finally, we write a‖ = (a ·ωωω)ωωω and

a⊥ = a− a‖ as the projection of an arbitrary vector a parallel to and perpendicular to

the axis spanned by ωωω , respectively.

Since ΩΩΩ is constant, integration of equation (1b) over an element is straightforward.

The material frame ‘rotates’ around ωωω with a constant rate of rotation Ω per unit of

curvilinear length. Therefore, the material frame at coordinate s ∈ SQ is obtained from

the material frame n
Q
i,L = ni(s

L
Q) given on the left-hand side of the interval SQ, by a

rotation with angle Ω(s− sL
Q) and axis parallel to ωωω:

ni(s) = n
Q‖
i,L +n

Q⊥
i,L cos(Ω(s− s

Q
L ))+ωωω ×n

Q⊥
i,L sin(Ω(s− s

Q
L )). (7a)

By equation (1a), the centerline r(s) is then found by spatial integration of n0(s):

r(s) = r
Q
L +n

Q‖
0,L (s−s

Q
L ) +n

Q⊥
0,L

sin(Ω(s− s
Q
L ))

Ω
+ωωω×n

Q⊥
0,L

1− cos(Ω(s− s
Q
L ))

Ω
, (7b)

where r
Q
L = r(sL

Q) is the prescribed position of the centerline on the left-hand side of the

interval. Equations (7) provide the explicit reconstruction of an element. Its centerline

is a helix with axis parallel to ωωω . An equivalent derivation based on Rodrigues’ formula

is given in [Pai 2002]. Two degenerate cases are possible and must be considered

separately: the curve is an arc of circle when τ = 0 and κ1 6= 0 or κ2 6= 0; it is a straight

line when κ1 = κ2 = 0, which can be twisted (τ 6= 0) or untwisted (τ = 0, implying

ΩΩΩ = 0).

Equations (7) can be used to propagate the centerline and the material frame from the

left-hand side sL
Q of the element to its right-hand side sR

Q. The whole rod can then be re-

constructed by applying this procedure over every element successively, starting from

the scalp where r and ni are prescribed by equation (1c). This yields explicit formu-

lae for the functions rSH(s,q) and nSH
i (s,q), which have the form of equation (7) over

each element. The integration constants are determined by continuity at the element

boundaries.

B Parameter values for natural hair

Asian Caucasian 1 Caucasian 2 African

(smooth) (wavy) (curly) (fuzzy)

Radius (µm) 50 35 50 50

Ellipticity 1 1.1 1.1 1.2

Helix radius (cm) 0 1 0.6 0.1

Helix step (cm) 0 0.5 0.5 1

Young’s mod. (GPa) 1 2 1.5 0.5

Poisson’s ratio 0.48 0.48 0.48 0.48


