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Abstract— This paper presents a comprehensive study of the 
performance of Sezawa surface acoustic wave (SAW) devices in 
SweGaN QuanFINE® ultrathin GaN/SiC platform, reaching 
frequencies above 14 GHz for the first time. Sezawa mode 
frequency scaling is achieved due to the elimination of the thick 
buffer layer typically present in epitaxial GaN technology. Finite 
element analysis (FEA) is first performed to find the range of 
frequencies over which the Sezawa mode is supported in the grown 
structure. Transmission lines and resonance cavities driven with 
Interdigital Transducers (IDTs) are designed, fabricated, and 
characterized. Modified Mason circuit models are developed for 
each class of devices to extract critical performance metrics. We 
observe a strong correlation between measured and simulated 
dispersion of the phase velocity (𝒗𝒑) and piezoelectric coupling 
coefficient (𝒌𝟐). Maximum 𝒌𝟐 of 0.61% and frequency-quality 
factor product (f.Qm) of 6×1012 s-1 are achieved for Sezawa 
resonators at 11 GHz, with a minimum propagation loss of 0.26 
dB/λ for the two-port devices. Sezawa modes are observed at 
frequencies spanning up to 14.3 GHz, achieving a record high in 
GaN microelectromechanical systems (MEMS) to the best of the 
authors’ knowledge. 

 
Index Terms— 5G/6G, IoT, RF MEMS, GaN on SiC, surface 

acoustic wave, SAW IDTs, delay lines, resonators, Mason model. 

I.  INTRODUCTION 
SAW devices are essential components for filters, 

oscillators, and RF signal processing blocks in wireless 
communication due to their advantages of lithographically 
defined resonance frequency, simple fabrication process despite 
the use of materials that have historically been difficult to etch, 
low manufacturing cost, and low sensitivity to acceleration [1]–
[3]. They are also widely used in sensor applications due to 
SAW sensitivity to various environmental factors including 
temperature, pressure, viscosity, humidity, etc. at the surface of 
the device [3]–[6]. However, a technology gap in growth and 
material quality has thus far limited the scaling of SAW 
frequencies with low losses required for Super High Frequency 
(SHF) MEMS components for 5G/6G and the Internet of Things 

(IoT). Frequency scaling is also beneficial for SAW sensors as 
their sensitivity increases with the resonance frequency [7]–[9].  

Sezawa acoustic waves in a technology platform such as 
GaN on SiC provide a much-needed solution due to high phase 
velocity to scale to higher frequencies for given lithographic 
feature sizes, with the added benefits of high piezoelectric 
coupling and low viscoelastic losses [10], [11]. This mode 
exhibits improved confinement within the piezoelectric layer 
relative to the Rayleigh mode due to a mismatch in the acoustic 
impedance between the GaN epilayer and the SiC substrate, 
which reduces leakage through the substrate [3], [12], [13]. In 
contrast with suspended acoustic structures, Sezawa mode 
devices are solidly mounted to the bulk substrate, in this case 
SiC, which provides excellent thermal conductivity improving 
power handling and frequency stability [14]. The ability to 
withstand extreme temperatures, radiation tolerance, and 
chemical inertness makes GaN devices ideal for the harsh 
environment required in space exploration, military, and 
industrial applications [15]–[17]. Integration of 
electromechanical components with GaN high-speed active 
devices utilizing inherent 2D electron gas (2DEG) in the 
heterostructures in standard monolithic microwave integrated 
circuit (MMIC) technology reduces system-level parasitics, 
size, weight, cost and increases performance [18], 
[19]. Acoustic wave interaction with the 2DEG in GaN 
heterostructures known as acoustoelectric (AE) effect enables 
nonreciprocal amplification and velocity tuning of acoustic 
waves in correlators and other RF signal processing devices 
[20]–[22]. 

GaN heterostructures which are generally available 
commercially, are typically grown epitaxially on substrates 
including (111) Si, SiC, and Sapphire using a thick buffer layer 
composed of alternating GaN/AlN layers to minimize residual 
stress generated in high-temperature growth [23]. The thicker 
GaN layer with high dislocation and defect density in the buffer 
has thus far limited SAW devices to moderate frequencies. Until 
now, SAW devices were reported below 10 GHz, limited by 
lithography, acoustic velocity, and piezoelectric coupling 
dependence on film thickness [12], [13], [24]. In addition, SAW 
propagation loss and dispersion were limited by defect 
scattering and interface losses in the multilayer buffer. 
SweGaN’s buffer-free QuanFINE® heterostructure [25] 
provides an ultrathin GaN epilayer grown on SiC which, along 
with electron beam (e-beam) lithography, facilitates aggressive 
frequency scaling. The authors previously reported on the 
feasibility of the QuanFINE® platform for SAW devices up to 
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14 GHz [26]. This paper expands on those results with a 
comprehensive analysis of the dispersion of the Sezawa mode 
for different SAW designs, including an assessment of several 
key parameters such as phase velocity, coupling coefficient, 
propagation loss, and frequency-quality factor product.   

II.  QUANFINE® GAN-ON-SIC PLATFORM 
Sezawa mode devices are designed in SweGaN’s 

QuanFINE® platform which consists of a heterostructure of 
AlGaN/GaN with a low defect density unintentionally doped 
(UID) thin GaN channel layer (Fig. 1(a)) [25]. An ultrathin AlN 
nucleation layer (NL) is first grown on semi-insulating 4H-SiC 
to initiate the high-quality growth of the structure in a metal 
organic chemical vapor deposition (MOCVD) reactor [27]–
[29]. The QuanFINE® process does not require a thick, doped 
buffer layer typical in conventional GaN MMICs. A high-
quality in-situ SiN passivation layer is introduced on the AlGaN 
barrier layer to protect the sensitive surface from external 
damage. High-resolution transmission electron micrographs 
(TEMs) of the GaN/AlN and AlN/SiC interfaces (Fig. 1(b)) 
demonstrate grain-free boundaries with low void and 
dislocation density that are essential for high-performance 
MEMS and MMIC devices [27]. The AlN nucleation layer 
significantly improves heat dissipation from the GaN channel to 
the high-thermal-conductivity SiC substrate due to its 
outstanding crystalline quality and ultra-low thermal boundary 
resistance (TBR), making the structure ideal for high power 
operation [25]. X-ray diffraction rocking curves (XRCs) exhibit 
full width at half maximum (FWHM) of 86 arcsec and 272 
arcsec for the GaN (002) and GaN (102) reflections (Fig. 1(c)). 
These measurements correspond to a reduction in defect density 

of two orders of magnitude when compared with typical GaN 
epilayers of similar thickness [27], [30], enabling low 
viscoelastic losses for GaN electromechanical devices [20].  

III.  FEA SIMULATION 
The presence of SHF Sezawa modes in the QuanFINE® 

heterostructure is confirmed through 2D FEA simulation using 
COMSOL Multiphysics. Eigenmode analysis is performed on a 
unit cell spanning one acoustic wavelength (λ) and IDT width 
(WIDT) and gap each spanning one quarter wavelength (λ/4). 
The 2DEG formed in the heterostructure can be used to 
block electromechanical actuation by shielding the electric 
fields from penetrating inside the piezoelectric layers [31]. For 
this fundamental study of mode propagation, the 2DEG along 
with the AlGaN barrier and SiN passivation layers in the 
QuanFINE® structure are therefore removed during the 
fabrication process and are not included in the unit cell 
simulation. A pair of Ni IDT fingers with thickness of 80 nm is 
included to capture the effects of mass loading and interface on 
the resonance mode [32], [33]. Boundary Conditions (BCs) are 
defined as free on the top of the unit cell geometry, and periodic 
on both sides of the unit cell. A perfectly matched layer (PML) 
is introduced at the bottom of the unit cell with fixed BC to 
simulate radiative losses into the thick SiC substrate. A contour 
plot of total displacement shows the Sezawa mode in the 
structure at resonance (Fig. 2(a)). Simulated one-port 
admittance response (Y11) between signal and ground terminals 
for a wavelength of 400 nm exhibits resonance (𝑓#) and anti-
resonance (𝑓$) frequencies at 14.23 GHz and 14.26 GHz, 
respectively (Fig. 2(b)). 

IV.  FABRICATION AND CHARACTERIZATION  
SAW devices are fabricated on a QuanFINE® substrate 

using a two-mask process. We begin with a shallow blanket etch 
of in-situ SiN and AlGaN layers using CHF3/O2 and BCl3/Cl2 
plasma inside an inductively coupled plasma–reactive ion etcher 
(ICP-RIE) (Fig. 3(a)). A 10-20 nm etch of the GaN channel is 
performed to ensure complete removal of the 2DEG 
heterojunction. E-beam lithography is used to pattern the IDTs 
followed by evaporation of Ti(5nm)/Ni(75nm) (Fig. 3(b)). 

 
 
Fig. 1. (a) Cross-sectional schematic of QuanFINE® heterostructure on SiC 
substrate containing GaN channel on an ultrathin AlN nucleation layer 
(NL). hp denotes the combined thickness of the piezoelectric layers i.e., 
GaN and AlN. (b) TEMs with cross-sections of GaN/AlN/SiC interfaces. 
(c) XRCs confirming high structural quality of GaN layer.   

 
 

Fig. 2. 2D unit cell FEA simulation in COMSOL Multiphysics depicting 
(a) total displacement of Sezawa mode and (b) one-port admittance plot 
(Y11) for a unit cell width (λ) of 400 nm. Series (fs) and parallel (fp) 
resonances are indicated in the plot.  
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Finally, Ti(5nm)/Au(245nm) is evaporated and patterned with 
lift-off using photolithography for the low resistance pads and 
routings (Fig. 3(c)). Atomic force microscopy (AFM) 
measurements of the root mean square (rms) roughness of the 
surface before and after shallow etch (Fig. 3(d, e)) confirm good 
surface morphology, a necessary property for low propagation 
loss of the Sezawa mode devices. 

Four different types of designs for Sezawa mode devices 
are studied in this work, including (a) one-port IDTs, (b) one-
port resonators confined by shorted metal with one IDT set 
centered in the cavity, (c) two-port delay lines consisting of two 
IDT ports separated by an acoustic transmission region, and (d) 
two-port resonators with metal reflectors forming a resonance 
cavity and two IDT sets for drive and sense embedded within 
the cavity. Schematic illustrations alongside optical 
micrographs of these four are provided in Fig. 4(a-d). Fig. 4(e) 
shows a scanning electron micrograph (SEM) of the corner of a 
one-port resonator, with Ti/Ni transducers, reflectors, bus, and 
Ti/Au pad.  

The devices are measured at room temperature in a radio 

frequency (RF) probe system (Cascade PMC 200) under 
vacuum. RF input signal of -15 dBm is applied using GSG 
probes (|Z|, 150 µm pitch) with 50 Ω termination, and scattering 
parameters (S-parameters) are obtained by a parametric network 
analyzer (Agilent N5225A). SOLT calibration is performed 
prior to measurement. The devices under test are then de-
embedded from the measured frequency response using open 
and short structures fabricated on-chip to eliminate electrical 
parasitics from probe pads and routing to the devices.   

V.  RESULTS AND DISCUSSIONS 

A.  Equivalent Circuit Models 
The cross-field Mason model [34], [35] is modified by 

adding lumped elements to extract key electromechanical 
parameters from the measured data for different Sezawa mode 
devices shown in Fig. 4(a-d). Extracting parameters using the 
same circuit models provides a common platform to analyze and 
compare the performances of different SAW designs. 
Schematic illustrations of the equivalent circuit models for the 
four different SAW designs are shown in Fig. 5(a-d). For all 
designs under consideration, a unit cell containing a single IDT 
finger normalized to the aperture (Fig. 5(e)) is modeled by 
transmission lines with normalized acoustic impedance for free 
(Zf) and metalized (Zm) regions of the structure (Fig. 5(f)). The 
phase angles of the transmission lines (ϕf , ϕm) corresponding to 
the propagation of the acoustic waves are determined from the 
finger metallization ratio (m) of the IDT, and the free (𝑣%) and 
metalized (𝑣&) acoustic velocities calculated for wavelength (λ) 
[36]. The transformer ratio (η) corresponds to the efficiency of 
energy conversion from electrical to acoustic domain and vice 
versa. The capacitance between IDT fingers, including the 
feedthrough component within the piezoelectric layers, is 
represented by Co. Finally, electrical losses associated with the 
piezoelectric transducer are captured in the lumped Ro [37]. To 
construct the complete model, acoustic ports are cascaded in 
series, with parallel connection of electrical ports to construct 
the full N-finger IDT RF port from each IDT pair modeled. The 
polarity of the transformer swaps for the alternating fingers to 
model the signal and ground terminals. 

As the IDT fingers are electrically shorted at the ends for 

 
 

Fig. 4. Schematics of top view (left) and optical micrographs (right) of different SAW designs considered in this study. (a) One-port IDTs. (b) One-port 
resonator. (c) Two-port delay line. (d) Two-port resonator. (e) SEM of a resonator depicting IDTs, reflectors, pad and bus connectors. Various electrical 
terminals i.e., RF ports, grounds, and parameters for physical dimensions i.e., unit cell width (λ), IDT width/gap (WIDT), port distance (D), device aperture 
(L), number of IDT (NIDT) and reflector (NR) pairs are also illustrated here.  

 
 

Fig. 3. Fabrication process flow for Sezawa mode devices. (a) Shallow 
blanket ICP-RIE etch of top SiN and AlGaN layers to eliminate 2DEG. (b) 
IDT (Ti/Ni) metallization. (c) Pad (Ti/Au) metallization. AFM images 
show low rms surface roughness (Rs) (d) before and (e) after shallow etch. 
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the reflectors of the resonators, transmission lines representing 
the acoustic domain without any lumped element are used to 
denote a unit cell for each finger (Fig. 5(g)). A lossy 
transmission line of impedance Zf and phase angle ϕp is also 
included in the Mason model for two-port delay lines and 
resonators to model the acoustic propagation region in the 
middle (Fig. 5(h)). Additionally, a shunt Cf  – Rf branch is used 
to model electromagnetic feedthrough signal directly between 
the two ports associated with shorter delay paths [38]. Finally, 

free propagation away from the structure and its ends are 
represented by Zf termination, and electrical resistance and 
inductance inherent to the pads and transducer fingers are 
modeled by a series Rs – Ls branch.  

B.  Frequency Responses 
Measured frequency spectra for Sezawa mode IDTs, delay 

lines, and resonators are shown in Fig. 6(a-d). Based on the FEA 
simulation results, we designed five different Sezawa mode 

 
 

Fig. 5. Schematic illustrations of modified Mason model for one-port (a) IDTs, (b) resonators and two-port (c) delay lines, (d) resonators. (e) A unit cell 
normalized to the aperture showing top view of a single IDT or reflector finger. (f) An equivalent circuit with transmission lines, lumped elements, and 
transformers for electromechanical energy conversion representing the unit cell with a single IDT finger for all designs. (g) Transmission lines without 
lumped elements and electrical port for each unit cell of a shorted reflector for the resonators. (h) A lossy transmission line modeling the acoustic 
propagation path between the IDTs for two-port delay lines and resonators. Series and parallel connections between acoustic and electrical ports, 
respectively for full device modeling. 
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devices for each design category (Fig. 4) with an IDT width/gap 
between 100-375 nm to investigate a wide operating frequency 
ranging from 5-14 GHz. The aperture (L) and length of the 
acoustic transmission path (D) of the devices are selected as an 
integer multiple of the wavelength (nλ). The IDTs in the 
reflectors have the same width, gap, and aperture as that of the 
ports. Measured data from different designs exhibit minimum 

and maximum resonance frequencies of 5.4 GHz and 14.3 GHz 
for the IDT width/gap of 375 nm and 100 nm, respectively. So, 
SAW devices in the QuanFINE® platform exceed resonance 
frequencies of the state-of-the-art GaN resonators using 
Rayleigh (8.5 GHz) [24], Sezawa (9.1 GHz) [24], and thickness 
(8.7 GHz) [39] modes having a comparable IDT resolution. 
Modified Mason circuit models developed in Fig. 5 for different 

 
 

Fig. 6. Measured reflection spectra (S11) of one-port (a) IDTs, (b) resonators, and transmission spectra (S21) of two-port (c) delay lines, (d) resonators. 
The legends specify physical device parameters for the devices. Zoomed-in spectra below each plot show measured (solid) and fitted (dash) responses 
of magnitude and phase/delay for the 150 nm IDT devices.  
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designs are implemented in Keysight Advanced Design System 
(ADS) software, and measured data are fitted to extract key 
performance matrices e.g., electromechanical coupling 
coefficient (𝑘'), propagation loss (𝛼), etc. Only the fundamental 
Sezawa mode in the frequency response is fitted by the modified 
Mason model to avoid computation complexities due to a large 
number of parameters that would arise to incorporate the 
spurious mode in the model. The zoomed insets of Fig. 6 show 
ADS fitting with the measurement of the magnitude and phase 
responses for the IDTs and resonators, and group delay [40] for 
the delay lines validating our circuit models (Fig. 5) for the 150 
nm IDT devices. Parasitic feedthrough for the shorter delay 
paths and higher-order mode coupled with the fundamental 
Sezawa mode [12] could explain the mismatch between 
measured and fitted responses, particularly for the two-port 
devices in the insets of Fig. 6(c, d). Further analysis in the 
design space is required for Sezawa devices in the QuanFINE® 
platform to operate in the single-mode condition, including 
apodization of the duty cycle of the IDTs, selection of the 
number of IDT pairs in the ports and reflectors, and adjustment 
of IDT metal thickness [12]. 

C.  Phase Velocity  
The dependence of phase velocity (𝑣$) on the normalized 

piezoelectric thickness (hp/λ) for the Sezawa mode in the 
QuanFINE® structure is obtained from simulated and measured 
resonance frequency (𝑓#) using the following equation [7].  

 

𝑣! = 𝑓"	𝜆	                               (1) 
 

Fig. 7 confirms the high phase velocity of the Sezawa mode in 
the GaN/SiC platform. A gradual reduction in phase velocity is 
observed as the acoustic wavelength reduces, presenting a 
limiting factor for the frequency scaling of Sezawa mode 
devices for a given lithographic resolution. Experimental results 
obtained from different SAW designs (Fig. 6) agree well with 
the 2D FEA simulation. 

D.  Electromechanical Coupling Coefficient 
Series (𝑓#) and parallel (𝑓$) resonance frequencies (Fig. 2) 

obtained from the FEA simulation are used to determine the 
electromechanical coupling (𝑘') for the Sezawa mode by the 
following equation [41].   
 

                                  𝑘# = $!

%
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𝑘' are also calculated from the extracted circuit parameters via 
fitting the measurements (Fig. 6) using the modified Mason 
models (Fig. 5) with the following equation [35]. 
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Here, 𝐽 is the Jacobian elliptic integral [42]. 𝑘' extracted by 
fitting with the modified Mason models (Fig. 5) follows the 
trend with the simulation results for all devices, validating the 
use of these circuit models. Fig. 8 exhibits a maximum 𝑘' value 
of 0.61% at 11 GHz for a two-port resonator. Considering a unit 
cell for the IDT fingers normalized to the device aperture (Fig. 
5(e)) and lumped resistance (Rs) for the distributed losses 
associated with the IDTs (Fig. 5(a-d)) can explain the deviation 
in the measurements as compared to the 2D FEA simulations. 
In all cases, 𝑘' arrives at a maximum value around hp/λ ~ 0.5, 
but decreases gradually with lower or higher values of hp/λ. This 
trend is expected based on the confinement of the Sezawa mode 
inside the metal IDTs for shorter wavelengths and excessive 
penetration of the mode into the non-piezoelectric SiC substrate 
in the case of longer wavelengths. The selection of GaN 
thickness is necessarily a critical design consideration to 
achieve a desired frequency range of high-efficiency Sezawa 
mode devices.  

According to theoretical analysis, a maximum 𝑘# of 1.3% 
and ~2% can be achieved for in-plane and thickness mode 
devices, respectively, in the GaN platform [11], [43]. 
Piezoelectric coupling 𝑘# depends on the acoustic mode of 
vibration, with SAW modes typically demonstrating lower 𝑘# 
compared to the thickness mode devices [11]. Fig. 9 shows a 
comparison between the maximum 𝑘# obtained from our 

 
 

Fig. 7. Simulated (line) and experimental (symbol) results of phase 
velocity (𝑣!) dependence on the normalized thickness of piezoelectric 
layers (hp/λ).  

 
 

Fig. 8. The dependence of coupling coefficient (𝑘") obtained from 
simulated (line) and measured (symbol) data on normalized piezoelectric 
thickness (hp/λ). 
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Sezawa mode devices and the state-of-the-art MEMS resonators 
available in the literature [12], [13], [41], [39], [44] in GaN 
MMICs. The resonators in this work show 2´ higher 𝑘# 
compared to previously reported Sezawa mode resonator in 
GaN/SiC, and similar 𝑘# with the thickness mode device in GaN 
[39]. The relatively high coupling in our devices provides an 
insight into the defect-free crystalline quality of the 
piezoelectric layers and effective confinement of acoustic 
energy for Sezawa mode due to acoustic waveguiding in the 
QuanFINE® material stack. 

Although the maximum 𝑘#	achieved from the SAW 
devices (0.61% at 11 GHz) may seem low for wideband filter 
application, it can be further extended by incorporating high 𝑘# 
materials such as GaScN [45] or AlScN [46] in the QuanFINE® 

structure, or by implementing active transduction mechanisms 
as in [47]. This work primarily focuses on the feasibility of the 
platform for MEMS components in the SHF regime and the 
inclusion of Sc doping in the GaN/AlN stack requires further 
study. Nonetheless, the devices in this work, with their low 
propagation loss, can be useful as SAW sensors having high 
sensitivity due to super-high operating frequencies [7]–[9].  

E.  Propagation Loss 
Modified Mason circuit models developed in the previous 

section (Fig. 5) are used to extract propagation loss (𝛼) 
associated with the acoustic transmission path in two-port delay 
lines and resonators (Fig. 6(c, d)). Propagation loss is an 
important performance metric for the two-port devices where 
acoustic wave attenuates while traveling through a lossy 
medium between RF ports. Dispersion of the loss with the 
normalized piezoelectric thickness shown in Fig. 10 reaches a 
minimum value of 0.26 dB/λ at 11 GHz. For higher hp/λ values, 
the Sezawa mode is mainly confined at the upper portion of the 

GaN channel, likely making surface defects a dominant factor 
for the higher propagation loss. For lower hp/λ, the propagating 
acoustic wave penetrates deeper into the GaN/AlN/SiC 
interfaces resulting in higher interfacial loss and substrate 
radiation [48]. 

F.  Frequency-Quality Factor Product 
A modified Butterworth-Van-Dyke (BVD) model [44], 

[49] (Fig. 11(a)) is used to extract the frequency-quality factor 
product (f.Qm) of our one-port resonators (Fig. 6(b)) to 
benchmark their performance with the state-of-the-art MEMS 
devices in GaN MMICs. A series Rm – Lm – Cm branch is used 
to represent the acoustic behavior for series resonance, a shunt 
Co – Ro branch denotes capacitance and electrical losses of the 
piezoelectric transducer, and a Ls – Rs branch models series 
electrical losses for the IDTs and pads. Multiple motional 
branches (Rm – Lm – Cm) are connected in parallel (Fig. 11(a)) 
to fit the fundamental Sezawa mode alongside spurious and 
higher order modes for those devices exhibiting such 
nonidealities. A sample modified BVD model fit of measured 
reflection (S11) by ADS for both fundamental and spurious 
modes of a 150 nm IDT device is shown in Fig. 11(b). The 
unloaded or mechanical quality factor (Qm) and loaded quality 
factor (Ql) of a particular acoustic mode are obtained using the 
following equations [44], [50]. 
 

                                   𝑄/ = 2π𝑓"
4*
5*

                    (4) 
 

     𝑄6 = 2π𝑓"
4*

5*75"
                   (5) 

 

Fig. 11(c) shows the measured dependence of Qm and Ql on the 
resonance frequency extracted using the modified BVD model 
of five one-port resonators (Fig. 6(b)). The figure also includes 
Qm and Ql for higher order spurious modes that exist in the 
frequency responses of 9 GHz (200 nm IDTs) and 11 GHz (150 
nm IDTs) devices (Fig. 6(b)). As the width (WIDT) and aperture 
(L) of the IDTs in the resonators are scaled according to the 
wavelength (λ), the series resistances for all devices are similar 
(Rs ~10 Ω). However, comparable motional resistance (Rm 

 
 

Fig. 9. Coupling coefficient (𝑘") with the resonance frequencies obtained 
from our Sezawa mode device compared with other MEMS resonators in 
GaN MMICs alongside theoretical limits for in-plane and thickness mode 
in GaN. 

 
 

Fig. 10. Propagation loss (𝛼) extracted from the measurements by fittings 
with the normalized thickness of piezoelectric layers (hp/λ). 
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~90	Ω) with Rs for the fundamental mode causes ~10% lower 
Ql than Qm for 9 GHz and 11 GHz devices. The rest of the 
resonators exhibit significantly higher Rm (~1 kΩ) than Rs due 
to the dispersion of the Sezawa mode in the QuanFINE® 
platform for the layer thickness provided, which results in 
similar Ql to Qm.  

A maximum Qm of 542 at 11 GHz is achieved from our 
resonators as shown in Fig. 11(c). Conversion of the minimum 
propagation losses [20] (0.26 dB/λ) obtained from the two-port 
devices in Fig. 10 results in Qm of 104, which is 5× lower 
compared to that of the resonators. The lower Qm of the two-
port transmission structures points to scattering at the interface 
of the IDT and metal-free propagation region. In the resonator, 
the periodic metallization continues seamlessly into the 
reflectors, preventing this radiative loss mechanism. This 
observation is supported by the FEA simulation available in the 
literature [51]. 

The f.Qm product for each resonator is calculated by 
multiplying the resonance frequency (𝑓#) of a mode by its 
extracted Qm. Fig. 12 compares the f.Qm product obtained for 
the fundamental mode of our resonators against Sezawa mode 
devices on different substrates [12], [13], [24] as well as other 
electromechanical modes [24], [39], [44] in GaN MMICs, 

alongside the fundamental limits obtained from the theoretical 
calculation for the phonon-phonon scattering in GaN [20]. A 
maximum Qm of 542 results in f.Qm product of 6×1012 s-1 at 11 
GHz, which is 6´ higher compared to the resonators previously 
reported as a record high frequency (9.1 GHz) in the literature 
for Sezawa GaN [24]. Scattering of acoustic waves due to the 
phonon-electron interaction in the UID GaN layer and mass 
loading for the metal IDTs can result in f.Qm product lower than 
the theoretical limits [20]. Although Lamb mode resonators at  
1.87 GHz in Ref. [44] showed f.Qm products close to the 
fundamental limits, narrow tether design, and non-linearity 
associated with the thin membrane of the released devices make 
them challenging to scale to the SHF regime.  

VI.  CONCLUSION 
The QuanFINE® platform is shown in this work to enable 

frequency scaling beyond the state-of-the-art MEMS devices in 
GaN MMICs with simple fabrication. Extracted phase velocity 
and electromechanical coupling from modified Mason model 
fittings for different SAW designs show the dispersion of the 
Sezawa mode in the structure and close agreement with FEA 
simulation. The resonators exhibit low propagation loss and 
high frequency-quality factor product towards the fundamental 
limits at record high frequency in GaN MMICs. This 
technology with AlGaN/GaN heterostructure and high 2DEG 
density provide a platform for low-cost and high-performance 
reconfigurable MEMS components in GaN MMICs for 
programmable ad-hoc radios in the super high frequency regime 
[52], [53], and opening doors for high-performance SAW 
sensors, monolithically integrated with peripheral active 
circuitries in GaN MMICs for harsh environments [54], [55]. 
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