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Abstract There are various mechanisms that explain both
the inflationary epoch of the early universe and a unifica-
tion of this epoch with the other stages of the universe. In
this study, we show all the expansion history of the universe
and transition among of them in a single form by using the
theoretical framework of F(T ,TG) gravity in the context of
the FRW (Friedmann-Robertson-Walker) universe. Accord-
ing to a particular model we obtain the unified solutions of
the field equations. Without using any scalar field descrip-
tion we especially present the super inflation mechanism
composed of three phase regions which describes the evolu-
tion of the early universe. The mechanism begins with a vac-
uum state and then follows a super accelerated period where
there are two regions. The first continues in a quintessential
field, and the second is a region where the radiation is cre-
ated. Furthermore, we verified this inflationary mechanism
by using the spectral index parameter and the scalar tensor
ratio, i.e., ns , r , and calculated the ratio of radiation emer-
gent from the quintessence field. This creation should be in a
certain rate in the early universe otherwise we show that the
universe cannot survive and continue to expand. Also, we
have obtained a phantom solution of the model that shows
two regions which are compatible with the recent cosmolog-
ical observations. In one respect, it is observed that the late
time expansion of the universe is similar to the early time
inflation.

Keywords F(T ,TG) gravity · Super inflation mechanism ·
Deceleration · Dark energy

B A.I. Keskin
a.ihsankeskin@sirnak.edu.tr; alikeskin039@gmail.com

1 Department of Energy Systems Engineering, Faculty of
Engineering, Sirnak University, Şırnak, Turkey

1 Introduction

In the historical expansion of the universe there are two ac-
celerated phase cases that are supported by cosmological
observations. The first is inflationary stage (old inflation)
which describes the evolution of the early universe after the
beginning singularity, which was proposed by Guth (1981)
in attempt to solving some cosmologic problems (such as
the horizon, flatness, etc.). According to the model, the uni-
verse expands exponentially (de Sitter type) in a supercooled
false vacuum after the Big Bang. However in the new in-
flationary scenario, the inflation field is characterized by
a scalar field ∅ (the scalar fields are generally used into
inflation mechanisms), which behaves as a source of in-
flation. This inflation scenario is explained by a slow-roll
mechanism which tells that the inflation drives from a false
vacuum rolling slowly to a true vacuum, where the scalar
field decays at end of the inflation era (Hawking 1982;
Bardeen et al. 1983; Linde 1982a, 1982b, 2007). Conse-
quently, the temperature of universe increases (reheating
phase). However in the warm inflation scenario (Berera
1995, 1996, 1997, 2000, 2006), the reheating phase region
does not appear at the end of the inflation because the decay
of the inflation field into radiation energy occurs via dissipa-
tion coefficient (is of a crucial importance in this scenario)
during the slow-roll accelerating epoch. Here, the universe
has a high temperature and its temperature increases with
time due to strong interactions between fields. Thus, with-
out reheating the universe smoothly enters the radiation re-
gion. Besides these, there is also the chaotic inflation sce-
nario proposed by Linde (1983) in inflationary sectors. This
inflation is described by polynomial potential or a quadratic
large scalar field description which is its simple form as
V ∼ ∅n. If this field is initially large enough, the inflation
starts, and then it slowly rolls down towards the value of po-
tential minimum where the inflation ends. Consequently, the
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field oscillates at this point where the particles are created.
However the inflation continues with an exponential form
of the scale factor. For the initial conditions of this infla-
tion, a thermal equilibrium or a supercooled false vacuum is
not required. However the inflation occurs away from false
vacuum. Therefore, the inflation starts in a chaotic era. This
point for chaotic inflation gets a difference when comparing
to other inflationary scenarios. Also, it is possible to see that
there are power-law form of the scale factor, i.e., a(t) ∼ th,
with h > 1 (Lucchin and Matarrese 1985), hybrid inflation
(Linde 1994), Quintessential Inflation (Peebles and Vilenkin
1999), etc., which are described the inflationary era of the
universe. On the other hand, the early inflationary universe
can be also described by higher order correction terms in
Hilbert-Einstein action, and this approach gets a good ex-
planation at high curvature. For instance, the first modified
gravity inflationary model, which is also compatible with the
observations (Ade et al. 2014b), is proposed by Starobinsky
(1980), in which the model R + R2 is a modification of R-
term. This model describes the early inflation of the universe
at high energy regime where the quadratic curvature term
dominates. In this regards, next, quadratic invariant terms
in modified gravity theories have been taken into account by
researches (Maeda and Ohta 2004; Rinaldi et al. 2014, 2015;
Gorbunov and Tokareva 2014; Myrzakulov et al. 2015;
De Laurentis et al. 2015).

On the other side, the second accelerated expansion phase
in the universe is the current (or late time) cosmic acceler-
ation. It has been considered that the concept of the dark
energy causes this acceleration. As made in the early infla-
tionary universe, the scalar fields bring a good approach to
explain the late time acceleration of the universe. For in-
stance, by using a canonical scalar field, in order to have
large negative pressure, the equation of the state parameter
(EOS) is characterized in the range of −1 < w < −1

3 (Cald-
well et al. 1998) which describes the quintessence phase.
When w < −1 (Caldwell 2002; Nojiri and Odintsov 2003;
Cline et al. 2004) this case gives the phantom phase where
the scalar field has a negative sign. As for the case w = −1
directly describes de Sitter universe. In this regard, the re-
cent cosmological observations show that the EOS param-
eter of the universe is closed to the w = −1 border (Ade
et al. 2014a, 2015). However to explain both the inflation-
ary scenario and the late time cosmic acceleration, modified
gravity theories give an alternative approach with respect to
the scalar fields. One of these is the f (R)-gravity, in which
the Einstein term replaces its functional form. In this grav-
ity the late time cosmic acceleration can be shown by us-
ing f (R) = R + 1

R
model (Carroll et al. 2004). There are

also study on inflationary universe in the theory (Sebastiani
and Myrzakulov 2015; Odintsov and Oikonomou 2015) Be-
sides the late time cosmic acceleration, the studies on unifi-
cation of the early time inflation and the late time accelera-
tion of the universe have been made by researchers. When

the lagrangian function is taken a general proper form, i.e.
f (R) = R + αRn, one can show the early time inflation,
with n > 1 and the late time cosmic acceleration, with n < 0
(Nojiri and Odintsov 2003, 2011). By considering the real-
istic f (R) models it could be shown the early time infla-
tion with large curvature and the late time acceleration with
small curvature (Cognola et al. 2008). Another approach is
the modified Gauss-Bonnet gravity theory, i.e. R + f (G),
where G is the Gauss-Bonnet invariant, which some so-
lutions of its field equations show the late time accelera-
tion of the universe (Nojiri and Odintsov 2005, 2011; No-
jiri et al. 2006). In this gravity theory, passage from the de-
celeration phase to the acceleration phase of the universe
could be shown in a unifying picture (Goheer et al. 2009),
and also the exact scale factor power-law solutions could be
seen in the following study (Rastkar et al. 2012). Besides,
a more general form of the modified Gauss-Bonnet grav-
ity is f (R,G) gravity theory (Cognola et al. 2006). Some
cosmological studies on this gravity were done by Alimo-
hammadi and Ghalee (2009), Makarenko et al. (2013), de la
Cruz-Dombriz and Saez-Gomez (2012). It is possible, the
unification of stages of the universe with helping of some re-
alistic f (R), f (G) and f (R,G) models verified by the solar
system test and cosmologic bounds could be seen in the lit-
erature (Nojiri and Odintsov 2007a, 2007b). More recently
(Keskin and Açıkgöz 2016), we have realized the unified
solutions of f (R,G) gravity theory, where the three evolu-
tionary stages (inflation, deceleration and late time acceler-
ation) of the universe have been discussed in a unified form,
in which the inflationary scenario is composed of the two
regions. But in the present study we show that there are the
three regions in inflation stage with the super inflation mech-
anism. Apart from these, there is also modified teleparallel
(torsion) gravity which generates interesting results. For ex-
ample, the early time inflation models could be explained
in the context of f (T ) gravity (Ferraro and Fiorini 2007;
Nashed et al. 2014; Ganiou et al. 2016). An unified infla-
tion and quintessence field can be shown by this gravity
(Bamba et al. 2015). Also, study on warm inflation in f (G)

gravity can be observed in the literature (Sharif and Ikram
2016b), in which the warm inflation is explored with help-
ing of scalar fields in the FRW universe. The spectral index
parameter and the scalar tensor ratio, which are compati-
ble with observational Planck data, are constructed in back-
ground of this gravity theory. However, Sharif and Nawazish
(2016a) studied the chaotic inflation in f (R) gravity, in
which observational parameters was evaluated by using the
different chaotic potential models, i.e., quadratic, quadric
and fractional potentials. It was discussed consistency of this
parameters with Planck constraints. But the current study,
we have the realistic observational parameters to explore
the super inflation mechanism without using chaotic po-
tentials or any scalar fields which describe inflation. Also,
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the current acceleration case could be explained by some
f (T ) models (Wu and Yu 2010) without using dark en-
ergy. Recently, Kofinas and Saridakis (2014a, 2014b) and
Kofinas et al. (2014c) have been proposed an extended ver-
sion of the teleparallel gravity, namely F(T ,TG) gravity
where T is the torsion scalar and TG teleparallel equiva-
lent of the Gauss-Bonnet term. This gravity theory is dif-
ferent from both the f (T ) and the f (R,G) gravity theo-
ries (Kofinas and Saridakis 2014a, 2014b) and also the dif-
ferent cosmological applications have been made according
to the particular F(T ,TG) models (Kofinas and Saridakis
2014a, 2014b). Also, generalized second law of thermody-
namics aspect of this novel gravity theory has been studied
by Zubair and Jawad (2015).

Physical importance of this work is based on modifi-
cation Einstein gravity (namely F(T ,TG) gravity theory)
without using any scalar field to explain the super infla-
tion mechanism with other stages of the universe in a
unified form. For instance, modified Gauss-Bonnet gravity
(R + f (G)) shows the current acceleration of the universe
with f (G). Also, R2 (Starobinsky term) indicates the early
time acceleration of the universe. The both cases can be uni-
fied in a general form (i.e., f (R,G) = R + f (G) + R2).
Since G includes quadratic curvatures, this term is equiv-
alent to the term R2 in terms of cosmic time (i.e., ∼ t−4),
when one uses the power-law form of the scale factor. The
unified solutions of this form is realized by Keskin and
Açıkgöz (2016). Generally speaking, for the functions writ-
ten in a unified form such as f (R,G), f (R,T ), f (R,∅) and
f (T ,G) gravity theories, etc., where T is the trace of en-
ergy momentum tensor and ∅ is the scalar field, respectively,
one can realize the similar solutions and unify the stages
of the universe with some particular models related to the
gravity theories. Based on these motivations, in this study
F(T ,TG) gravity is considered where TG includes fourth
order of time (i.e., ∼ t−4), and similarly, the quadratic tor-
sion scalar, which shows acceleration, also includes ∼ t−4.
Therefore, in this study, by using a proper model given as
F(T ,TG) = f (T ) + f (TG), where f (T ) = −T + αT 2 is
clear, the quadratic torsion scalar is mathematically embed-
ded into f (TG) function via the solutions of the differential
equation (this is a unified solution). Herein, Einstein term,
−T , does not directly appear in the real value of f (TG).
Hence, apart from deceleration regions the super inflation
mechanism and dark energy have been explained by the pure
dynamic equations of F(T ,TG) gravity in a unified way. By
means of these solutions, the matter components inside of
the universe exhibit a dynamic picture in the gravity the-
ory. However, the super inflationary mechanism is verified
by using realistic inflationary parameters, i.e. ns , r . In one
respect, the rate of created matter from a part of quintessence
fluid is calculated. Furthermore, a phantom solution of the
model has been realized. This solution show that the accel-
erated expansion of the universe is in the two regions which

congruent with the recent observations. The paper has been
organized as the following: in Sect. 2, we have briefly given
the field equations of the F(T ,TG) gravity, in Sect. 3, we
have obtained unified solutions of the field equation corre-
sponding to the gravity theory which describe the evolution
of the universe. In Sect. 4, it has been realized the phantom
solutions of the model, and eventually the Sect. 5 gives a
sum of our findings.

2 The field equations of extended teleparallel
gravity

The action of this gravity theory for the four-dimension is
given by (Kofinas and Saridakis 2014a, 2014b)

S = 1

2k2

∫
d4xeF (T ,TG) + Sm, (1)

where k2 = 8πG̃, G̃ is the Newton constant, Sm =∫
d4x

√−gLm corresponds to the energy-momentum tensor
of perfect fluid T

μ
ν = diag(−ρ,p,p,p), and e = det(eα

μ) =√|g| is dynamical vielbein fields eα(xμ) in the teleparallel
gravity theory. The T and TG are also represent the torsion
scalar and the Gauss-Bonnet equivalent term, respectively.
In the study, we use the FRW metric given as

ds2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2]. (2)

The vielbein field for this geometry is diagonally eα
μ =

(1, a(t), a(t), a(t)). Varying the action (1) with respect to
the vielbein, the Friedmann equations corresponding to the
gravity theory are obtained as follows (Kofinas and Sari-
dakis 2014a, 2014b)

−12H 2FT − TGFTG
+ F(T ,TG) + 24H 3ḞTG

= 2k2ρ, (3)

F(T ,TG) − 4HḞT − TGFTG
+ 2

3H
TGḞTG

+ 8H 2F̈TG

− 4
(
Ḣ + 3H 2)FT = −2k2p, (4)

where FTG
= ∂F (T ,TG)

∂TG
, FT = ∂F (T ,TG)

∂T
and H = ȧ

a
is the

Hubble parameter. The over dot denotes derivative with re-
spect to time that gives as follows

ḞT = FT T Ṫ + FT TG
ṪG, (5)

ḞTG
= FT TG

Ṫ + FTGTG
ṪG, (6)

F̈TG
= FT T TG

Ṫ 2 + 2FT TGTG
Ṫ ṪG + FTGTGTG

Ṫ 2
G + FT TG

T̈

+ FTGTG
T̈G. (7)

Here, T and TG are given as
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T = 6H 2, (8)

TG = 24H 2(Ḣ + H 2). (9)

One can write Eqs. (3) and (4) in the standard Einstein
equations form:

H 2 = k2

3
(ρ + ρe), (10)

Ḣ = −k2

2
(ρ + p + ρe + pe), (11)

where the effective energy density and the pressure are de-
fined as follows (Kofinas and Saridakis 2014a, 2014b)

ρe = 1

2k2

(
6H 2 + TGFTG

− F(T ,TG) + 12H 2FT

− 24H 3ḞTG

)
, (12)

pe = 1

2k2

(
−2

(
2Ḣ + 3H 2) + F(T ,TG) − 4

(
Ḣ + 3H 2)FT

− 4HḞT − TGFTG
+ 2

3H
TGḞTG

+ 8H 2F̈TG

)
, (13)

respectively. Both the ρ and ρe satisfy energy conservation
law in the FRW universe

ρ̇ + 3H(ρ + p) = 0, ρ̇e + 3H(ρe + pe) = 0. (14)

3 Unified solutions of the field equations

Now, we try to find the solutions of the field equations ac-
cording to the model. This solutions successfully describe
all the eras of the universe in a unified way and especially
include the super inflation mechanism. Accordingly, when
combining Eqs. (3) and (4) the following equation is ob-
tained:

4H 2F̈TG
+ 8ḢHḞTG

+ 4H 3ḞTG
(2 + 3w)

− 12
(
ḢH 2 + H 4)(1 + w)FTG

+ F(T ,TG)

2
(1 + w)

− 6H 2FT (1 + w) − 2HḞT − 2ḢFT = 0, (15)

where w = p
ρ

is the equation of the state (EOS) parameter
of ordinary matter. This equation can be used to describe
cosmic evolution of the universe because it includes that H ,
FTG

, FT and derivatives of them. Therefore the left side of
Eq. (15) is a dynamic form, namely this equation can de-
scribe the dynamical expansion of the universe. On the other
hand, to obtain a general expression of the equation above
we can define M = k2(pe −wρe)+ 2Ḣ + 3H 2(1 +w) rela-
tionship. In this case the right side of the equation has been
observed to be equal to M :

4H 2F̈TG
+ 8ḢHḞTG

+ 4H 3ḞTG
(2 + 3w)

− 12
(
ḢH 2 + H 4)(1 + w)FTG

+ F(T ,TG)

2
(1 + w)

− 6H 2FT (1 + w) − 2HḞT − 2ḢFT = M, (16)

where it is assumed that w = we = −1 − 2Ḣ

3H 2 , which is also
definition of EOS parameter, that provides M = 0. Hence,
with w = we = −1 − 2Ḣ

3H 2 , it is appearing that both the sides
of Eq. (16) are in dynamic form anymore, because the evo-
lution of w is governed by the left side of Eq. (16). In a
word, w behaves as dark energy in the early or the late time
of the universe, in which the parameter exhibits a dynamical
picture.

When taking the model

F(T ,TG) = f1(TG) + f2(T ), (17)

where f2(T ) = −T + αT 2, Eq. (16) is the following as

4H 2f̈1TG
+ 8ḢH ḟ1TG

+ 4H 3ḟ1TG
(2 + 3w)

− 12
(
ḢH 2 + H 4)(1 + w)f1TG

+
(

f1(TG)

2
+ f2(T )

2

)
(1 + w) − 6H 2f2T (1 + w)

− 2Hḟ2T − 2Ḣf2T = 0. (18)

This equation can be split into two equations (Makarenko
et al. 2013; Sharif and Zubair 2014; Keskin and Açıkgöz
2016):

4H 2f̈1TG
+ 8ḢH ḟ1TG

+ 4H 3ḟ1TG
(2 + 3w)

− 12
(
ḢH 2 + H 4)(1 + w)f1TG

+ f1(TG)

2
(1 + w) = 0,

(19)

− 2Hḟ2T − 2Ḣf2T − 6H 2f2T (1 + w) + f2(T )

2
(1 + w)

= 0, (20)

To find the solution of Eq. (19) we focus on the scale
factor power-law solutions that given as

a(t) = a0t
h → H = h

t
,

Ḣ = −h

t2
→ ρ = ρ0a

−3 → TG = γ t−4 = 24h3(h − 1)t−4

(21)

Using (6), (7), (9), (14) and (21) one can write Eq. (19)
in terms of TG:

4TGF1TGTGTG
+ (7 + h)F1TGTG

= −k2ρ0(1 + w)(γ )
−3h(1+w)

4

16h2
T

3h(1+w)−8
4

G
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+ 3(1 + w)

16
γ

1
2 T

−3
2

G − 54α(1 + w)h2

16
T −1

G . (22)

From the solution of this differential equation we have

f1(TG) = A

(
TG

γ

) 3h(1+w)
4 + B(TG)

1
2 + DTG(lnTG − 1)

+ CT
−h+1

4
G + c2TG, (23)

where A = −k2ρ(1+w)γ

h2(−3h(1+w)−h+1)(−3h(1+w)+4)(3h(1+w))
, B =

− 3(1+w)γ
1
2

4(h+1)
, D = − 54h2(1+w)α

16(h+3)
, C = 4γ

h+3
4 c1

(h+3)(h−1)
and c1, c2

are integration constants, and also we chose c2 = 0. Note
that

TG = γ t−4 = 24h3(h − 1)t−4, (24)

which satisfies acceleration ä > 0 when γ > 0, where TG is
the positive. When 0 < γ < 1 it describes the deceleration
case ä < 0, with negative TG. On the other hand, by using
Eqs. (5), (8) and (20) the following equality is obtained:

6αh3[4 − 3h(1 + w)
]
t−4 − h

[
2 − 3h(1 + w)

]
t−2 = 0. (25)

This equation only holds with the super accelerated and
the FRW solutions (Elizalde and Saez-Gomez 2009; Keskin
and Açıkgöz 2016), i.e., h = 4

3(1+w)
, h = 2

3(1+w)
, due to

t > 0. Generally, in a FRW universe the real valued of the
lagrangian function characterizes as follows

F(T ,TG) = DTG(lnTG − 1) + CT n
G − T + αT 2, (26)

where n = 3w+1
12(1+w)

. Under the condition γ > 0 there is a
physical meaning of the first and the second terms in (26).
Therefore, these are the acceleration terms. However, one
can show the Einstein approach in this gravity theory by us-
ing the FRW solution and k2ρ0 = 3h2, with α = 0, and then

obtains F(T ,TG) = CT
−h+1

4
G − T , which requirement that

c1 = 0. This solution is similar to the solution made by Ke-
skin and Açıkgöz (2016) for extended Gauss-Bonnet grav-
ity. But here, the solution (26) gives a modification on unifi-
cation of stages of the universe comparing with Keskin and
Açıkgöz (2016). Because, it includes both a vacuum state
for the early universe and de Sitter expansion for the late
time universe besides the other stages of the universe. Now,
we will try to show this general picture, in detail.

3.1 The super inflation mechanism

The solution (26) produces the two inflationary scenario.
The first is an eternal inflationary scenario (Nashed et al.
2014), where the expansion of the universe is exponentially.
When the n is the large enough the EOS parameter goes to
−1, which shows a vacuum state (or cosmological constant).

Namely the beginning expansion of the universe should be
started from the vacuum state because we chose the value of
α is a very small (i.e., α < 10−2), where the role of α will
be discussed later. In this case the lagrangian (26) takes the
form F(T ,TG) = −T +αT 2, and Eq. (18) will be as follows

Ḣ
(
12H 2FT T + FT

) = 0. (27)

Here, the two solutions can be found. The first is the so-
lution Ḣ = 0 providing w = −1 (as expected) when writing
into the EOS parameter obtained from Eq. (16). The other is
the following as

H = 1

6
√

α
, (28)

where α must be greater than zero for disappearing of the
anti-gravity (Nojiri and Odintsov 2009, 2011) (ghost fields)
in the early universe. Also, one can obtain a de Sitter uni-
verse when α = 1

12Λ
, where Λ is the cosmological constant.

It is clear that the value of this constant is the very large due
to α < 10−2, which produces a rapid expansion. This type
of the expansion corresponds to the inflation. The density of
the vacuum is ρv = ρe + ρ = Λ

k2 , where ρe = ρ. When the

H value in (28) is written into F(T ,TG) = −T + αT 2, the
lagrangian is obtained as F(T ,TG) ∼ −T ∼ Λ. Here, be-
sides the first and the second terms in the lagrangian (26),
the quadratic the term αT 2 is also omitted by the vacuum,
that may be sourcing from a small value of α (Nashed et al.
2014). This is an eternal inflationary scenario which drives
in the vacuum state.

The second is the super accelerated inflation scenario
which occurs in a super accelerated phase (Keskin and
Açıkgöz 2016), which is composed of the two regions. This
is described by the DTG(lnTG − 1) term in (26), where the
EOS parameter of the normal matter in D-term is in the
range −1 < w, with α > 0. When fixing the values of n as
n < 0 after de Sitter type expansion the this term dominates
to the other terms, in which there should be a phase transi-
tion from de Sitter expansion to a new phase. Otherwise, the
universe does not arrive at the present state. When this term
is written into Eq. (18) the following result is found:

27h4(1 + w)α(3h(1 + w) − 4)

2
t−4 = 0 (29)

This equation gives the super accelerated solution. Tak-
ing the initial time as t = 10−3 the lagrangian function has
a singularity as F(T ,TG) → −∞, if α > 0. Therefore, the
function is an increasing function with the following cos-
mic time, which corresponds to the inflation (see Fig. 1).
It should be noted that, for the beginning time of the first
region in this scenario the both at t = 0 and t ≤ 10−3 the
Fig. 1 exhibits a same picture or shows a beginning singu-
larity where there is a pure vacuum state, and expansion of
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Fig. 1 The evolution of the first term in the lagrangian versus cos-
mic time, where h = 3. The function is increasing with the time
(10−3 ≤ t ≤ 100), which shows the inflation where we chose α = 10−2.
For α < 10−2 there is the vacuum state where this is described by a sin-
gularity due to the power law solutions

the universe is the exponentially. Therefore, 10−3 will be a
border value for beginning time of the super accelerated in-
flation. However in the super-inflation mechanism the evo-
lution of energy is as following: all vacuum fluid evolves to
the type of quintessence fluid, and then the universe crosses
to the first region of the super accelerated scenario in this
point. Next, from a part of quintessence fluid it is created
the normal matter form in the process (this occurs in the
second region where interactions between fields occur). Be-
cause, for h > 2 and 1 < h < 2 the EOS parameter is the
range of −1 < w < −1

3 and −1
3 < w < 1

3 , respectively, with
super accelerated solution. While the first range, in which w

behaves as the effective EOS parameter, indicates the super
acceleration region, the second one shows the matter cre-
ation region.

We can verify this inflation scenario by calculating the
spectral index parameter ns and the scalar tensor ratio r ,
which are observational inflation parameters. For this we
use the slow-roll parameters ε and η given as ε = − Ḣ

H 2 ,

η = − Ḧ

HḢ
, which satisfy the slow-roll condition (i.e., ε � 1

and η � 1) during inflation (Bamba et al. 2014). Using re-
lationship M and the first term in lagrangian (26) we obtain
slow-roll parameter ε

ε = 3(1 + w)

2
+ 81h4(1 + w)α[−3h(1 + w) + 4]t−4

2k2ρe + 81h5α(1 + w)t−4

+ k2ρe(we − w)

2H 2
, (30)

where we identify two slow-roll parameters ε1 and ε2 cor-
responding to the first h > 2 and the second 1 < h < 2 re-
gions, respectively. When the slow-roll parameter is evolved
from ε1 into ε2 we can expect a part of the dark energy
(quintessence) evolves to the normal matter, i.e., we ∼ w.
For the first region we have ε = ε1 = 3(1+we)

2 , with the super

accelerated solution. One can write ε1 = 2
h

, which describes
a quintessence type expansion under the slow-roll approx-
imation, i.e., −1 < we < −1

3 . On the other hand, for the

second region when ε ∼ ε2 we have ε2 = 3(1+w)
2 and con-

sequently ε2 = 1
h

, with the FRW value because of the matter
creation. The range 1 < h < 2 satisfies the inflation condi-
tion ε2 < 1. Next, when h = 1 the inflation stops (Bamba
et al. 2014). On the other side, the spectral index parameter
and the scalar-tensor ratio are given by ns − 1 ∼ −6ε + 2η,
r = 16ε (Bamba et al. 2014), respectively. Also, the number
of e-folds N is given by N(t) = ∫ te

ti
Hdt , where ti and te

denote the time at the beginning and ending of the inflation,
respectively. Using Hubble parameter the number of e-folds
is found as N(t) = ln( te

ti
)h, where we define te = 10−m,

ti = 10−n. For h > 2, the condition r < 0.11 (Ade et al.
2014a, 2015) shows that n − m < 0.0901 when N ∼= 60.
The spectral index ns is approximately equal to 0.98 when
n − m = 0.09, where the initial time is 10−3. As a result,
the inflation in this region is driven by the both parameters
(this case may be sourcing from the pure-quintessence field),
which are in a good agreement with the observation values
(i.e., ns = 0.9603 ± 0.0073 (68% CL) and r < 0.11 (95%
CL)) (Ade et al. 2014a, 2015). For 1 < h < 2, using ε2 we
obtain ns ∼ 0.74 and r = 2.14 when N ∼= 50, and also the
slow-roll parameters ε2 ∼ 0.13, η ∼ 0.26. Here, the process
starts at t = 10−2.91 and ends at t = 100. As a result, the
inflation in the second region, where the matter is created,
is driven by ns only, due to r > 1 (Bamba et al. 2014). The
parameter ns in this region is also in good agreement with
the observational data in a reliable level. However it is ap-
peared that the scalar-tensor ratio parameter, which is related
to gravitational waves, is eliminated during the matter cre-
ation in the our inflationary scenario. This means that the
short-time fluctuations of the quintessence field in the infla-
tion cause both the matter creation and producing of gravita-
tional waves. The results obtained for the super accelerated
regions coincide exactly with Keskin and Açıkgöz (2016).

On the other hand, we will try to find that how much a
rate of the vacuum energy (or quintessence type dark en-
ergy) is converted into the radiation energy during the super
accelerated inflation process. For this, using Eqs. (3), (12)
and inflationary terms in (26) the following equation can be
written

−18αH 2 + 1︸ ︷︷ ︸
Λ1

+4HD
ṪG

TG

− DTG

6H 2︸ ︷︷ ︸
Λ2

= Γ, (31)

where we define Γ = ρ
ρv

that is the ratio of the density of
the normal matter emergent in the total energy density and
Λ1, Λ2 are arbitrary functions. This equation can be reduced
to the vacuum state given by (28) when ρe = ρ. After the
vacuum state the solution (21) is valid, so Eq. (31) is as
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Γ = 1 − 9α
4 , with w = 1

3 and t = 1, which shows the end
point of the inflation according to our scenario. Γ is found as
Γ ∼ 0.98, with α = 10−2. Here, the α parameter indicates in
which phase the inflation will start. Namely, it directly does
not determines the time of inflation. The value of α has been
chosen properly, because of some causes. For instance, for
the super accelerated phase regions, the following equation
can be written

9αh2

2t2

(
3h(1 + w) − 4

) = Γ − 1. (32)

For the solution h = 4
3(1+we)

, the case of α is not clear.
But for the matter creation region, with the FRW solution
h = 2

3(1+w)
, this equation can be written as

H1 = h

t
= 1

3

√
1 − Γ

α1
, (33)

where α1 = 10−2 is the constant value for the super accel-
erated expansion regions. In Eq. (33) Γ 	= 1 tells that all the
quintessence type energy does not convert into the normal
matter. Since α1 > 0, due to anti-gravity, Γ is smaller than
one. However Eq. (33) implies that Γ increases while the
Hubble parameter H1 decreases over time. Whereas in the
vacuum process, the value of the Hubble parameter (H2 =

1
6
√

α2
) approximately remains constant. Therefore, it is clear

that H2 > H1. This condition implies that 4α2(1 −Γ ) < α1.
For Γ � 0.5, which is also the vacuum state, the condition
approximately becomes 2α2 < α1. Namely, at α1 < 10−2

the vacuum state is observed. Hence it is clarified that the
inflation of the universe starts from a vacuum state. Also, it
can be seen that the inflation ends when α1 < 0.

On the other side, it is clear that the case Γ = 1 in
Eq. (32), which is not possible, remarks that the universe
always remains in the first region of the super accelerated
inflation, because Eq. (32) only holds with h = 4

3(1+we)
. The

case Γ = 0, which produces an inconsistency in Eq. (32),
shows that the expansion of the universe stops suddenly.
Therefore, the creation of the matter in the certain rate was
a chance to survive of the universe. Also, if ρv is the critic
density of the stage Γ is the density parameter of the stage.
When the universe is in the vacuum state the value of Γ

is 0.5, which implies negatively curvature. After that, Γ is
very closed to one, which removes the problems of the flat-
ness and the homogeneity. As a result, ∼ 98% of dark en-
ergy evolves into the radiation energy. The large amount of
this energy dominates in the universe. However, ∼ 2% of
the quintessence type dark energy remains in the structure
of the universe latently. As long as the universe continues
to expand, the normal matter energy density (∼ 98%) is di-
luted by this expansion, and we consider that this energy
(2%) should be created after the inflation. This creation may

be in the dust region because the universe arrives at a ther-
mal equilibrium in the radiation region due to interactions
between particles. Hence, when w < −1

3 the quintessence
type of dark energy dominates, and so the universe acceler-
ates. Note that after the inflation stage we will take α < 0 to
cut the effect of the first term, due to anti-gravity (Nojiri and
Odintsov 2009, 2011).

3.2 Deceleration regions

After the inflation there is only the Einstein term, −T , which
describes decelerated case due to γ < 0, α < 0, n < 0. When
inserting this term into Eq. (18) the Eq. (25) is obtained
without the first term. Therefore the radiation h = 1

2 and
dust h = 2

3 regions are observed. Furthermore, at the point
w = −1

3 the universe continues to expand only with the Ein-
stein term, but, there is not the acceleration phase case yet
due to h = 1.

3.3 Dark energy

An inflation-like expansion is observed with the term CT n
G

given by (26) because we fixed n < 0 (i.e., −1 < w < −1
3 )

after the vacuum state. Namely, the late time acceleration
of the universe is described by the real value of CT n

G. On
the other hand, when the universe asymptotically reaches the
w = −1 border the model is directly reduced to F(T ,TG) =
−T + αT 2 so that it occurs the de Sitter type expansion.

4 Phantom solution of the field equations

In this section, we will show that there is a phantom solution
of our model when the universe crosses the w = −1 border.
The phantom type scale factor and the Hubble parameter
are given as follows (Nojiri and Odintsov 2005; Nojiri et al.
2005, 2006)

a = a0(ts − t)−h, H = h

ts − t
(h > 0) (34)

where ts indicates the Rip singularity when ts = t . The
teleparallel equivalently term, the torsion scalar and the en-
ergy density are the following as

TG = 24(h + 1)h3

(ts − t)4
, T = 6h2

(ts − t)2
,

ρ = ρ0a
−3(1+w)
0 (ts − t)3h(1+w). (35)

Eq. (19) can be written, as we did previous section, as
follows

4
∂

∂TG

S(TG) + (3 − h)

TG

S(TG)
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= −k2ρ0(1 + w)β
3h(1+w)+4

4

16h2
T

−3h(1+w)−8
4

G

+ 3(1 + w)

16
β

1
2 T

−3
2

G − 54α(1 + w)h2

16
T −1

G , (36)

where S(TG) = TGF1TGTG
and β = 24(h + 1)h3. By chang-

ing h → −h, f1(TG) function is found as

f1(TG) = L

(
TG

β

)−3h(1+w)
4 + F(TG)

1
2 + KTG(lnTG − 1)

+ NT
h+1

4
G + c2TG, (37)

where L = k2ρ(1+w)β

h2(3h(1+w)+h+1)(3h(1+w)+4)(3h(1+w))
, F =

− 3(1+w)β
1
2

4(1−h)
, K = 54h2(1+w)α

16(h−3)
, integration constants c1, c2.

On the other hand, from Eq. (20), one obtains

−18αh3[4 + 3h(1 + w)
]
(ts − t)−4

+ h
[
2 + 3h(1 + w)

]
(ts − t)−2 = 0. (38)

The super acceleration h1 = −4
3(1+w)

and the FRW h2 =
−2

3(1+w)
values are obtained from (38). The real valued of the

lagrangian can be written as

F(T ,TG) = KTG(lnTG − 1) + NT σ
G − T + αT 2, (39)

where σ = 3w+1
12(1+w)

, with the FRW value. It is appearing
that the expansion of the universe is described by the first
and the second terms in (39) (other terms produce h1, h2).
When 1

4 < σ < 1 the first term dominates, and the universe
accelerates in the range of w < −1.22. In the case σ > 1
the second term dominates, and the acceleration occurs with
−1.22 < w < −1. In the both cases the expansion of the
phantom phase is shown by positive σ . Also, the Big Rip
singularity can be occurred at ts = t , where a → ∞, ρ → ∞
and p → ∞ (Bamba et al. 2010). Hence we show that there
is a phantom solution of our model which satisfies the two
regions.

5 Concluding remarks

In this study, we have discussed the unified solutions of
F(T ,TG) gravity theory according to the model (17). We
have constructed its field equation with helping of the M re-
lationship which gives the definition of the EOS parameter
(in (16)), when M = 0. We have obtained a graceful solution
(26) which produces both the exponential and the power-law
forms of the scale factor, so it successfully describes all the
evolutionary stages of the universe and transitions among
of them in the unified way. Especially, we present the super
inflation mechanism which is composed of the three phase
regions:

1. When the limit n → ∞ an exponential expansion re-
alizes at α < 10−2, in which the lagrangian (26) acts as the
cosmological constant or the vacuum state. This is an eternal
inflationary scenario which is composed of one region.

2. After the vacuum state (α = 10−2) when fixing n < 0,
the inflation is described by the DTG(lnTG − 1) term with
the power-law form of the scale factor till the radiation re-
gion. This is the super accelerated inflation scenario which
is composed of the two regions. The first region is driven
by a pure quintessential field in a short-time. The second
is a region which the normal matter is created at the rate
of 98%, which is of a critical importance to continue to
expansion of the universe. However, this inflation scenario
has been clarified by using the observational parameters in
which the first region is driven by ns and r , whereas the
second region is driven by ns only. The authors showed
the two regions for the inflation of the early universe by
using the field equations of extended Gauss-Bonnet grav-
ity without including the vacuum state (Keskin and Açıkgöz
2016). But in the present study, we present the super infla-
tion mechanism which includes the three phase regions by
using the F(T ,TG) gravity theory, that completes the in-
flationary mechanism. It should point out that the super in-
flation mechanism is a new concept in the inflationary sec-
tors. There are some reasons that distinguish this mechanism
from the other some inflationary scenarios, as given below:

1. The universe expands either exponential or power-law
form of the scale factor in all inflationary scenarios. The su-
per inflation mechanism provides a unification of an eternal
(exponential) inflation and quintessential (power-law) infla-
tion cases. The first is described by F(T ,TG) = −T + αT 2,
where αT 2 is omitted by vacuum due to α < 10−2. The sec-
ond is described by DTG(lnTG − 1), where this term is a
version of αT 2, which is embed into the lagrangian (26) by
the solution of differential equation M . Therefore, both the
quadratic torsion scalar and its version coming from dynam-
ical Eq. (16) (i.e., DTG(lnTG − 1)) behave as a source of
acceleration in the super inflation mechanism. Whereas the
acceleration in late time of the universe is described by the
real value of equivalent term T n

G, with n < 0. On the other
hand, other inflationary scenarios, for example, the chaotic
inflation is driven by exponential form of the scale factor
only. However the chaotic inflation can be divided into two
regions, i.e., an eternal inflation and matter creation regions
where creation of the matter occurs at the end of the infla-
tion, whereas in super inflation mechanism the matter cre-
ation occurs during inflation, as in warm inflation. The mat-
ter creation in chaotic inflation occurs with the oscillations
of the simple harmonic equation of scalar field. As for in the
super inflation mechanism occurs this case via the evolution
of the EOS parameter in the relationship M .

2. While the source of acceleration in chaotic inflation is
any polynomial potential, in addition to the Einstein term,
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−T , as a source of super inflation, extra terms (dark en-
ergy terms) are appeared in the gravity theory (i.e., αT 2 and
DTG(lnTG − 1)).

3. In the warm inflation scenario all vacuum energy is
converted into the radiation (Berera 1995, 1996, 1997, 2000,
2006) whereas in super inflationary scenario all the vacuum
energy directly does not convert into the radiation. After the
vacuum it evolves into the quintessence type dark energy
rapidly, in which all asymmetries produced by the vacuum
are vanished by this way. It is possible to say that the vac-
uum energy may have become a visible case or a suitable
case to the creation of the normal matter. Also, on the con-
trary the warm inflation scenario the quintessence field or
the other fields do not interact with the radiation energy ini-
tially. After the first region of the super accelerated phase
the interactions occur, where the temperature of the universe
increases. Next, the universe smoothly enters the radiation
region where it may be initial of the hot big-bang.

It should note that the super inflation mechanism with
scalar fields can be investigated in another separate study,
that may produce interesting results.

After the inflation the universe is in the radiation region
and then in the dust region, where these are described by the
Einstein term, and the beginning of the acceleration, as well.

The quintessence phase region in the late time universe
is described by the real value of the term T n

G, with n < 0,
in which the cosmic acceleration of the universe is the
inflation-like. Moreover, when the universe enters the case
w = −1 the model directly is reduced to the F(T ,TG) =
−T + αT 2 form so that de Sitter expansion realizes. Fi-
nally, we have shown the phantom solution of our model
which satisfies the acceleration of the universe is in the two
regions: w < −1.22 and −1.22 < w < −1. These ranges co-
incide with the recent cosmological observations (Ade et al.
2014a, 2015).

On the other hand, it is necessary to emphasize that we
can also show all the expansion history of the universe un-
der the constraint M = 0 which can be observed from the
energy conservation law given by Eq. (14). For instance,
the conservation equation for the normal matter satisfies
that ρ̇ + 3H(ρ + p) = 3H

k2 (M − 2ḢfT ) = 0, and from this

equation the equality M = 2ḢfT is obtained. For the first
region of the super inflation mechanism (i.e., the vacuum
state), since Ḣ = 0 or f (T ) is constant, M becomes zero.
However in the other regions of the mechanism the term
DTG(lnTG − 1) dominates, which also provides M = 0.
Also, the expansion of the universe in the quintessence,
de Sitter and the phantom regions are described by the
terms CT n

G, −T + αT 2 (i.e., Ḣ = 0) and KTG(lnTG − 1)

or NT σ
G , respectively. Therefore, all the cases provide that

M = 0. But, for the deceleration regions the conservation
equation shows that M = −2Ḣ , where F(T ,TG) = −T .
Namely, the case M = 0 is not protected. Therefore, when

the universe is considered as a thermodynamics system sur-
rounded by an apparent horizon the dark energy compo-
nent must be taken into account in such a system (i.e., as
we previously mentioned that ∼ 2% of the quintessence
type dark energy remains in the structure of the universe la-
tently). Accordingly, from Eq. (14), ρ̇e + 3H(ρe + pe) =
−3H

k2 (Me − 2ḢfT − 2Ḣ − 3H 2(1 + we)) = 0 can be writ-
ten, where Me is an effective version of M . From the sum
of the fluids the equality ρ̇ + ρ̇e + 3H(ρ + p + ρe + pe) =
3H

k2 ((M − Me)(we − w) + 2Ḣ + 3H 2(1 + we))
is obtained. The conservation law always satisfies that

ρ̇ + ρ̇e + 3H(ρ + p + ρe + pe) = 0, which provides M = 0
for all the cases anymore, with we = w = −1− 2Ḣ

3H 2 . In other
words, it is required the constraint M = 0 to hold the conser-
vation law. As a result, the relationship M can be observed
from the background of the energy conservation law given
by Eq. (14).

Hence in this novel gravity theory we present the super
inflation mechanism and show all the expansion history of
the universe in a unified form, besides transitions among of
them.

• Three processes (eternal, quintessential, matter creation
regions) in the super inflation mechanism.

• Two processes (the radiation and the dust) in the deceler-
ation stage.

• Three processes (quintessence, de Sitter and the phantom)
in the late time universe.

In a sense, it is observed that the beginning evolution of
the universe is similar to the late time acceleration phases.
Note that one can research a phantom-like inflation when
n > 1 before the limit n → +∞ for the very early time of
the universe.
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