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Super-Learning of an Optimal Dynamic

Treatment Rule

Alexander R. Luedtke and Mark J. van der Laan

Abstract

We consider the estimation of an optimal dynamic two time-point treatment rule

defined as the rule that maximizes the mean outcome under the dynamic treatment,

where the candidate rules are restricted to depend only on a user-supplied subset

of the baseline and intermediate covariates. This estimation problem is addressed

in a statistical model for the data distribution that is nonparametric, beyond possi-

ble knowledge about the treatment and censoring mechanisms. We propose data

adaptive estimators of this optimal dynamic regime which are defined by sequen-

tial loss-based learning under both the blip function and weighted classification

frameworks. Rather than \textit{a priori} selecting an estimation framework and

algorithm, we propose combining estimators from both frameworks using a super-

learning based cross-validation selector that seeks to minimize an appropriate

cross-validated risk. One of the proposed risks directly measures the performance

of the mean outcome under the optimal rule. The resulting selector is guaranteed

to asymptotically perform as well as the best convex combination of candidate

algorithms in terms of loss-based dissimilarity under conditions. We offer simu-

lation results to support our theoretical findings. This work expands upon that of

an earlier technical report (van der Laan, 2013) with new results and simulations,

and is accompanied by a work which develops inference for the mean outcome

under the optimal rule (van der Laan and Luedtke, 2014).



1 Introduction

Suppose we observe n independent and identically distributed observations of a
time-dependent random variable consisting of baseline covariates, initial treat-
ment and censoring indicator, intermediate covariates, subsequent treatment
and censoring indicator, and a final outcome. A dynamic treatment rule is a
rule that deterministically assigns treatment as a function of the available his-
tory. If treatment is assigned at two time points, then this dynamic treatment
rule consists of two rules, one for each time point (Robins (1986, 2000, 1993,
1997)). The mean outcome under a dynamic treatment is a counterfactual
quantity of interest representing what the mean outcome would have been if
everybody would have received treatment according to the dynamic treatment
rule (Neyman, 1990; Rubin, 1974, 2006; Holland, 1986; Robins, 1987a,b; Pearl,
2009).

Researchers have aimed to learn optimal rules from data generated by
sequential multiple assignment randomized trials (SMART) (Robins, 1986).
Researchers have also aimed to learn dynamic treatments from observational
studies: Cotton and Heagerty (2011); Orellana et al.; Robins et al. (2008a);
Rosthøj et al. (2006); van der Laan and Petersen (2007); Petersen et al. (2008,
2007); Moodie et al. (2009). These observational and sequentially random-
ized studies provide an opportunity to learn an optimal multiple time-point
dynamic treatment defined as the treatment rule that maximizes the mean
dynamic-regime specific counterfactual outcome over a user supplied class of
dynamic regimes. The reinforcement learning and statistical literature have
made enormous advances in developing statistical methods that aim to learn
such optimal rules.

We define the optimal dynamic multiple time-point treatment rule as the
rule that maximizes the mean outcome under the dynamic treatment, where
the candidate rules are restricted to only respond to a user-supplied subset of
the baseline and intermediate covariates. The literature on Q-learning defines
the optimal dynamic treatment among all dynamic treatments in a sequen-
tial manner (Sutton and Sung (1998); Murphy (2003); Robins (2003, 2004);
Murphy (2005)): considering a two stage SMART, the optimal treatment rule
for the second line treatment is defined as the maximizer of the conditional
mean outcome, given the observed past, over the possible second line treat-
ments, and the optimal treatment rule for the first line treatment is defined
as the maximizer of the conditional mean counterfactual outcome, given base-
line covariates, over the possible values for the initial treatment, under the
assumption that the second line treatment is assigned according to the just
determined optimal rule for the second line treatment. This characterization
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of the optimal treatment is an example of dynamic programming (Bellman,
1957). The optimal rule can be learned through fitting the sequential re-
gressions, such as sequential linear least squares regression (see e.g., Murphy
(2005)). Ernst et al. (2005) and Ormoneit and Sen (2002) use regression trees
and kernel regression estimators, respectively. Moodie et al. (2012) proposes
inverse propensity score weighting of the regressions in Q-learning. Q-learning
is not limited to a particular type of regression models or outcomes: e.g., Gold-
berg and Kosorok (2012); Zhao et al. (2011) apply Q-learning to the survival
outcome setting.

Murphy (2003) and Robins (2003, 2004) develop structural nested mean
models tailored to optimal dynamic treatments. These models assume a para-
metric model for the “blip function” defined as the additive effect of a blip in
current treatment on a counterfactual outcome, conditional on the observed
past, in the counterfactual world in which future treatment is assigned op-
timally. Each blip function defines the optimal treatment rule for that time
point by maximizing it over the treatment, so that knowing the blip functions
allows one to calculate the optimal dynamic treatment by starting with maxi-
mizing the last blip function and moving backwards in time until the first time
point. These models are semi-parametric since they only rely on a parametric
model of the blip function (at least in a SMART), but they leave the nuisance
parameters unspecified. These authors develop estimators for the unknown
parameters of the blip functions using estimating equation methodology. The
estimated blip functions now define an estimator of the optimal rule. Struc-
tural nested mean models have also been generalized to learn of optimal rules
that are restricted to only using a (counterfactual) subset of the past (Robins
(2004) and Section 6.5 in van der Laan and Robins (2003)).

In Example 4 of Robins et al. (2008b), the authors propose selecting a data
adaptive estimate of the optimal treatment rule by a particular cross-validation
scheme over a set of basis functions, and show that this estimator achieves
a data adaptive rate of convergence under smoothness assumptions on the
blip function. This work only considers data generated by a point treatment
randomized controlled trial (RCT), but makes no other model assumptions.
Additionally, the library of estimators applied in this approach is limited and
does not fully take advantage of the breadth of state of the art machine learning
methods, though it is certainly an improvement over parametric approaches.

In (Qian and Murphy, 2011; Zhao et al., 2012) it was shown that the es-
timation of the optimal dynamic treatment can be reduced to a classification
problem. Rubin and van der Laan (2012) and Zhang et al. (2012) indepen-
dently identify entire families of such reductions to classification.

Most of the above discussed estimation strategies rely on parametric as-
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sumptions. In a companion paper we develop inference for the mean outcome
under the V -optimal rule, where the V -optimal rule is the optimal rule that
relies only on a specified subset V of the covariate history (van der Laan and
Luedtke, 2014). We develop the inference procedure under a semi-parametric
model for a data distribution that is nonparametric, beyond possible knowl-
edge about the treatment mechanism. For inference about the mean outcome
under the optimal rule, it is crucial that we consistently estimate the optimal
rule under this semi-parametric model at a sufficient rate.

Our proposed estimators of the V -optimal rule are based on sequential
(analogous to Q-learning) loss-based super-learning (van der Laan and Du-
doit, 2003; van der Vaart et al., 2006; van der Laan et al., 2006, 2007; Polley
et al., 2012) which involves the application of an ensemble method known
as super-learning to fit each rule after having estimated the optimal rule at
future time points. The super-learner is defined by generating a family of can-
didate estimators, a risk for each candidate estimator, and selection among all
candidate estimators based on a cross-validation based estimator of this risk.
Some of these candidate estimators could be based on parametric models of
the blip functions (as in a structural nested mean model), while others are
based on available regression or classification machine learning algorithms. In
this sense we have unified the more classical blip function approach with the
recent optimal treatment classification literature.

By previously established oracle inequality results on the cross-validation
selector established in the above references, our results guarantee that in a
SMART the super-learner will be asymptotically equivalent with the estimator
selected by the oracle selector and thereby outperform any of the parametric
model based estimators and any of the other estimators in the family of candi-
date estimators, under the assumption that none of the parametric models are
correctly specified. If one of the parametric models is correctly specified, the
proposed method achieves an almost parametric log n/n rate. In this manner,
our sequential super-learner is at each stage doing an asymptotically optimal
job in fitting the blip function relative to its user supplied class of candidate
estimators. Past findings and strongly suggest that this will also result in su-
perior performance in most practical situations relative to a priori selecting
one particular estimation procedure (Polley et al., 2012; van der Laan and
Rose, 2012). We also outline how to develop a cross-validated targeted mini-
mum loss-based estimator of the cross-validated risk to improve finite sample
performance of this selector.

For the sake of presentation, we focus on two-time point treatments in this
article. In the appendix of our earlier technical report (van der Laan, 2013)
we generalize these results to general multiple time point treatments. We
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emphasize that this technical report is a distinct document from our companion
paper, which focuses on inference for the mean outcome under the optimal
rule in a model that is nonparametric beyond possible knowledge about the
treatment mechanism (van der Laan and Luedtke, 2014).

1.1 Organization of article

Section 2 defines the optimal rule as a causal parameter, and gives identi-
fiability assumptions under which the causal parameter is identified with a
statistical parameter of the observed data distribution.

The remainder of the paper describes and evaluates strategies for estimat-
ing this statistical parameter that is identified with the optimal rule. Unless
otherwise specified, all of the approaches presented in this paper aim to learn
the optimal rule sequentially. That is, we first estimate the optimal treat-
ment strategy at the second time point. Given an estimate of this second time
point rule, we estimate the optimal rule at the first time point under (the
G-computation distribution corresponding to) the counterfactual distribution
in which the already estimated treatment rule is followed at the second time
point.

Section 3 describes three classes of loss functions that can be used to es-
timate the optimal rule. Section 3.1 describes sequential estimation of blip
functions based on any loss function that can give a valid estimate of a condi-
tional mean (e.g. squared error loss), where the sign of the estimated condi-
tional mean is used to estimate the optimal rule. Section 3.2 aims to directly
estimate the optimal treatment by maximizing the sequential mean outcomes
under the fitted rules, where the treatment at future time points is set accord-
ing to the previously fit rule. Section 3.3 shows that maximizing an estimate
of the mean outcome can be written as a weighted classification problem that
includes a rich class of previously described classification loss functions. All
loss functions presented in Section 3 rely on correct specification of the in-
tervention mechanism, which is trivially true in an RCT without missingness.
Double robust generalizations of the loss functions in Section 3 are presented
in Appendix A.

Section 4 describes a cross-validation selector that can combine multiple
estimation algorithms, including any of those which aim to minimize the em-
pirical risks from the loss functions in Section 3. Section 4.1 gives the oracle
inequality for the second time point treatment and gives examples of losses for
which the oracle inequality will be satisfied. A finite sample oracle inequality
is given to support the proposed methodology and the asymptotic implications
of this inequality are described. Appendix B contains a proof that a particular
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Section,
Theorem

Loss function Latent
function?

Sequential?

Section 3.1
Theorem 2

Estimates blip functions using loss
functions tailored to the estimation
of means. Theorem 1 proves the
validity of this estimation method
for estimating V -optimal rule.

Yes Yes

Section 3.2
Theorem 3

Risk function resulting from loss is
the sequential mean outcome under
the fitted rule at a given time point.
Maximizing this quantity is directly
targeted at our goal. A CV-TMLE
of the risk resulting from this loss
function is presented in Section 5.1.

No Yes

Section 3.3
Theorem 4

Weighted 0− 1 loss function that
we show is equivalent to the mean
outcome loss from Section 3.2 up to
an additive term that does not rely
on the fitted rule.

Yes Yes

Section 3.3
Theorem 5

Weighted surrogate loss functions
that provide a convex
approximations to the weighted
0− 1 loss function.

Yes Yes

Section 5.2
N/A

Non-sequential super-learner that
seeks to directly maximize the
mean outcome under the two time
point rule. Relies on sequential
candidate estimators based on the
losses above.

No No

Table 1: Summary of all loss functions considered in this paper. All have
risks that are related to the mean outcome under the optimal rule, so that
the expected loss (risk) under the true distribution is minimized at either the
optimal rule or some latent function whose sign gives the optimal rule. Note
that all but one of the estimation procedures considered approach the problem
sequentially, i.e. first estimating the optimal rule at the second time point and
then, given this estimated rule, estimate the optimal rule at the first time
point.
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margin condition yields one of the conditions needed to establish our oracle
inequality for the sequential mean outcome losses. Section 4.2 describes the
super-learner for estimating the treatment rule at the first time point.

Section 5 outlines how we can replace the cross-validated empirical risk with
a cross-validated targeted minimum loss-based estimator (CV-TMLE) of the
risk. The CV-TMLE is a substitution estimator, and thus naturally respects
the bounded nature of the data. Section 5.1 outlines a CV-TMLE for the
sequential mean outcome losses presented in Section 3.2. Section 5.2 describes
a non-sequential super-learner which directly uses the estimated mean outcome
under the optimal rule to combine candidate estimators. This mean outcome
based criteria is the only non-sequential strategy that we consider in this paper.
The CV-TMLE in Section 5.2 is based on the CV-TMLE presented in our
companion technical report.

Table 1 gives an overview of the loss functions we consider in this paper.
Minimizing the risks resulting from all of these losses yields an estimate of
the optimal rule, either directly for the loss in Section 3.2, or by the sign of
the estimated latent function for all other losses. All but one of the losses
considered estimates the optimal rule sequentially, and even this loss function
relies on sequential candidate estimators.

Section 6 presents the simulation methods. The simulations compare our
proposed super-learner to single choices of machine learning algorithms and
misspecified parametric models. Section 7 presents the simulation results.
Section 8 closes with a discussion and directions for future work.

All proofs are left to the appendix.

2 Formulation of optimal dynamic treatment

estimation problem

We use the same formulation as is given in Section 2 of our companion technical
report. We restate important notation here, but refer to the other paper for a
more thorough discussion of the context and assumptions which identify our
statistical parameter with a causal parameter.

For a discrete-time process X(·), we will use the notation X̄(t) = (X(s) :
0 ≤ s ≤ t), where X̄(−1) = ∅. Suppose we observe n i.i.d. copies O1, . . . , On ∈
O of O = (L̄(1), Ā(1), Y ) ∼ P0, where A(j) = (A1(j), A2(j)), A1(j) is a binary
treatment and A2(j) is an indicator of not being right-censored at “time”
j, j = 0, 1. Each time point j has covariates L(j) that precede treatment,
j = 0, 1, and the outcome of interest is given by Y and occurs after time
point 1. Let M be a statistical model that makes no assumptions on the
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marginal distribution Q0,L(0) of L(0) and the conditional distribution Q0,L(1)

of L(1), given A(0), L(0), but might make assumptions on the conditional
distributions g0,A(j) of A(j), given Ā(j − 1), L̄(j), j = 0, 1. We will refer
to g0 as the intervention mechanism, which can be factorized in a treatment
mechanism g01 and censoring mechanism g02 as follows:

g0(O) =
2∏

j=1

g0,1,A(j−1)(A1(j) | Ā(j−1), L̄(j))g0,2,A(j−1)(A2(j) | A1(j), Ā(j−1), L̄(j)).

Throughout this article we will automatically assume the positivity assump-
tion:

P0

(
0 < min

a1∈{0,1}
g0,A(0)(a1, 1|L(0))

)
= 1

P0

(
0 < min

a1∈{0,1}
g0,A(1)(a1, 1 | L̄(1), A(0))

)
= 1. (1)

The strong positivity assumption will be defined as this assumption (1), but
where the 0 is replaced by a δ > 0.

Let (A(0), V (1)) be a function of (L(0), A(0), L(1)), and let V (0) be a
function of L(0). Let V = (V (0), V (1)). Consider dynamic treatment rules
V (0) → dA(0)(V (0)) ∈ {0, 1} × {1} and (A(0), V (1)) → dA(1)(A(0), V (1)) ∈
{0, 1} × {1} for assigning treatment A(0) and A(1), respectively. Note that
the rules for A(0) and A(1) are only a functions of V (0) and (A(0), V (1)),
respectively, and are restricted to set the observations to uncensored. Let D
be the set of all such rules. We assume that V (0) is a function of V (1), but in
the theorem below we indicate an alternative assumption. At times we abuse
notation and let a(0) ∈ {0, 1}×{1} and a(1) ∈ {0, 1}×{1} represent the static
rules at the first and second time points in which everyone receives treatment
a(0) or a(1).

Define the distribution P0,d as the distribution with density

p0,d(L(0), A(0), L(1), A(1), Y )

≡ I(A = d(V ))q0,L(0)(L(0))q0,L(1)(L(1) | L(0), A(0))q0,Y (Y | L̄(1), Ā(1)),

where q0,L(0), q0,L(1), and q0,Y are the densities for Q0,L(0), Q0,L(1), and Q0,Y

and all densities are absolutely continuous with respect to some dominating
measure µ. This probability distribution P0,d is the G-computation formula
(Robins (1987b,b, 1997, 1999); Gill and Robins (2001); Yu and van der Laan
(2003)). In our companion paper we give identifiability results to relate P0,d

to a counterfactual distribution in which the treatment rule d is, contrary to
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fact, implemented for the entire population. We use notation Ld (or Yd, Od)
to mean the random variable with distribution P0,d.

In this article we are concerned with estimation of the V -optimal rule
defined as

d0 = argmax
d∈D

EP0,d
Yd.

The next theorem states an explicit form of the V -optimal individualized
treatment rule d0 as a function of P0. We prove the theorem in our companion
paper.

Theorem 1. Suppose V (0) is a function of V (1). The V -optimal rule d0 can
be represented as the following explicit parameter of P0:

Q̄20(a(0), v(1)) =

EP0(Ya(0),A(1)=(1,1) | Va(0)(1) = v(1))− EP0(Ya(0),A(1)=(0,1) | Va(0)(1) = v(1))

d0,A(1)(A(0), V (1)) = (I(Q̄20(A(0), V (1)) > 0), 1)

Q̄10(v(0)) = EP0(Y(1,1),d0,A(1)
| V (0))− EP0(Y(0,1),d0,A(1)

| V (0))

d0,A(0)(V (0)) = (I(Q̄10(V (0)) > 0), 1),

where a(0) ∈ {0, 1}×{1}. If V (1) does not include V (0), but, for all (a(0), a(1)) ∈
{{0, 1} × {1}}2,

EP0(Ya(0),a(1) | V (0), Va(0)(1)) = EP0(Ya(0),a(1) | Va(0)(1)), (2)

then the above expression for the V -optimal rule d0 is still true.

3 Sequential loss functions for the V -optimal

rule

We will derive three approaches to estimate the V -optimal rule. The first is
based on blip function methodology (Murphy, 2003; Robins, 2003, 2004). The
second aims to directly maximize an estimate of the mean outcome under the
optimal rule. The third is based on previously described weighted classification
approaches (Zhao et al., 2012; Rubin and van der Laan, 2012; Zhang et al.,
2012).

We will generally assume that dA(1) = d0,A(1) when stating results in this
section. Nonetheless, it is straightforward to show that the first time point
loss functions in this section are valid for estimating the optimal fitted rule
given correct specification of the intervention mechanism under the constraint
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that the second time point treatment must follow the possibly suboptimal rule
dA(1).

For presentation purposes, all of the loss functions described in this section
are inverse probability of censoring weighted (IPCW) loss functions. That
is, these loss functions are correct if the intervention mechanism is specified
correctly, which is trivially true in an RCT without missingness. We denote
a (possibly misspecified) intervention mechanism estimate with g. We take
gA(0) and gA(1) to be the resulting first and second time point intervention
mechanisms.

The simplicity of the IPCW formulations comes at the expense of robust-
ness and efficiency. In the appendix we present double robust versions all of
the loss functions and theorems given in this section so that the loss functions
will be correct if either the intervention mechanism is correctly specified or
if particular conditional expectations of the outcome are correctly specified.
Because the IPCW versions of the theorems are special cases of the double
robust versions, we give proofs for the double robust case in the appendix and
omit proofs for the IPCW case in this section.

3.1 Blip functions

We first give a formulation which aims to sequentially learn the blip functions
at each time point. That is, we aim to sequentially learn the V -strata-specific
average treatment effect at each time point. For the second time point, we
find this strata-specific average treatment effect under the counterfactual dis-
tribution in which the first time point treatment is fixed at a(0) ∈ {0, 1}×{1}.
For the first time point, we find this under the counterfactual distribution in
which the second time point follows the estimated second time point rule.

Define

D2(g)(O) = A2(1)
2A1(1)− 1

gA(1)(O)
Y. (3)

Let P0,a(0) denote the static-intervention specific G-computation distribution
P0,a(0) and Oa(0) represents a counterfactual observation under this distribu-
tion. Let LF

2,D2(g)
(Q̄2)(O) denote a valid loss function for estimating EP0,a(0)

[D2(g) |

Va(0)(1) = va(0)(1))], in the sense that

(a(0), v(1)) 7→ EP0,a(0)
[D2(g)(Oa(0)) | Va(0)(1) = v(1)]

minimizes
∑

ã(0)∈{0,1}×{1}

EP0,ã(0)

[
LF
2,D2(g)

(Q̄2)(Oã(0))
]

(4)
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over all measurable functions Q̄2 of a(0) and v(1). Because the minimum is
over all measurable functions, one can split the above sum and minimize the
expected loss (risk) first for ã = (0, 1), and then for ã = (1, 1). At the end of
this section we provide two examples of loss functions satisfying this property.
In fact, one can construct a valid LF

2,D2(g)
from any loss that can be used to fit

a conditional mean. To identify the resulting risk function with the observed
data distribution, we apply the IPCW mapping (van der Laan and Dudoit,
2003):

L2,g(Q̄2)(O) =
A2(0)

gA(0)(O)
LF
2,D2(g)

(Q̄2)(O), (5)

Note that we inverse weight by the entire first time point intervention mech-
anism, not just the censoring mechanism at the first time point. We will use
the sign of the Q̄2 which minimizes L2,g to estimate d0,A(1). For a given rule
at the second time point dA(1), define

D1(g)(O) = A2(0)
2A1(0)− 1

gA(0)(O)
Y. (6)

Let LF
1,D1(g)

be some loss that satisfies:

EP0,dA(1)

[
D1(g)(OdA(1)

) | V (0) = ·
]
= argmin

Q̄1

P0,dA(1)
LF
1,D1(g)

(Q̄1), (7)

where P0,dA(1)
represents the post-intervention distribution corresponding with

the dynamic intervention dA(1) and OdA(1)
represents a counterfactual obser-

vation under this distribution. Our proposed loss function is obtained by
applying the IPCW mapping to the above loss function:

L1,dA(1),g(Q̄1)(O) =
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
LF
1,D1(g)

(Q̄1). (8)

We now state a theorem that gives conditions under which the above loss
functions allow us to learn the optimal rule d0.

Theorem 2. Suppose the positivity assumption holds at g0. Then:

P0{L2,g0(Q̄2)− L2,g0(Q̄20)} =
∑

a(0)

P0,a(0)

(
LF
2,D2(g0)

(Q̄2)− LF
2,D2(g0)

(Q̄20)
)

P0{L1,d0,A(1),g0(Q̄1)− L1,d0,A(1),g0(Q̄10)} = P0,d0,A(1)

(
LF
1,D1(g0)

(Q̄1)− LF
1,D1(g0)

(Q̄10)
)
,

(9)
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where the sum is over a(0) ∈ {0, 1} × {1}. As a consequence:

Q̄20 = argmin
Q̄2

P0L2,g0(Q̄2)

Q̄10 = argmin
Q̄1

P0L1,d0,A(1),g0(Q̄1) (10)

A double robust generalization of the above theorem appears with proof
in the appendix. We will refer to the quantities in (9) as loss-based dissim-
ilarities for L2,g0 and L1,d0,A(1),g0 , which represent the difference between the
P0-expected loss (risk) at a candidate function and the P0-expected loss (risk)
at the true parameter value. The loss-based dissimilarity is defined analogously
for general losses.

Algorithm 1 outlines how to implement the proposed method for the second
time point treatment in an RCT in which the missing mechanism is known
(e.g. no missingness) given some loss LF

2,D2(g)
. The class F that appears in

the algorithm is defined by the choice of regression algorithm, e.g. a linear
combination of A1(0) and covariates in V (1). The estimation procedure for
the rule at the first time point given a rule at the second time point is similar.

Algorithm 1 Blip function based estimation of d0,A(1)

1: function Blip(O1,...,On)
2: for i = 1 to n do
3: Assign A2(1)i

2A1(1)i−1
g0,A(1)(Oi)

Yi to element i of the vector D2(g0)

4: Regress (D2(g0)i : i = 1, ..., n) on ((A(0)i, V (1)i) : i = 1, ..., n)
using loss function LF

2,D2(g)
, where observation i receives weight

A2(0)
g0,A(0)(Oi)

. The goal is to find Q̄2n in some class F such that:

Q̄2n = argminQ̄2∈F n−1
∑n

i=1
A2(0)i

g0,A(0)(Oi)
LF
2,D2(g)

(Q̄2)(Oi).

5: return Q̄2n

In an observational study or an RCT with missingness, one must also esti-
mate the treatment and/or censoring mechanism g0. The rate of convergence
of the final estimate when g0 is estimated will be upper bounded by the rate
at which the estimate g converges to g0. For this reason we suggest using the
more efficient double robust inverse probability of censoring weighted (DR-
IPCW) loss function presented in the appendix. The implementation of the
double robust loss function can be slightly more difficult for the loss functions
presented in this section, the details of which are explored in the appendix.
The double robust losses based on those in Section 3.3, on the other hand, are
straightforward to implement (details in appendix).
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The expressions in (10) make L2,g0 and L1,d0,A(1),g0 valid losses. Even if the
estimated rule is not the optimal rule, one can show that the blip function
at the first time point will maximize the mean outcome under the constraint
of the suboptimal second time point rule. In an observational study, we have
access to an empirical rather than the true observed data distribution. Hence
it may be important to consider the smoothness of LF

2,D2(g)
and LF

1,D1(g)
in the

neighborhood of the minimizers in (4) and (7) so that reasonable estimation
of the sequential risk functions is possible. It may also be desirable to have
empirical process conditions on the class over which the blip functions are fit
suffice to yield a well-behaved empirical risk minimization problem. Nonethe-
less, empirical process conditions are not needed for the cross-validation based
super-learner algorithm proposed in Section 4 to be valid.

We close this section with two examples of loss functions that have many
desirable statistical properties.

Example 1. Squared error loss.

LF
2,D2(g),MSE(Q̄2)(o) = h2(a(0), v(1))

[
D2(g)(o)− Q̄2(a(0), v(1))

]2

LF
1,D1(g),MSE(Q̄1)(o) = h1(v(0))(D1(g)(o)− Q̄1(v(0)))

2,

where h2 and h1 represent positive user-supplied weight functions of (a(0), v(1))
and v(0), respectively. By Theorem 2:

P0{L2,g0,MSE(Q̄2)− L2,g0,MSE(Q̄20)} =
∑

a(0)

P0

{
h2(Q̄2 − Q̄20)

2(a(0), Va(0)(1))
}

P0{L1,d0,A(1),g0,MSE(Q̄1)− L1,dA(1),g0,MSE(Q̄10)} = P0

{
h1(Q̄1 − Q̄10)

2(V (0))
}
.

Using LF
2,D2(g0),MSE in Algorithm 1 shows that the optimal rule at the second

time point can be found using a weighted squared-error loss function. The
same holds for estimating the optimal rule at the first time point. ✷

Example 2. Quasi-log likelihood loss. Suppose it is known that Q̄20 and
Q̄10 fall in some interval (a, b). For example, if Y ∈ (0, 1) then we can take
a = −b = 1. Define η : R → R as the function η(x) = x−a

b−a
. For any real-valued

function f we define f η to be η ◦ f , where ◦ denotes function composition.
Define:

−LF
2,D2(g),KL(Q̄2)

= D2(g)
η log

(
Q̄η

2(a(0), v(1))
)
+ (1−D2(g)

η) log
(
1− Q̄η

2(a(0), v(1))
)

−LF
1,D1(g),KL(Q̄1)

= D1(g)
η log

(
Q̄η

1(v(0))
)
+ (1−D1(g)

η) log
(
1− Q̄η

1(v(0))
)
,

12

http://biostats.bepress.com/ucbbiostat/paper326



for all Q̄2, Q̄1 with range in (a, b).
The loss-based dissimilarities that result after applying the IPCW mapping

are equal to Kullback-Leibler dissimilarities:

P0{L2,g(Q̄2)− L2,g(Q̄20)}

= −
∑

a(0)

P0

[{
Q̄η

20 log
(
Q̄η

2

)
+ (1− Q̄η

20) log
(
1− Q̄η

2

)}
(a(0), Va(0)(1))

]

P0{L1,d0,A(1),g(Q̄1)− L1,d0,A(1),g(Q̄10)}

= −P0

[{
Q̄η

10 log
(
Q̄η

1

)
+ (1− Q̄η

10) log
(
1− Q̄η

1

)}
(V (0))

]
.

We can add weight functions h2 and h1 as in the previous example and the
loss functions are still valid. ✷

3.2 Performance of rule

We now describe a risk function which sequentially targets the performance of
the fitted rule in terms of mean outcome as is done in the Q-learning literature.
By definition, d0 = argmaxd∈D EP0,dYd. It follows immediately that −EP0Yd

is a valid risk function for a candidate rule d. In our companion paper we
discuss two estimates of −EP0Yd. Rather than restate these results, we state
a single theorem which summarizes these findings. We refer the reader to the
companion paper for a thorough discussion of the proposed methods.

Define:

L̃2,g(dA(1))(O) =−
A2(0)

gA(0)(O)

I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
Y. (11)

Let dA(1) be a treatment rule for the second time point. Define:

L̃1,dA(1),g(dA(0))(O) = −
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)

I(A(0) = dA(0)(V (0)))

gA(0)(O)
Y

Theorem 3. Suppose the positivity assumption holds at g0. Then:

P0

{
L̃2,g0(dA(1))− L̃2,g0(d0,A(1))

}
=
∑

a(0)

P0I
(
dA(1) 6= d0,A(1)

) ∣∣Q̄20

∣∣ (a(0), Va(0))

P0

{
L̃1,d0,A(1),g0(dA(0))− L̃1,d0,A(1),g0(d0,A(0))

}
= P0I

(
dA(0) 6= d0,A(0)

) ∣∣Q̄10

∣∣ (V (0))

where the sum is over a(0) ∈ {0, 1} × {1}. It follows that:

d0,A(1) = argmin
dA(1)

P0L̃2,g0(dA(1))

d0,A(0) = argmin
dA(0)

P0L̃1,d0,A(1),g0(dA(0))

13
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A double robust generalization of the above theorem appears with proof in
the appendix.

To estimate P0L̃2,g(dA(1)) and P0L̃1,d0,A(1),g(dA(0)) we recommend using ei-
ther the empirical distribution, which results in an empirical risk minimization
problem, or the CV-TMLE’s of the respective parameters, which we describe
in Section 5.

Though the risks described in this section are desirable in that they directly
target the measure of performance of interest, the computational tractability
of these problems needs to be explored further. In the next section we show
that the optimization problems associated with the above risks can be solved
by empirical risk minimization using weighted 0− 1 loss functions.

3.3 Weighted classification

We now show that maximizing EP0Yd can be viewed as a risk minimization
problem resulting from using a weighted 0 − 1 loss function. This result is a
longitudinal extension to that of Zhang et al. (2012). We then show that a rich
class of smooth surrogate loss functions can be used to improve computational
tractability. We will use the definitions of D1 and D2 from the Section 3.1.

Let Z : R → R represent the function Z(x) = I(x ≥ 0). Define:

K2,g(O) =
A2(0)

gA(0)(O)
D2(g)(O)

L̂2,g(dA(1))(O) = |K2,g(O)|I
(
dA(1)(A(0), V (0)) 6= (Z ◦K2,g(O), 1)

)
,

where ◦ denotes function composition. For some fixed dA(1), define:

K1,dA(1),g(O) =
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
D1(dA(1), g))(O)

L̂1,dA(1),g(dA(0))(O) = |K1,dA(1),g(O)|I
(
dA(0)(V (0)) 6= (Z ◦K1,dA(1),g(O), 1)

)
.

The following theorem shows that the optimal rule can be learned through
a sequential classification problem using Z ◦K2,g(O) and Z ◦K1,dA(1),g(O) as
outcomes and weighted 0−1 loss functions with weights |K2,g| and |K1,dA(1),g|,
where the weights respectively do not rely on dA(1) or dA(0), i.e. the current
rule to the routine aims to learn.

Theorem 4. Suppose the positivity assumption holds at g and g0. Then for
any (dA(0), dA(1)) ∈ D:

L̂2,g(dA(1)) = L̃2,g(dA(1)) + C2,g

L̂1,dA(1),g(dA(0)) = L̃1,dA(1),g(dA(0)) + C1,dA(1),g

14
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where C2,g(O) and C1,dA(1),g(O) do not rely on dA(1) or dA(0), respectively. It

follows that L̂2,g and L̂1,d0,A(1),g are valid loss functions for sequentially esti-
mating d0,A(1) and d0,A(0) if g = g0.

A double robust generalization of the above theorem appears with proof
in the appendix. The above theorem shows that the weighted classification
losses yield the same loss-based dissimilarities as the corresponding mean per-
formance based losses.

We now present a simple result which motivates future work to apply gen-
eral results on surrogate loss functions like those in Bartlett et al. (2006) to the
above weighted classification problem. Zhang et al. (2012) present a specific
result with a weighted hinge loss function in the single time point case. The
result below can be extended naturally using the methods in Bartlett et al.,
but the result below covers many interesting cases.

Theorem 5. Suppose the positivity assumption holds at g and 0 < E|K2,g(O)| <
∞. Let φ : R → [0,∞) be some convex function that is differentiable at 0 with
φ′(0) < 0. Define:

L2,φ,g(f)(O) = |K2,g(O)|φ
(
f(A(0), V (1))(2Z ◦K2,dA(1),g(O)− 1)

)

for some latent function f with range R. Let fi be some sequence of func-
tions and dA(1),i be a sequence of functions such that d

(i)
A(1)(A(0), V (1)) gives

treatment I(fi(A(0), V (1)) ≥ 0) without censoring. Then:

P0L2,φ,g(fi)
i→∞
−→ inf

f̃

P0L2,φ,g(f̃) =⇒ P0L̂2,g(d
(i)
A(1))

i→∞
−→ P0L̂2,g(d0,A(1)),

where the infimum is over all measurable functions f̃ that take A(0), V (1) as
input.

Examining the proof of the theorem in the appendix shows that an analo-
gous result holds for L̂1,d0,A(1),g.

If g is correctly specified and the infimum of P0L2,φ,g(·) is achievable at
some f ∗ then it follows immediately that d0,A(1) has the same performance as
the rule (A(0), V (1)) → I(f ∗(A(0), V (1)) > 0) under P0,a(0). This shows that
weighted surrogate loss functions are valid for d0,A(1). A sufficient condition
for E|K2,g(O)| < ∞ is that g satisfies the strong positivity assumption and Y
is bounded.

Because nonnegatively weighted linear combinations of convex functions
are convex, L2,φ,g is necessarily convex. Thus the proposed procedure yields
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an empirical risk that is easy to minimize via convex optimization techniques.
In the appendix we show that the double robust extension of the above re-
sult holds. Thus, unlike the double robust blip function approach, the double
robust weighted classification loss functions lead to a straightforward optimiza-
tion routine in the longitudinal setting.

Though a convex surrogate loss has many desirable properties, recent ad-
vances in classification shows that there are also many interesting nonconvex
surrogate losses (see, e.g., Masnadi-Shirazi and Vasconcelos (2009)). It would
be interesting to extend these results to weighted classification and explore
their performance.

Algorithm 2 shows how to learn a latent function f2n for a particular sur-
rogate loss L2,φ,g0 when the intervention mechanism are taken to be known.
The extension to the case where g0 is unknown follows the same approach as
for the blip function based loss functions (Section 3.1).

Algorithm 2 Weighted surrogate loss based estimation of d0,A(1)

1: function WeightedSurrogate(O1,...,On)
2: for i = 1 to n do
3: Assign A2(0)i

g0,A(0)(Oi)
A2(1)i

2A1(1)i−1
g0,A(1)(Oi)

Yi to element i of the vector K2,g0

4: Run a classification algorithm to predict (I(K2,g0,i ≥ 0) : i =
1, ..., n) using predictors ((A(0)i, V (1)i) : i = 1, ..., n) and loss
function L2,φ,g0 , where observation i receives weight |K2,g0,i|. The
goal is to find f2n in some class F such that:
f2n = argminf∈F n−1

∑n

i=1 |K2,g0,i|L2,φ,g0(f)(Oi).
5: return f2n

We close this section with two examples of valid weighted surrogate loss
functions, and refer the reader to Bartlett et al. (2006) for more examples. One
can verify that φ is convex and differentiable at 0 in both of these examples.

Example 3. Weighted log loss: φ(x) = log(1 + e−x). Then:

L2,φ,g(f)(O) = |K2,g(O)| log
(
1 + e−f(A(0),V (1))(2Z◦K2,g(O)−1)

)
.

One can show that the above loss is closely related to the loss function in Exam-
ple 2 but can yield different estimated rules. The unweighted log loss directly
estimates class probabilities. This partly explains the similarities between the
above and certain losses that are calibrated to estimate the sequential blip
functions. ✷
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Example 4. Weighted hinge loss: φ(x) = max(1− x, 0). Then:

L2,φ,g(f)(O) = |K2,g(O)|max
(
1− f(A(0), V (1))[2Z ◦K1,dA(1),g(O)− 1], 0

)
.

Unlike the previous example, optimizing the unweighted hinge loss does not
directly estimate class probabilities. Nonetheless, the above loss can be related
to the weighted log loss using the notion of a soft maximum (Cook, 2011). ✷

4 Sequential super-learning of the optimal rule

We now present an ensemble method called super-learning that combines can-
didate estimators of the optimal rule at a particular time point into a single
estimated rule for that time point. At each time point, the final estimator sat-
isfies an oracle inequality stating that it will asymptotically perform at least
as well as the best convex combination of candidates in the library in terms of
loss-based dissimilarity under mild conditions. The super-learner methodology
allows for data adaptive candidate estimators, by which we mean estimators
that are consistent over a large semi-parametric model. Our super-learner can
select the best resolution for a data set based on data adaptive and parametric
candidate estimators.

4.1 Second time point

For the sake of presentation we will present these results for IPCW loss func-
tions in an RCT without missingness, but the oracle inequalities for the double
robust losses are straightforward extensions of the results in this section. At
the end of this section we give examples of loss functions that satisfy the
conditions for the oracle inequality derived from the blip function, mean per-
formance, and weighted classification approaches.

We start by introducing the notation used in this section. Let Bn ∈ {0, 1}n

denote a random split of the data into a training sample {i : Bn(i) = 0}
and validation sample {i : Bn(i) = 1} so that npn of the elements in each
realization of Bn have value 1 for some pn ∈ (0, 1). Let P 0

n,Bn
and P 1

n,Bn

denote the corresponding empirical distributions of these two complementary
subsamples. Section 2.4.1 of Dudoit and van der Laan (2005) shows that many
commonly used cross-validation procedures yield sample splitting formulations
in terms of a random variable Bn.

Let f̂2,j, j = 1, . . . , J , denote an estimator of a latent function that takes a

distribution P as input and outputs an estimate f̂2,j(P ) for which the indicator
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that f̂2,j(P )(A(0), V (1)) is nonnegative gives an estimate of the optimal rule
d0,A(1) evaluated at (A(0), V (1)). In the examples following Theorem 6 we
suppose that all of the latent functions under consideration have bounded
range, which can be accomplished in practice via truncation. We do not expect
reasonable truncation (not truncating too close to 0) of the latent function to
greatly impact the mean performance of the fitted rule because it will not
change the sign of the candidate.

All loss functions discussed in the previous section yield a latent function
representation. For blip function based losses, the blip function itself can
be taken as the latent function. For the mean performance of the estimated
rule, 2d − 1 can be used as the latent function, where d represents the value
estimated rule at a particular point. For the weighted classification approach,
either the latent function resulting from many classification methods can be
used directly or an artificial latent function can be constructed as for the mean
performance loss.

We first give a general oracle inequality as presented in van der Laan et al.
(2007) for estimating d0,A(1). Let αn fall in a grid Gn of K(n) points on ∆J−1,
where ∆J−1 represents the (J−1)-simplex is the set of all α ∈ [0, 1]J such that∑

j αj = 1. The given setup yields the following finite sample result.

Theorem 6. Let Lg0 be some loss function that relies on g0 which takes as
input a function f : A(0) × V(1) → R and yields a function of O. Let f20 =
argminf P0Lg0(f). Suppose that:

sup
f

sup
o∈O

|Lg0(f)(o)− Lg0(f20)(o)| < ∞ (12)

sup
f

V arP0 (Lg0(f)(O)− Lg0(f20)(O))

EP0 [Lg0(f)(O)− Lg0(f20)(O)]
< ∞. (13)

where the supremums are over all measurable functions f : A(0) × V(1) → R

and we take 0/0 = 0. For all α ∈ ∆J−1, define f̂2,α(P ) =
∑J

j=1 αj f̂2,j(P ). For
a fixed sample of size n, define:

αn = argmin
α∈Gn

EBn
P 1
n,Bn

Lg0(f̂2,α(P
0
n,Bn

))

Then:

EPn
0
EBn

P0{Lg0(f̂2,αn
(P 0

n,Bn
))− Lg0(f20)}

≤ (1 + λ)EPn
0
min
α∈Gn

EBn
P0{Lg0(f̂2,α(P

0
n,Bn

))− Lg0(f20)}+ C(λ)
logK(n)

npn

for all n ∈ N and λ > 0, where C(λ) ≥ 0 is a constant that may rely on P0

and P n
0 represents the distribution of the observed n i.i.d. draws from P0.
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The above theorem is a special case of Corollary 3.2 in van der Laan et al.
(2006) so the proof is omitted. In this article we focus on V ′ cross-validation.
Note the distinction between V ′ and V from the V -optimal rule in the notation.
In V ′-fold cross-validation, the data is split into V ′ mutually exclusive and
exhaustive sets of size approximately n/V ′ uniformly at random. Each set is
then used as the validation set once, with the union of all other sets serving
as the training set. The fact that n may not be divisible by V ′ so that the
validation sets are not all exactly the same size will not matter asymptotically
and will make little difference in finite samples.

We can choose Gn so that any point on the simplex can be arbitrarily well
approximated by a point on the grid of polynomial size K(n) asymptotically.
Given a Lipschitz condition on the loss-based dissimilarity, the approximation
error by using points on K(n) instead of the entire simplex is asymptotically
negligible. Such a Lipschitz condition will hold under bounding conditions for
all loss functions previously discussed except the mean outcome and weighted
0− 1 loss functions. For these two losses we posit that the finite sample result
on the grid Gn still gives a useful asymptotic result over the entire simplex
under reasonable conditions, e.g. consistency of at least one of the candidates.

The limiting result is referred to as an oracle inequality because we asymp-
totically do as well as the oracle in selecting α (up to an almost parametric
O(log n/n) term) in terms cross-validated loss-based dissimilarity averaged
across training samples. Letting V ′ go to infinity at a slow enough rate also
shows that we do a well as the oracle who can see the entire data set rather
than just training samples, again up to the O(log n/n) term. Thus the ratio
of loss-based dissimilarities converges to 1 as n → ∞ whenever the oracle
dissimilarity converges slower than log n/n.

The methodology shows that there is no need to a priori decide on a
single loss function or algorithm to fit the optimal rule – simply including all
candidate methods of interest in the super-learner library guarantees that we
asymptotically do at least as well as the best of the algorithms in terms of the
cross-validated loss-based dissimilarity resulting from the chosen Lg0 .

In Algorithm 3 we describe how to implement the super-learner algorithm
using V ′-fold cross-validation for a given data set a collection of prediction
algorithms f̂2,1, ..., f̂2,J . Let Lg0 be a loss function satisfying the conditions of
Theorem 6. For simplicity we assume that n is divisible by V ′. Rather than
optimize for αn over Gn, we recommend (approximately) optimizing over the
entire simplex.

For an observational study or an RCT with an unknown censoring mecha-
nism, an estimate gn,v of g0 can be estimated each training sample v = 1, ..., V ′.
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Algorithm 3 Super-learner estimation of d0,A(1)

1: function SuperLearner(O1,...,On,f̂2,1,...,f̂2,J)
2: Let F be a randomly ordered vector of length n containing n/V ′ 1s,

n/V ′ 2s, ..., n/V ′ V ′s
3: Initialize an empty matrix X of dimension n× J
4: for v = 1 to V ′ do
5: for j = 1 to J do
6: Fit the estimate f2,v,j by running f̂2,j on the set {Oi : Fi 6= v}
7: For all i such that Fi = v, let Xi,j = f2,v,j(A(0)i, V

′(1)i)

8: Run an optimization routine to solve:

αn = argmin
α∈∆J−1

V ′∑

v=1

∑

i:Fi=v

Lg0

(
J∑

j=1

αjXi,j

)

9: for j = 1 to J do
10: Fit the estimate fj by running f̂2,j on the {Oi : i = 1, ..., n}

11: return fαn
≡
∑J

j=1 αn,jfj

We then let:

αn = argmin
α∈∆J−1

V ′∑

v=1

∑

i:F (i)=v

Lgn,v

(
J∑

j=1

αjf2,v,j

)
(Oi). (14)

We have described oracle inequalities showing that we asymptotically esti-
mate the best candidate rule at each time point given our sample, subject to
the implementation of possibly suboptimal rules at future time points. Get-
ting an oracle result in terms of the mean under the optimal rule of the entire
treatment regime is desirable, but we have not shown whether or not such a
result holds in this section. One cannot fit the convex combinations at both
time points simultaneously when the optimal rule is learned sequentially be-
cause the candidates at the first time point rely on the convex combination at
the second time point.

We now give examples of loss functions to which the inequality in Theorem
6 can be applied. Each of the below examples makes use of a subset of following
assumptions (each example specifies the subset it uses). The fourth assumption
is only used in Example 5 and is discussed there.

A1. PrP0(|Y | < M) = 1 for some M < ∞.
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A2. The strong positivity assumption holds at g0 for some δ > 0.

A3. Each of the estimators in the candidate library produces estimates of uni-
formly bounded range, where the uniformity is over input distributions
P .

A4. There exists some constant c > 0 that may rely on P0 such that
|Q̄20(A(0), Va(0)(1))| ≥ cEP0 [Y

2
a(0),a(1)|Va(0)] almost surely with respect to

the distribution in which the first treatment is set to a(0) for a(0), a(1) ∈
{0, 1} × {1}.

Example 1 (continued). Squared error loss. We consider the unweighted case
so that h2 = 1. If A1, A2, and A3 then |L2,g0,MSE| is uniformly bounded and
thus satisfies (12). For all f , it can be shown that:

V arP0(L2,g0,MSE(f)− L2,g0,MSE(Q̄20)) ≤ EP0

(
L2,g0,MSE(f)− L2,g0,MSE(Q̄20)

)2

≤ M1EP0

[
L2,g0,MSE(f)− L2,g0,MSE(Q̄20)

]
,

whereM1 = supf supo∈O

(
2D2(g0)(o)− (f + Q̄20)(a(0), v(1))

)2
≥ 0 is bounded

by the stated assumptions. Thus the condition in (13) holds. ✷

Example 3 (continued). Weighted log loss. Suppose A1, A2, and A3. It
follows that |K2,g0 | is almost surely bounded. These conditions immediately
show that (12) holds. The result is obvious if EP0 |K2,g0 | = 0, so suppose
EP0 |K2,g0 | > 0. To show that (13) holds, one can use a similar change of
measure argument as the one applied in the proof of our Theorem 5 to account
for the weighting and apply Corollary 5.4 in van der Laan et al. (2006) to:

φ(x) = log(1 + e−x) = − log

(
1

1 + e−x

)
.

✷

Example 5. Mean performance. Define:

Lg0(f)(O) = −
A2(0)

gA(0)(O)

I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
Y,

where we have modified the definition in (11) so that Lg0 depends directly on
the latent function. Suppose A1, A2, and A4. The loss-based dissimilarity
representation in Theorem 3 shows that L̃2,g0 satisfies (12). We show that the
stated conditions suffice for (13) in Appendix B.
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Assumption A4 can be viewed as a margin condition that ensures that the
classification problem is not too difficult. In particular, it requires that the
strata-specific treatment effect be larger than both of the expected squared
outcomes under the counterfactual distributions where a(1) is fixed without
censoring. For binary Y , this means that the absolute average treatment effect
in each strata of Va(0) be larger than some fixed proportion of the counterfactual
prevalence of the outcome in strata of Va(0) when we set a(0) and a(1). ✷

4.2 First time point

The approach for estimating the optimal rule at the first time point is entirely
analogous to the second time point, with the caveat that it takes an estimate
of d0,A(1) as a nuisance function. To incorporate the estimate of the nuisance
function, we suggest using the same approach used to incorporate an estimate
of g0 when it is unknown as we do in (14). In particular, this means estimating
the nuisance function d0,A(1) on training set v and using this estimate of the
nuisance function to obtain an estimate of a latent function at the first time
point based on training set v for each algorithm j. One can then learn the
convex combination similarly to what is done in (14), and apply this convex
combination to the candidates learned on the full data set, which take an
estimate of d0,A(1) based on the entire data set as nuisance function. The rate
of convergence of the estimated first time point rule to d0,A(0) will be upper
bounded by the rate of convergence of the estimated second time point rule
to dn,A(1), see Theorem 1 of van der Laan and Dudoit (2003) for a detailed
exposition.

To estimate the nuisance function d0,A(1), we suggest using the super-learner
procedure presented in Algorithm 3, leading to a nested cross-validation pro-
cedure. In terms of runtime, this can cost up to a factor of V . If this is a
concern, one can simply use the estimate of dn,A(1) resulting from the entire
data set as nuisance function for all folds. Such a practice is not advisable
because it invalidates the oracle inequality and necessitates empirical process
conditions on the candidates. In general we look to avoid such conditions
since they limit the data adaptivity of the estimators. Thus we believe that
an honest cross-validation scheme in which the candidate estimators are only
functions of the training samples is extremely valuable for estimating rules in
practice.
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5 CV-TMLE of risk

The empirical risk estimates resulting from the loss functions provided in Sec-
tion 3 are valid in the sense that they are minimized at the true optimal
treatment regime. Nonetheless, the empirical risk resulting from the given
loss functions (and the double robust losses presented in the appendix) are
not substitution estimators and thus can fail to respect a key constraint of the
model: the fact that the risk is bounded. To improve finite sample perfor-
mance, we propose using a CV-TMLE based estimate of risk. The CV-TMLE
is a substitution estimator and thus naturally respects the bounded nature of
our data. The CV-TMLE was originally proposed in Zheng and van der Laan
(2010). Diaz and van der Laan (2013) use a CV-TMLE to estimate the risk
of the causal dose response curve. In our companion paper we presented a
CV-TMLE for the cross-validated mean outcome under a fitted rule.

Here we present two CV-TMLE’s. The first is a sequential CV-TMLE that
estimates the risks resulting from Theorem 3. The second is a non-sequential
CV-TMLE which aims to directly maximize the mean outcome under the fitted
two time point rule, which is even more targeted towards our goal than the
losses in Theorem 3.

To distinguish between the convex combinations for super-learner at the
first and second time points in this section, we will use the notation αA(k) for
the convex combination used at time k, k = 0, 1.

5.1 Sequential CV-TMLE

Suppose we use the sequential negative mean performance risk function from
Section 3.2 and conditions hold so that the risk is bounded. Consider selecting
the convex combination αA(1) and αA(0) for the super-learner presented in the
previous section when g0 is known (e.g., in an RCT without missingness). Sup-
pose the outcome Y is bounded. While the empirical risk is root-n consistent
under conditions (and the double robust empirical risk is even asymptoti-
cally efficient under conditions), the given risk estimates may not respect the
bounded nature of the data in finite samples.

Given an αA(1), we can estimate the risk for the second time point rule
indexed by this αA(1). The CV-TMLE for the second time point is identical to
the CV-TMLE presented in Appendix B.2 of our companion paper, with the
exception that the covariate for ǫ2 is replaced by

A2(0)I(A(1) = I
(∑

j αA(1),jf2,v,j(O) > 0)
)

g0(O)
,
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and the covariate for ǫ1 is replaced by A2(0)/g0,A(0)(O). The conditions for the
validity of the resulting risk estimate are not presented here, but are analogous
to those presented in Diaz and van der Laan (2013). The CV-TMLE has
the same double robustness and asymptotic efficiency properties as the cross-
validated empirical mean of the double robust loss. For more details, we refer
the reader to our companion paper.

Fitting the rule at the first time point is similar, with the covariate for ǫ2
replaced by

I
(
A(0) = I(

∑
j αA(0),jf1,v,j(O) > 0)

)
I
(
A(1) = dnv,A(1)(A(0), V (1))

)

g0(O)

where dnv,A(1) is a nuisance parameter for the second time point rule learned
only on training sample v. One could give empirical process conditions un-
der which dnv,A(1) does not need to be learned only on training sample v,
but we will not do so here. The covariate for ǫ1 is then given by I(A(0) =
I(
∑

j αA(0),jf1,v,j(O) > 0))/g0,A(0)(O).
All risks presented in the previous examples are pathwise differentiable, and

thus can yield CV-TMLE’s of risk that may outperform the cross-validated
empirical risk in finite samples.

5.2 Non-sequential super-learner targeted directly at
mean outcome

We now sketch a non-sequential super-learner which seeks to maximize the
mean outcome under the entire estimated rule dn = (dn,A(0), dn,A(1)). This
estimator is a direct application of the CV-TMLE presented in Section 7.1
and Appendix B.2 of our companion paper. Suppose we have libraries of
sequential candidate latent function estimators (P 7→ f̂1,j(P ) : j = 1, ..., J1)

and (P 7→ f̂2,j(P ) : j = 1, ..., J2) for the first and second time points. The
latent function estimators for the first time point rely on nuisance function fits
for the second time point rule, but there is no requirement that this nuisance
function be the same as the final output rule dn,A(1) at the second time point.
For each fold v we can compute a sequential super-learner for the second time
point on training set v, which yields an estimate dnuisn,v,A(1) of d0,A(1). In learning

each dnuisn,v,A(1) we have estimated latent functions resulting from estimators f̂2,j2 ,
j2 = 1, ..., J2, applied to all of the training samples. We can get estimates
resulting from applying the sequential estimators f̂1,j1 , j1 = 1, ..., J1, to each
training set v, where the treatment at the second time point is set to dnuisn,v,A(1).
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We now have estimates resulting from estimators f̂1,j1 and f̂2,j2 applied to
each training sample for all j1, j2. We can simultaneously optimize over αA(0)

and αA(1) to maximize the CV-TMLE of the mean outcome under the fitted
rule. The final estimated latent functions at the first and second time points
are given by

∑
j αn,A(0),j f̂1,j(Pn) and

∑
j αn,A(1),j f̂2,j(Pn), respectively. This

method seems to be most targeted towards our goal, namely maximizing the
mean outcome under the estimated rule. We note that αA(1) need not equal
any of the convex combinations αnuis

v,A(1) used to obtain each dnuisn,v,A(1), but we
can establish oracle inequalities that will ensure that αn,A(1) performs at least
as well as each αnuis

v,A(1) in terms of mean outcome for the final output optimal
rule. We leave deeper consideration of this cross-validation scheme to future
work.

6 Simulation methods

Section 6.1 and Section 6.2 respectively introduce the data and methods for
estimating the optimal rule d0 in the one and two time point case.

6.1 Single time point

We start by presenting two single time point simulations. In our earlier tech-
nical report we directly describe the single time point problem (van der Laan,
2013). Here, we instead note that a single time point optimal treatment is a
special case of a two time point treatment when only the second treatment
is of interest. In particular, we can see this by taking L(0) = V (0) = ∅, es-
timating Q̄2,0 without any dependence on a(0), and correctly estimating Q̄1,0

with the constant function zero. We can then let I(A(0) = dn,A(0)(V (0))) = 1
for all A(0), V (0) wherever the indicator appears in our calculations. Because
the first time point is not of interest, we only describe Q̄2,0 and the second
time point treatment mechanism for this simulation. We refer the interested
reader to our earlier technical report for a thorough discussion of the single
time point case.

6.1.1 Data

See Section 8.1.1 of our companion article. We remind the reader that static
treatments (treating everyone or no one at the second time point) have ap-
proximately the same mean outcome of 0.464. The optimal rule has mean
outcome EP0Yd0 ≈ 0.536 when V (1) = W3 and the optimal rule has mean
outcome EP0Yd0 ≈ 0.563 when V (1) = (W1,W2,W3,W4).
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6.1.2 Estimation methods

We assume that the treatment and censoring mechanisms are known. For
ease of interpretation, we consider two estimates of EP0

[
Y |Ā(1),W

]
: (i) a

naive estimate of 1/2 for all A(1),W , and (ii) the true conditional expectation
EP0

[
Y |Ā(1),W

]
. We note that (i) is slightly different from an IPCW estimator

in that it contains a term which stabilizes the inverse weighted outcome term in
the (cross-validated) empirical or CV-TMLE estimate of risk. This stabilized
approach should do slightly better in our simulation since the conditional mean
of Y given Ā(1),W is approximately centered around 0.5. In practice we
always recommend using a double robust approach, even if just an intercept-
only best guess of the conditional mean as we do here. When the outcome is has
mean a 6= 0, one can always (approximately) mean-center the outcome before
estimating the optimal rule. This turns out to be equivalent to misspecifying
EP0

[
Y |Ā(1),W

]
to be the constant function 1/2.

We estimate Q̄2,0 using both a misspecified parametric model and a li-
brary containg both parametric and machine learning methods. We always
recommend using data adaptive methods to estimate Q̄2,0 in practice, but
use the misspecified parametric model to demonstrate the robustness of using
the mean outcome as the risk criterion. We only consider the misspecified
parametric model when V (1) = W3. In particular, we use the parametric fit:

Q̄2,n(a(0), w3) = β0 + β1w3

where β is chosen to minimize either the empirical mean-squared error or
the TMLE estimate of mean outcome. Neither of the risk estimates for the
misspecified parametric model uses cross-validation. For the parametric fit we
take the estimate of EP0 [Y |Ā(1),W ] to be the constant 1/2

We also use super-learner to estimate Q̄2,0. Table 2 shows the methods
used from the SuperLearner package in R (Polley and van der Laan, 2012) and
the corresponding estimating methodology with which they were estimated.
The multivariate adaptive regression splines algorithm was only used for V =
W1, ...,W4. We separately consider the candidates generated according to the
squared error and surrogate log loss functions, and also consider a candidate
library that includes both the squared error and surrogate log loss function
methods.

To generate convex combinations of predictors we maximize the CV-TMLE
or CV-DR-IPCW estimates of mean outcome (see our companion paper for a
description of the estimating equation based CV-DR-IPCW estimator). We
approximate solutions to the resulting optimization problems using the Sub-
plex routine in the nloptr package in R (Ypma, 2014; Rowan, 1990). We use
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Loss function Method R function

Squared error

Bayesian GLM SL.bayesglm

Generalized additive model SL.gam

Generalized linear model SL.glm

Generalized linear model, interactions SL.glm.interaction

Multivariate adaptive regression splines SL.earth

Sample mean SL.mean

Neural network SL.nnet

Stepwise regression SL.step

Forward stepwise regression SL.step.forward

Stepwise regression, interactions SL.step.interaction

Weighted log

Generalized additive model SL.gam

Generalized linear model SL.glm

Generalized linear model, interactions SL.glm.interaction

Neural network SL.nnet
Recursive partitioning SL.rpart

Table 2: Candidate estimators used to estimate Q̄2,0. See the SuperLearner
package documentation for more details (Polley and van der Laan, 2012).
SL.earth only used for V = (W1, ...,W4).

thirty starting values selected randomly from the simplex to avoid sensitivity
to intitial conditions, and also include the selection of α based on the weighted
log loss criterion as an initial value. We also consider minimizing the cross-
validated empirical risk functions derived from the squared error and weighted
log loss functions. We do not truncate the latent functions, though we note
only the empirical MSE blip function estimates can be unbounded, and this
should not cause problems in our data set because the outcome is bounded. We
compare the mean outcome under the rules generated by several combinations
of candidate libraries and criteria for choosing the convex combination.

To evaluate the performance of the described methods we will use the mean
performance of the estimated rule as a criterion, which is given by EP0Ydn for
a given rule dn. We estimate EP0 using 106 Monte Carlo simulations.

6.2 Two time points

Having already compared several different methodologies in the single time
point setting, we use the two time point setting to show that our proposed
method can sequentially learn a rule with good performance in practice.
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6.2.1 Data

See Section 8.1.2 of the companion article. We remind the reader that static
treatments yield mean outcomes EP0Y(0,1),(0,1) = 0.400, EP0Y(0,1),(1,1) ≈ 0.395,
EP0Y(1,1),(0,1) ≈ 0.361, and EP0Y(1,1),(1,1) ≈ 0.411. The true optimal treatment
has mean outcome EP0Yd0 ≈ 0.485 when V (0) = L(0) and V (1) = (A(0), L̄(1)).

6.2.2 Estimation methods

As in the single time point case, we treat the intervention mechanism as
known. As in the single time point case, we consider two stabilized classes
risk estimates instead of the IPCW estimator (see Section 6.1.2). Rather than
estimate EP0 [Y |Ā(1), L̄(1)] when estimating d0,A(1), we consider two extreme
cases, namely plugging in either the truth or the constant function 1/2 for the
desired expectation. Once the rule dn,A(1) at the second time point has been
estimated, we estimate EP0 [Ydn,A(1)

|A(0), L(0)] by either plugging in the truth,
which can be computed analytically using the G-computation formula, or the
constant function 1/2. In our simulations we only consider the cases where
either both or neither of the sequential regressions is estimated correctly. All
simulations use the IPCW mapping to relate the full data loss function to the
observed data distribution (see Appendix A).

We use the candidate library in Table 2, with the exception that the Bayes
GLM algorithm was excluded from these runs due to an occasional error from
the software and the multivariate adaptive regression spline model was also
excluded. The convex combinations for the sequential super-learners are se-
lected using the cross-validated empirical risk resulting from the surrogate log
loss function and the CV-TMLE estimate of the negative mean outcome risk.
The weights 1/g0,A(0)(O) and I(A(1) = dn,A(1)(O))/g0,A(1)(O) were incorpo-
rated into the procedures for estimating d0,A(1) and d0,A(0) by weighting the
candidate algorithms and the empirical risk optimization problem. The fitted
rule dn,A(1) used to weight the losses for estimating d0,A(0) was not fitted on the
training samples as we recommended in Section 4.2 due to time constraints.

7 Simulation results

7.1 Single time point

7.1.1 Incorrectly specified parametric model, V (1) = W3

Using the TMLE estimate of the mean outcome under the fitted rule as a
risk estimate appears to be more robust to model misspecification than the
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mean-squared error criterion.
Figure 1a shows that estimators which use the estimated mean outcome

under the fitted rule as a the criteria to select β outperform the estimators
which use the mean-squared error. Figure 1b demonstrates why the TMLE-
based estimator outperforms the MSE-based estimator by such a large margin.
In particular, we see that the near-quadratic shape of Q̄2,0 is not well-described
by a linear fit. Nonetheless, linear classifiers which have x-intercepts near
W3 = −1 with negative slope or x-intercepts near W3 = 1 with positive slope
correctly estimate the optimal treatment in the interval between ±1 and one of
the two intervals ±(1,∞). The TMLE-based estimator approximately learns
one of these two decision boundaries, while the MSE-based estimator does
not. In practice it is unlikely that such gross misspecification will occur for
a one-dimensional Q̄2,0. Nonetheless, for more complex or higher dimensional
Q̄2,0 it is likely that correctly specifying Q̄2,0 will be infeasible.

See the toy example presented in Qian and Murphy (2011) for another
example of when using a classification approach performs better than using a
blip function based approach.

7.1.2 Data adaptive methods

It remains to show that the mean outcome criterion performs well for selecting
α when data adaptive methods are used to estimate Q̄2,0. Figure 2a and Figure
2b respectively give performance results of the super-learner based methods
when V (1) = W3 and V (1) = W1, ...,W4.

In this simulation the CV-TMLE for the mean outcome performs well
when EP0 [Y |Ā(1),W ] is correctly specified, while the CV-DR-IPCW is out-
performed by all other methods for selecting α regardless of the specification
of EP0 [Y |Ā(1),W ]. Combining both the weighted classification and the regres-
sion libraries perform well in all cases. The regression methods with the MSE
risk criterion also performs well for all settings of our simulation. Correctly
specifying the estimate of EP0 [Y |Ā(1),W ] improves performance for all can-
didate libraries and choices of the convex combination vector α. Comparing
the weighted classification and blip function approaches is difficult given the
different candidate library sizes, but both perform well overall.

Multivariate adaptive regression splines appear do the best of all algorithms
in the super-learner library when V (1) = W1, ...,W4, though only slightly
better than the super-learner fits which do not require a priori specification
of a single algorithm. The super-learner outperformed all other algorithms
in the candidate library. The super-learners perform similarly to the neural
network algorithm when V (1) = W3 and outperforms all other algorithms in
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Figure 2: Mean performance of the estimated rule when the estimate En[Y |Ā(1),W ]
of EP0 [Y |Ā(1),W ] is correctly and incorrectly specified. Error bars indicate 95%
confidence intervals to account for uncertainty from the finite number of Monte
Carlo draws in our simulation. (a) V (1) = W3, (b) V (1) = W1, ...,W4.
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Figure 3: Mean performance of the estimated rule when EP0 [Y |Ā(1), L̄(1)] and
EP0 [Yd|A(0), L(0)] are specified correctly and incorrectly. Error bars indicate 95%
confidence intervals to account for uncertainty from the finite number of Monte
Carlo draws in our simulation.

the candidate library.
All generalized linear model (GLM) methods performed poorly for all set-

tings. For example, when a stepwise regression which includes interaction was
used to estimate the blip function and EP0 [Y |Ā(1),W ] was correctly specified,
the mean performance was respectively 0.465 and 0.483 when V = W3 and
V = W1, ...,W4. Thus here we see a setting where using data adaptive meth-
ods is important for good estimation of the optimal rule. Though we only show
the generalized additive model in Figure 2, the super-learners outperformed
all methods under consideration.

7.2 Two time points

Figure 3 shows that the the performance of several estimation methods in
the two time point case. It appears that the optimal rule for our simulation
can be well described by a generalized linear model. In particular, we see a
stepwise regression with only main terms outperform all other methods under
consideration, including our super-learners. Though the weighted classification
based stepwise regression was not included in our model, we ran this algorithm
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alone to compare to the blip function based stepwise regression. The results
were similar, with mean performance of approximately 0.470 for both settings
considered.

Although the stepwise regression algorithm performed better for the given
data generating distribution at this sample size, the super-learners which aim
to maximize an estimate of the mean performance perform well overall. Note
that some of the data adaptive methods, such as blip function based neu-
ral networks and classification based recursive partitioning perform poorly
compared to the other methods. On average across the thousand runs, the
super-learner which seeks to maximize the CV-TMLE of the mean outcome
and has the conditional mean correctly specified gave the most weight at the
first time point to the following algorithms: blip stepwise regression, 0.206;
blip stepwise regression with interactions, 0.108; blip forward stepwise regres-
sion, 0.101; blip GLM, 0.080; and blip generalized additive model, 0.073. Thus
our super-learner has naturally learned to select a linear as opposed to a more
data adaptive estimator for the latent function.

The mean outcome based super-learners slightly outperformed the weighted
log based super-learners in terms of mean performance for both settings.

8 Discussion

This article investigated nonparametric estimation of a V -optimal dynamic
treatment. We proposed sequential loss-based super-learning with novel choices
of loss functions to construct such a nonparametric estimator of the V -optimal
rule. When applied in sequentially randomized controlled trials, this method
is guaranteed to asymptotically outperform any competitor (with respect to
loss-based dissimilarity) at each stage by simply including it in the library of
candidate estimators. Some of the proposed sequential super-learners aim to
minimize risks associated with learning some latent function which gives the
optimal rule. One of these super-learners aims to optimize the performance of
the fitted rule itself by maximizing the mean outcome. This seems to be more
targeted towards our goal, but our theoretical claim suggests that stronger
conditions are needed for the oracle inequality for this selector to hold.

Our simulation results support our theoretical findings. The super-learners
always performed comparably to the best candidate in the library, and our the-
oretical results suggest that increasing sample size will improve their relative
performance further. Further simulations are needed to fully understand the
relationship between the weighted classification and blip function methods,
and whether or not there are situations in which one will always perform bet-

33

Hosted by The Berkeley Electronic Press



ter than the other. We demonstrated a misspecified linear classifier for which
using the mean outcome criterion outperforms a misspecified linear blip func-
tion estimator in our simulation. We expect that such a situation can also
occur with data adaptive methods, especially when none of the algorithms are
correctly specified.

It would be interesting to compare the performance of our proposed super-
learners against the fits of experts in the field who use a single fitting algorithm
but perform variable selection and modify the tuning parameters based on the
data. Such a (wo)man versus machine challenge can be done in practice with
real or simulated data by proposing a fit on a training set and evaluating per-
formance on a validation set. We expect that the human will tend to over-
or underfit the data, while our proposed cross-validation method will select
an appropriate level of smoothing. One might argue that the super-learner,
which encourages using a large library of candidate estimators, requires an
excessive amount of computing time. If runtime is a concern, one could use
super-learners that use a rich class of parametric regression models with many
variables (basis functions) as a candidate library. These algorithms can be
optimized using stochastic gradient descent, so yield a computationally effi-
cient super-learner algorithm. We leave it to the individual to decide how to
best learn a dynamic treatment rule, but emphasize that theory, simulations,
and the documented performance of super-learner algorithms in other contexts
(see Introduction) suggest that our proposed method should perform well in
almost any reasonably sized (not trivially small) sample.

In the current article we defined the treatment as binary at each time
point. Consider now a treatment that has k possible values. We can then
define a vector of binary indicators, ordered in a user-supplied manner, that
identify the treatment. We can now apply the results for the multiple time-
point treatment case in the appendix of our earlier technical report, since this
represents a special case in which at some time-point there are no intermediate
covariates between binary treatments (van der Laan, 2013). As a consequence,
our results also apply to this case. Because the rate of convergence at each
time point is upper bounded by the convergence rates at previously fitted
time points, there may be better approaches when log2 k ≫ 1. We leave such
approaches to future work.

The sophistication of estimation and inference strategies for optimal treat-
ment regimes has progressed dramatically in recent years thanks to the inno-
vative work of many researchers. We look forward to continued statistical and
computational advancements in this field, and to the eventual implementation
of these treatment strategies on a large scale.
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Appendix

A Double robust loss functions

Below Q represents a parameter value, where the parameter maps from a
distribution P to a collection of conditional distributions. Alternatively, we
can set these estimates equal to 0 for IPCW-like risk estimates. We use Q0 to
denote the parameter mapping applied to P0, i.e. the collection of conditional
distributions under the observed data distribution P0. All of the mappings used
in this section only require expectations under the conditional distributions in
Q. Thus in practice standard regression algorithms can be used to estimate
the needed portions of Q0. When we write conditional expectations under Q as
EQ, it will always be clear from context what parameter mapping (conditional
distribution) of P0 the appropriate part of Q is supposed to estimate.

Estimates for the optimal rule can be obtained using any regression or
classification software, including data adaptive techniques. Because products
of differences of Q and Q0 and g and g0 will serve as remainder terms for
the final risk estimates, it is important to consistently estimate as many of
these quantities of interest as possible, ideally at a reasonable rate. Note that
the desire for consistent estimates of Q0 likely precludes the use of parametric
regressions for fitting Q, though parametric regressions can be taken as can-
didates in a cross-validation based algorithm such as SuperLearner. If known,
any knowledge of Q0 or g0 may be incorporated into the estimates.

Throughout this section we introduce double robust versions of functions
defined in the main text. Rather than introduce new notation to account for
this, we simply add a Q next to the g in the notation, e.g. D2(g) becomes
D2(Q, g) and L2,g becomes L2,Q,g.
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A.1 Blip functions

Define

D2(Q, g)(O) = A2(1)
2A1(1)− 1

g0,A(1)(O)
(Y − EQ[Y | L̄(1), Ā(1))]

+ EQ[Y | L̄(1), A(0), A(1) = (1, 1)]− EQ[Y | L̄(1), A(0), A(1) = (0, 1)],

Let LF
2,D2(g)

(Q̄2)(O) denote a valid loss function for estimating EP0,a(0)
[D2(Q, g) |

Va(0)(1) = va(0)(1))], in the sense that

(a(0), v(1)) 7→ EP0,a(0)
[D2(Q, g)(Oa(0)) | Va(0)(1) = v(1)]

minimizes

∑

ã(0)∈{0,1}×{1}

EP0,ã(0)

[
LF
2,D2(Q,g)(Q̄2)(Oã(0))

]

over all measurable functions Q̄2 of a(0) and v(1). Applying the DR-IPCW
mapping (van der Laan and Dudoit, 2003) gives:

L2,Q,g(Q̄2)(O)

=
A2(0)

gA(0)(O)

(
LF
2,D2(Q,g)(Q̄2)− EQ

[
LF
2,D2(Q,g)(Q̄2) | A(0), L(0)

])

+
1∑

a1(0)=0

EQ

[
LF
2,D2(Q,g)(Q̄2) | A(0) = (a1(0), 1), L(0)

]
, (15)

We will use the sign of the Q̄2 which minimizes L2,Q,g to estimate d0,A(1). For
a given dA(1), define

D1(dA(1), Q, g)(O) = A2(0)
2A1(0)− 1

gA(0)(O)

(
Y − EQ

[
YdA(1)

| L(0), A(0)
])

+EQ

[
YdA(1)

| L(0), A(0) = (1, 1)
]
− EQ

[
YdA(1)

| L(0), A(0) = (0, 1)
]
.

Let LF
1,D1(dA(1),Q,g) be some loss that satisfies:

EP0,dA(1)

[
D1(dA(1), Q, g) | V (0) = ·

]
= argmin

Q̄1

P0,dA(1)
LF
1,D1(dA(1),Q,g)(Q̄1),
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Our proposed loss function is obtained by applying the DR-IPCW mapping
to the above loss function:

L1,dA(1),Q,g(Q̄1)(O) =
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
LF
1,D1(dA(1),Q,g)(Q̄1)

−
I(A(1) = dA(1)(A(0), V (1))

gA(1)(O)
EQ

(
LF
1,D1(dA(1),Q,g)(Q̄1) | Ā(1), L̄(1)

)

+ EQ

(
LF
1,D1(dA(1),Q,g)(Q̄1) | A(0), A(1) = dA(1)(A(0), V (1)), L̄(1)

)
, (16)

We now state a theorem that gives conditions under which the above loss
functions allow us to learn the optimal rule d0.

Theorem 2 (DR Version). Suppose the positivity assumption holds at g and
g0 and either Q = Q0 or g = g0. Then:

P0{L2,Q,g(Q̄2)− L2,Q,g(Q̄20)}

=
∑

a(0)

P0,a(0)

(
LF
2,D2(Q,g)(Q̄2)− LF

2,D2(Q,g)(Q̄20)
)

P0{L1,d0,A(1),Q,g(Q̄1)− L1,d0,A(1),Q,g(Q̄10)}

= P0,d0,A(0)

(
LF
1,D1(d0,A(1),Q,g)(Q̄1)− LF

1,D1(d0,A(1),Q,g)(Q̄10)
)
,

where a(0) ∈ {0, 1} × {1}. As a consequence:

Q̄20 = argmin
Q̄2

P0L2,Q,g(Q̄2)

Q̄10 = argmin
Q̄1

P0L1,d0,A(1),Q,g(Q̄1)

The condition that Q = Q0 can be weakened so that only the needed
conditional expectations Q are equal to the analogous expectations under Q0.
We state a slightly stronger form of double robustness than stated in the above
theorem in Section 9.1 of the earlier technical report (van der Laan, 2013). The
stronger form shows that we have double robustness separately at each time
point, so we need only have the portion of g0 or that of Q0 corresponding to
each time point correctly specified. For example, we may have the intervention
mechanism correctly specified at the first but not the second time point, but
L2,Q,g is still a valid loss as long as the portion of Q corresponding to the
second time point is correctly specified (even if Q is misspecified at the first
time point!).
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Proof of Theorem 2 (DR Version). Suppose Q = Q0 or g = g0. By the
double robustness of DR-IPCW mapping:

EP0L2,Q,g(Q̄2)(O) =
∑

a(0)

EP0,a(0)
LF
2,D2(Q,g)(Q̄2)

EP0L1,d0,A(1),Q,g

(
Q̄1

)
= EP0,d0,A(1)

[
LF
1,D1(d0,A(1),Q,g)(Q̄1)

]
.

All claims again follow immediately by the choice of LF
2,D2(Q,g) and LF

1,D1(d0,A(1),Q,g).

Optimizing the double robust blip loss functions is not straightforward
because of the final two terms in expressions in (15) and (16). Taking these
terms to be 0, which is equivalent to misspecifying these needed conditional
expectations under Q0, allows for the use of weighted regression methods. We
show in Section A.3 that optimizing the weighted classification losses does not
encounter this difficulty.

A.2 Performance of rule

Define:

−L̃F
2,Q,g(dA(1))(O) =

I(A(1) = dA(1)(a(0), V (1)))

gA(1)(O)
(Y − EQ[Y | L̄(1), Ā(1)])

+ EQ[Y | L̄(1), A(0), A(1) = dA(1)(a(0), V (1))].

Applying the DR-IPCW mapping (van der Laan and Dudoit, 2003) gives:

L̃2,Q,g(dA(1))(O) =
A2(0)

gA(0)(O)

(
L̃F
2,Q,g(dA(1))(O)− EQ

[
L̃F
2,Q,g(dA(1)) | A(0), L(0)

])

+
1∑

a1(0)=0

EQ

[
L̃F
2,Q,g(dA(1)) | A(0) = (a1(0), 1), L(0)

]
.

Let dA(1) be a treatment rule for the second time point. Define:

−L̃F
1,dA(1),Q,g(dA(0))(O) =

I(A(0) = dA(0)(V (0)))

gA(0)(O)
(Y − EQ[YdA(1)

| L(0), A(0)])

+ EQ[YdA(1)
| L(0), A(0) = dA(0)(V (0))].

38

http://biostats.bepress.com/ucbbiostat/paper326



Applying the DR-IPCW mapping gives:

L̃1,dA(1),Q,g(dA(0))(O) =
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
L̃F
1,dA(1),Q,g(dA(0))

−
I(A(1) = dA(1)(A(0), V (1))

gA(1)(O)
EQ

(
L̃F
1,dA(1),Q,g(dA(0)) | Ā(1), L̄(1)

)

+ EQ

(
L̃F
1,dA(1),Q,g(dA(0)) | A(0), A(1) = dA(1)(A(0), V (1)), L̄(1)

)

Theorem 3 (DR Version). Suppose the positivity assumption holds at g and
g0 and either Q = Q0 or g = g0. Then:

P0

{
L̃2,Q,g(dA(1))− L̃2,Q,g(d0,A(1))

}
=
∑

a(0)

P0I
(
dA(1) 6= d0,A(1)

) ∣∣Q̄20

∣∣ (a(0), Va(0)(1))

P0

{
L̃1,d0,A(1),Q,g(dA(0))− L̃1,d0,A(1),Q,g(d0,A(0))

}
= P0I

(
dA(0) 6= d0,A(0)

) ∣∣Q̄10

∣∣ (V (0))

where the sum is over a(0) ∈ {0, 1} × {1}. It follows that:

d0,A(1) = argmin
dA(1)

P0L̃2,Q,g(dA(1))

d0,A(0) = argmin
dA(0)

P0L̃1,d0,A(1),Q,g(dA(0))

Proof of Theorem 3 (DR Version). For all dA(1):

P0

(
L̃2,Q,g(dA(1))− L̃2,Q,g(d0,A(1))

)

=
∑

a(0)

P0,a(0)

(
L̃F
2,Q,g(dA(1))− L̃F

2,Q,g(d0,A(1))
)

=
∑

a(0)

P0,a(0)

(
EP0,a(0)

[
L̃F
2,Q,g(dA(1))− L̃F

2,Q,g(d0,A(1)) | Va(0)

])

=
∑

a(0)

P0,a(0)I
(
dA(1) 6= d0,A(1)

)
(a(0), Va(0))

∣∣Q̄20(a(0), Va(0))
∣∣ ,

where the sums are over a(0) ∈ {0, 1} × {1}. Because |Q̄20| ≥ 0, the above is
minimized at dA(1) = d0,A(1). For any first time point treatment rule dA(0):

P0

{
L̃1,d0,A(1),Q,g(dA(0))− L̃1,d0,A(1),Q,g(d0,A(0))

}

= P0,d0,A(1)

{
L̃F
1,d0,A(1),Q,g(dA(0))− L̃F

1,d0,A(1),Q,g(d0,A(0))
}

= P0

{
EP0,d0,A(1)

[
L̃F
1,d0,A(1),Q,g(dA(0))− L̃F

1,d0,A(1),Q,g(d0,A(0)) | V (0)
]}

= P0I
(
dA(0) 6= d0,A(0)

)
(V (0))

∣∣Q̄10(V (0))
∣∣ .
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The above expression is minimized at dA(0) = d0,A(0).

A.3 Weighted classification

We will use the definitions of Q, D1, and D2 from the Section A.1.
Define:

K2,Q,g(O) =
A2(0)

gA(0)(O)
(D2(Q, g)− EQ [D2(Q, g) | A(0), L(0)])

+
1∑

a1(0)=0

EQ [D2(Q, g) | A(0) = (a1(0), 1), L(0)] .

Also define:

L̂2,Q,g(dA(1))(O) = |K2,Q,g(O)|I(dA(1)(A(0), V (0)) 6= (Z ◦K2,Q,g(O), 1)).

Similarly, let:

K1,dA(1),Q,g(O) =
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
D1(dA(1), Q, g))

−
I(A(1) = dA(1)(A(0), V (1))

gA(1)(O)
EQ

(
D1(dA(1), Q, g) | Ā(1), L̄(1)

)

+ EQ

(
D1(dA(1), Q, g) | A(0), A(1) = dA(1)(A(0), V (1)), L̄(1)

)
,

and:

L̂1,dA(1),Q,g(dA(0))(O) = |K1,dA(1),Q,g(O)|I(dA(0)(V (0)) 6= (Z ◦K1,dA(1),Q,g(O), 1)).

We have the following theorem:

Theorem 4 (DR Version). Suppose the positivity assumption holds at g and
g0. Then for any (dA(0), dA(1)) ∈ D:

L̂2,Q,g(dA(1)) = L̃2,Q,g(dA(1)) + C2,Q,g

L̂1,dA(1),Q,g(dA(0)) = L̃1,dA(1),Q,g(dA(0)) + C1,dA(1),Q,g

where C2,Q,g(O) and C1,dA(1),Q,g(O) do not rely on dA(1) or dA(0), respectively.

It follows that L̂2,Q,g and L̂1,dA(1),Q,g are valid loss functions for sequentially
estimating d0,A(1) and d0,A(0) if either either Q = Q0 or g = g0.
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Proof of Theorem 4 (DR Version). For all realizations o ∈ O, define:

C2,Q,g(o) = −L̃2,Q,g((Z ◦K2,Q,g(o), 1))(o),

where L̃2,Q,g((Z◦K2,Q,g(o), 1)) represents L̃2,Q,g evaluated at the static decision
rule where everyone is given the treatment Z ◦ K2,Q,g(o) ∈ {0, 1} without
censoring.

Checking all values of dA(1) ∈ {0, 1}× {1}, Z ◦K2,Q,g ∈ {0, 1}, a(0), a(1) ∈
{0, 1}2 shows that:

|K2,Q,g|I(dA(1) 6= (Z ◦K2,Q,g, 1))− L̃2,Q,g(dA(1)) = C2,Q,g.

For the first time point, we define:

C1,dA(1),Q,g(o) = −L̃F
1,dA(1),Q,g

(
(Z ◦K1,dA(1),Q,g(o), 1)

)
(o).

Checking all values of dA(0) ∈ {0, 1} × {1}, Z ◦ K1,dA(1),Q,g ∈ {0, 1}, and

a(0), a(1) ∈ {0, 1}2 shows that:

|K1,dA(1),Q,g|I
(
dA(0) 6= (Z ◦K1,dA(1),Q,g, 1)

)
− L̃1,dA(1),Q,g(dA(0)) = C1,dA(1),Q,g.

The claim that L̂2,Q,g and L̂1,d0,A(1),Q,g are valid loss functions for the sequential
estimation of d0 follows by the double robust version of Theorem 3.

We close this section with a proof of Theorem 5 from the main text. A
double robust extension of this result is straightforward.

Proof of Theorem 5. By the law of total expectation, for all dA(1) that set
observations to uncensored:

EP0L̂2,g(dA(1))

= EP0

[
EP0 [|K2,g| | A(0), V (1), Z ◦K2,g(O)] I

(
dA(1),1(A(0), V (1)) 6= Z ◦K2,g

)]
,

where dA(1),1 is the treatment index of the optimal rule. Let P̃0 be the proba-
bility measure with:

PrP̃0
((A(0), V (1), Z ◦K2,g) ∈ B)

=
1

EP0 |K2,g|

∫

B

EP0 [|K2,g| | A(0), V (1), Z ◦K2,g(O)] dP0
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for all measurable sets B. Note that P̃0 is a probability distribution over values
of A(0), V (1), Z ◦K2,g and that P̃0 is absolutely continuous with respect to P0.
Also note that

EP0L̂2,g(dA(1)) = EP̃0
I
(
dA(1),1(A(0), V (1)) 6= Z ◦K2,g

)
,

so we can now consider a simple 0− 1 loss under the distribution P̃0.
By Theorem 4 in Bartlett et al., φ is classification-calibrated according to

the definition in the paper. By part (c) of Theorem 3 in the same paper, it
follows that:

lim
i→∞

P̃0φ
(
fi(A(0), V (1))(2Z ◦K1,dA(1),g − 1)

)
= inf

f̃

P̃0φ
(
f̃(A(0), V (1))(2Z ◦K1,dA(1),g − 1)

)

=⇒

lim
i→∞

P̃0I (I (fi(A(0), V (1)) > 0) 6= Z ◦K2,g) = inf
f̃

P̃0I
(
I
(
f̃(A(0), V (1)) > 0

)
6= Z ◦K2,g

)
,

Writing the above expectations under P̃0 as expectations under P0 weighted
by dP̃0/dP0 and multiplying by the constant EP0 |K2,g| gives the desired result.

Examining the above proof shows that the conditions on φ can be weakened
to the condition that φ is classification-calibrated according to the definition
in Bartlett et al. (2006).

B Example 5 proof

Proof that (13) holds in Example 5. Note that:

V arP0 (Lg0(f)− Lg0(f20))

≤ EP0 (Lg0(f)− Lg0(f20))
2

= EP0

[
I (I(f ≥ 0) 6= I(f20 ≥ 0)) (A(0), V (1))

A2(0)

gA(0)(O)2
A2(1)

gA(1)(O)2
Y 2

]

≤ δ−2
∑

a(0)

∑

a(1)

EP0

[
I (I(f ≥ 0) 6= I(f20 ≥ 0)) (a(0), Va(0)(1))Y

2
a(0),a(1)

]
,

where the sums are over {0, 1} × {1}. For all kδ > 0, Theorem 3 shows that:

kδV arP0 (Lg0(f)− Lg0(f20))− EP0 [Lg0(f)− Lg0(f20)]

≤ max
a(1)

∑

a(0)

EP0

[
I (I(f ≥ 0) 6= I(f20 ≥ 0))

(
2kδY

2
a(0),a(1) − |Q̄20|

)
(a(0), Va(0))

]
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where the maximum is over a(1) ∈ {0, 1}× {1}. By A4, we can choose kδ > 0
small enough so that 2kδEP0 [Y

2
a(0),a(1)|Va(0)] − |Q̄20(a(0), Va(0)(1))| ≤ 0 almost

surely for all a(0), a(1) ∈ {0, 1}×{1}. The law of total expectation applied to
the above then shows that, for kδ > 0 sufficiently small:

kδV arP0 (Lg0(f)− Lg0(f20))− EP0 [Lg0(f)− Lg0(f20)] ≤ 0.

Condition (13) follows immediately, thus completing the proof.
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