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S U P E R - L O G A R I T H M I C  D E P T H  L O W E R  
B O U N D S  VIA THE D I R E C T  S U M  IN 

C O M M U N I C A T I O N  C O M P L E X I T Y  

M A U R I C I O  KARCHMER~ RAN RAZ, AND W I G D E R S O N  

Abs t r ac t .  Is it easier to solve two communication problems together 
than separately? This question is related to the complexity of the com- 
position of boolean functions. Based on this relationship, an approach 
to separating N C  1 from P is outlined. Furthermore, it is shown that 
the approach provides a new proof of the separation of monotone N C  1 

from monotone P. 
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1. I n t r o d u c t i o n  

The communicat ion complexity model was first studied by Yao [22]. It was 
originally motivated by applications to distributed computing and VLSI, where 
it captures essential features in an natural  way (see [2] and the references 
within). Recently, unexpected connections were found between this model 
and seemingly unrelated areas of combinatorial optimization [21] and circuit 
complexity [15]. 

A very natural  question to ask is the "direct sum" question: Is it easier 
to solve two problems together than separately? This question is related, in 
its essence, to similar questions in algebraic complexity [3] and other models 
[7]. For the original model of Yao [22], in which the problems are Boolean 
functions, we give lower bounds for the amount  of savings possible. Our main 
interest, though,  is in the case of search problems, or relations. This is because 
of the equivalence between communication complexity of relations and circuit 
depth [15 I. In particular, we will informally relate the direct sum question to 
the complexity of the composition of boolean functions. 

The key observation which motivates this paper is that  if the depth com- 
plexity of the composition of two functions is close to the sum of the individual 
complexities, then N C  1 is different from P.  This direction provides an explicit 
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family of functions, quite different from P-complete  functions, for which this 
approach can lead to super-logarithmic lower bounds. 

We test the feasibility of our approach in two settings. One is the setting 
of universal relations, which abstract the role of the functions involved: The 
second is the setting of monotone computation.  Both settings provide encour- 
aging answers. For universal relations , the lower bounds for composition were 
proven by Edmonds et al. in [4]. For monotone computat ion,  we give here a 
simple new proof of the separation between the monotone analogues of NC 1 
and P.  This was first proved by Karchmer & Wigderson in [15]. 

2 .  P r e l i m i n a r i e s  

Consider three finite sets X, Y, and Z, and a ternary relation/~ C X x Y x Z. 
Given such a relation, consider the following game between players I and II: For 
(x, y) C X x Y, give x to player I and y to player II. Their goal is to agree on 
any z C Z with the proviso that  (x, y, z) E R. Let C(R) be the communicat ion 
complexity of the above problem. 

This model, for the case where R defines a function F �9 X x Y ~ Z has 
been extensively studied in the literature [22],[16],[2]. In particular, Mehlhorn 
& Schmidt [16] gave a useful way of obtaining a lower bound on C(F) from 
the rank of an associated matrix. Let K be any field, and assume without loss 
of generality that  Z _C K. Let M(F) be a matrix whose rows (columns) are 
labeled by elements of X (respectively Y), and whose (x, y) entry is F(x, y). 
Then, if rk is the rank function of matrices over K, we have the following result. 
(The logarithm in this paper is always taken base 2.) 

PROPOSITION 2.1 ([16]). C(F) > logrk(M(F)) .  

For general relations (search problems), the model was studied in [15],[12] 
with the following motivation. Let f : {0, 1} n ~4 {0, 1} be a Boolean function, 
and let d(f) be the minimal depth of a boolean circuit comput ing f .  Let 
In] = { 1 , . . . ,  n}. Define the relation Rf  C_ f - l ( 1 )  x f - l ( 0 )  x In] by (x, y, i) e Rf 
if and only if xi r yi- The following theorem is our start ing point. 

THEOREM 2.2 ([15]). For every f, d(f) = C(Rf) .  

For monotone computat ion,  we have a similar theorem. Let f : {0, 1} n ~-~ 
{0, 1} be a monotone function, and let d,~(f) be the minimal  depth of a 
monotone boolean circuit computing f .  Let rain(f)  and max(f )  be the set 
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of minterms and maxterms of f .  Recall that  p C [n] is in min( f )  (respectively 
max( f ) )  if it is a minimal subset with the property that  assigning the value 1 
(respectively 0) to the variables in p forces f to output 1 (respectively 0). We 
define the monotone relation associated with f ,  R~ c min( f )  x max( f )  x [n], 
by (p, q, i) E R~ if and only if i C p A q. Now we have the following result. 

THEOREM 2.3 ([15]). For every monotone f ,  din(f) =- C(R~) .  

In what follows, we will use the notion of reducibilities between relations. 

DEFINITION 2.4. Let R C_ X x Y x Z and R' C X '  x Y~ x Z'. We say that R 
is reducible to R', R <_ R', i f  there exist functions r : X ~-+ X ~, CH : Y ~+ Y~ 
and r : Z'  ~-~ Z such that for every (x, y) E X x Y,  

(r r z') e R' (x, r e R. 

The motivation for the above definition is contained in the following lemma. 

LEMMA 2.5. Let R C_ X x Y x Z and R' C_ X p x Y '  x Z'. I f  R < R ~, then 
c ( n )  < C(R').  

We will also use a more general definition of reducibilities which can be 
defined as follows, in informal terms: We say that R <~ R r if there is a protocol 
for R that  first obtains a result z ~ for an instance of R ~ as above, and then uses 

extra bits of communication to find a solution z of R. In this way, i fR  <_~ R', 
then C(R)  <_ C(R')  + o~. See [12] for further details concerning reductions. 

We will use the following "disjointness" functions: Let P([n]) denote the 
power set of [n] and let :Pl([n]) denote the collection of all subsets of [n] of size 
1. Let I s :  7~([n]) • $'([n]) ~-+ {0, 1} where In(S, T) = 0 iff S N T -- 0. Also, for 
I < n/2, let Ii,~: :Pl([n]) x Pl([n]) ~-~ {0,1} where II,~(S,T) = 0 i f f S N T  = O. 
It is well known that  the associated matrices have full rank over the reals. 

THEOREM 2.6 ([11]). Over the reals, rk(M(In)) = 2 n and rk(M(It,,~)) = (~). 

COROLLARY 2.7. C(In) >_ it and C(II,n) >_ log (?). 
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3. D i r e c t  s u m  of  re la t ions  

DEFINITION 3.1. Given two relations R CC X x Y x Z and R' C_ X'  x Y' x Z ~ 
we define the direct sum (or tensor product), as follows: 

n .  n'  c_ ( x  • x ' )  x (Y x Y') x ( z  x z ' ) ,  

where ((xl, x2), (y,, y2), (Zl, Z2)) E I:~ | R ! i f  and only i f  (Xl, Yl, zl) e R and 
(x2, Y2, z2) E R'. 

Intuitively, R | R' corresponds to solving instances of R and R ~ simultane- 
ously. Given any relation R and k > 1 we define the relation R (k) by R 0) = R 
and R (k) = R | R (k-l). The following definition arises naturally. 

DEFINITION 3.2. For a relation R, define the amortized complexity of R, ~(R), 
as follows: 

~(R) = inf { k " C(R(k)) } . 

OPEN QUESTION 3.3. What is the relation between C(R | R') and C(R) + 
C(R')? 

Clearly, C(R | R') <_ C(R) + C(R'). Feder et al. [6] give an example where 
C(R | R) = C(R) + O(1). In the example, C(R) = O(logn) (where n is the 
input size) so it may be that  one can never save more than an additive amount 
of O(logn). In fact, it was proven in [6] that for the case of non-deterministic 
complexity, one can never save more than an additive factor of O(logn).  

For functions, the situation is simpler. We give below two lower bounds on 
the possible savings in computing direct sum of functions. 

The first one is based on the fact that the rank of matrices is muttiplica- 
rive with respect to tensor product, and implies that the rank lower bound of 
Proposition 2.1 is additive with respect to the direct sum of functions. 

PROPOSITION 3.4. For R, R' functions, we have 

C(R | R') > logrk(M(R))  + logrk(M(R')) .  

PROOF. For two matrices M and M' over the same field K, denote by 
M | M' their (standard) tensor product. It is well known that  rk (M | M') = 
rk(M)rk(M') .  
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Assume that  the answer sets Z, Z' of R ,R '  are subsets of the field K, 
and let R - R '  : (X • X') • (Y • Y') --+ K be t h e  function defined by 
R .  R'((x,x ') ,  (y,y')) = R(x,y)R' (x ' ,y ' )  (multiplication in K). Note that 
M ( R .  R') : M(R)  | M(R') .  It is easy to see that a trivial reduction gives 
R | R' > R-  R'. Therefore, using Proposition 2.1, we have 

C(ROR')  > c ( n .  R') 
k logrk(M(R) | M(R')) 
_> logrk(M(R)) + logrk(M(R')).[] 

COROLLARY 3.5. I f  t{ is a function, then ~)(R) >_ logrk(M(R))  over any field. 

The relationship between the logarithm of the rank and communication 
complexity is not known, and there may be an exponential gap between them. 
Thus, we give here another lower bound on the amortized communication com- 
plexity of functions in terms of its communication complexity. The same result 
was independently obtained in [6]. The reader is referred to the very nice proof 
given in [6]. 

THEOREM 3.6. For a function R with C(R) >>_ 2(logn) 2 (again, n is the input 
size), we have 

4. Composi t ion of boolean functions 

Let Bn denote the set of all boolean functions on n variables. Given f C B~ 
and g C Bin, we define the composition f o g : {0, 1} ~m ~-~ {0, 1} as follows: 

f o g(X~,..., Xn) = f (g( f l ) , . . . ,  g(Xn)), 

where )(i E {0, 1} m for 1 < i ( n. (i.e., the input variables for f <>g are given 
in a matrix. We first apply g on each row of the matrix, and then apply f on 
the vector of the results). For k > 1, we define a function f(k) by f(1) = f and 
f(k) = f ~ f(k-1).  

We believe that  C(Rfog) may be related to C(Rf)  + C(Rg). To understand 
why, one has to look closely at the game defined by R fog. Player I gets a vector 

( )~ l , . . . ,Xn)  which induces a vector ~ E f-1(1) by xi = g(Xi). Similarly, 
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player II gets a vector (17~,..., Y~) which induces a vector/]  e f - t (0 ) .  Suppose 

that the vectors are such tha t  if xi = yi then J~ = ~ .  Then an answer (i, j )  
for the game Rgog will provide us with an answer i for Rf and an answer j for 
an instance of Rg. 

Therefore, when one looks at the relation Rfog, one gets the impression 
that to solve it, one will have to solve an instance of R] and an instance of Rg 
(obviously, solving an instance of R] and an instance of Rg will be enough). A 
natural question to ask here is the following. 

OPEN QUESTION 4.1. What is the relation between C(Rfo~) and C(RI) + 
c(n )7 

Clearly, C(RIog ) <_ C(RI) + C(Rg). As pointed out by Sipser [20], we can 
have strict inequality if we let f = g = xl (9 x2 | x3. Pudls [17] gave an 
example with an additive gap that tends to infinity. He shows that  taking 
f = g = T~ (where T~ is the threshold 2 function) gives C(Rgog) <_ C(Rf) + 
C(R~) - log log n. We know of no example that achieves a bigger gap. In the 
next section, we will argue that  if C(Rfog) is not too far from C(Rf)  + C(Rg), 
then NC 1 r P. 

The only nontrivial case when such a lower bound can be proven was pro- 
posed by Andreev [1], and was a main source of inspiration for this paper. Let 
| be the parity function on n bits. Implicit in [1] is the following theorem. 

THEOREM 4.2 ([1]). 

C(Rfoe,~) > C(Rf) + ~C(R,,~) - O(loglogn).  

After a sequence of improvements, an essentially optimal bound for this 
case was obtained by Hastad [8]. 

THEOREM 4.3 ([S]). 

C(RIo~) >_ C(Rf) + C(Re~ ) - O(loglogn).  

Both results in fact give the corresponding stronger result for formula size. 
They use random restriction arguments, which go particularly wel! with func- 
tions like parity but seem to be inadequate for our purposes, as may become 
clearer in the next section. 
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5. C o m p o s i t i o n s  of  funct ions  and N C  1 v s .  P 

In this section, we will relate the notion of composition to the NC ~ versus P 
question. The main idea is that  if we start with a hard function on a few bits 
and compose it with itself many times, then we will hopefully get a function on 
n variables with super-logarithmic depth complexity but which can be defined 
in P (and even in NC2). The following theorem shows that some possible 
answers to Question 4.1 imply NC 1 ~ P. Note that  the condition we need 
is much weaker than the separation provided by the examples in the previous 
section. 

THEOREM 5.1. I f  for some 1 > e > O, every f satisfies C(RfoI) ~_ (I+r 
then NC 1 ~ NC 2. 

PROOF. Take k = logn/ log logn  and let f C Blog~ be the hardest function 
on logn variables so that  d(f)  = C(Rf )  = ft(logn). Then, f(k) has n variables 
and it is readily seen to be in NC 2. But 

so that  f(k) ~ NC 1. [] 

_> ( 1 + c )  .C(Rf(k/,)) 

_ _ _  (1 +  )logk. c(Rj) 
= k 1~ �9 f~(logn) 

1 i = ~(log +~ n/ loglogn)  

Note that  we do not need an explicit description of f .  We could take f to be 
a random function. Also, we do not need the full strength of the assumption of 
the theorem. We can weaken the assumptions in many ways without weakening 
the conclusion. For example, we have the following theorem. 

THEOREM 5.2. I f  for a random function f and for every g, C(RIog) > C(Rg) + 
e. C(Rf) ,  then NC 1 ~ NC 2. 

PROOF. Let f l , . . . ,  fk be k random functions on log n variables each. Ob- 
viously, Vi C(Rf~) = ~(logn) .  Using the assumption, an inductive argument 

shows that C(Rflo...oI,) > ~-~ik=l e .  C(RI~ ). This is true by taking f = fl ,  
g = f2 o . . .  ~ fk in the assumption, and using the inductive hypothesis that 
C(R~) >_ ~ik=2r �9 C(R],)). Choosing k = logn/ log logn  as before yields a 
function f l  0 . . .  o fk in NC 2 which requires ~(log2 n /  loglog n) depth. [] 

And so on and so forth. Also, by noting that any function on log n vari- 
ables can be described with only n bits, the above theorems yield a separation 
between non-uniform NC 1 and uniform NC 2. 
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6. T h e  u n i v e r s a l  r e l a t i o n  f o r  c o m p o s i t i o n  

One way to test our approach is by introducing a "universal" relation that 
abstracts away the role of a particular function in the composition. We define 
a communication problem Uk,n as follows: Let T be a balanced, degree n, depth 
k tree. Players I and II have labelings 991 and ~H, respectively, each mapping 
every node of T to {0, 1}. The pair ( ~ ,  9~H) is legal if the following conditions 
hold: 

(1) ~,(r) r ~ii(r), where r is the root of T, 

(2) if ~r(v) r ~s(v),  then there is a son u of v such that ~i(u) r pH(U). 

The goal of the players is to agree on a leaf I of T such that ~• # ~H(l) 
if (~I, ~II) is legal. In case the input pair is illegal, the players can output any 
answer. 

The following lemma shows why we call Uk,~ the Universal Relation for 
Composition. 

LEMMA 6.1. For any f l , . . - ,  fk E B~, R:lo...o:k < Uk,~. 

PROOF. Let f = fl o . . .  o fk. A circuit for f can be described by putting in 
every node o f T  of depth i, 0 < i < k - l ,  a gate of the function fi+l, and letting 
the leaves be the input wires in the natural order. Every input to f gives a 
truth value to every node in T in the natural way, by evaluating the subcircuit 
rooted at this node. Finally, observe that the labelings ~x, ~H obtained in this 
way from two inputs xi, xr: (for the two players in the game R:) form a legal 
pair. Thus, we have just described the required reduction from R / t o  Uk,~. [] 

Note that fl  o . - .  o fk has n k variables, and that C(Uk,~) < kn(1 + o(1)). 
In [14], we conjectured that this bound is tight, with the obvious motivation of 
testing our approach. This conjecture was proved by Edmonds et al. [4]. They 
used beautiful information theoretic arguments to measure the progress made 
(in a top-down direction) by an arbitrary protocol on successive levels of the 
composition, and proved the following strong bound. 

THEOREM 6.2 ([4]). C(Uk,,,) _> k n -  O(k2nlx/-d-i-6-~). 

A completely different method was used by Hastad & Wigderson [9] to give 
a slightly stronger lower bound. They use a bottom-up approach that utilizes 
a NeSiporuk-like subadditive measure on protocols. 
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THEOREM 6.3 ([9]). C(Uk,~) > kn - O(k31ogk).  

Note that  both lower bounds leave open whether C(Uk,~) = f~(kn) when 
k > v/n. While this range is not too interesting when replacing the universal 
problem by real functions, determining Uk,~ in this range remains an interesting 
problem in communicat ion complexity. 

7 .  T h e  m o n o t o n e  u n i v e r s a l  r e l a t i o n  f o r  c o m p o s i t i o n  

In this section, we define the monotone analogue U~,~ of the universal relation, 
and prove a t ight lower bound for its communicat ion complexity, for all values 
of k and n. 

Let T be as before. Let players I and II have labelings ~I and ~ri, respec- 
tively, mapping  every node of T to {0, 1}. This time, the pair (Pr, ~H) is legal 
if the following conditions hold: 

(1) ~ ( r )  = ~ , , ( r )  = 1, 

(2) if  ~ , ( v )  = ~ H ( v )  = 1, t h e n  there  is a son  u o f  v such  t h a t  ~ i ( u )  = 
~ , ( ~ )  = 1. 

The goal of the players is to agree on a l ea f /o f  T such that  ~i  (1) = ~H (1) = 1 
if (~I, ~H) is legal. In case the input  pair is illegal, the players can output  any 
answer. 

The  following lemma is the analogue to Lemma 6.1. We omit its proof 
which is essentially the same. 

LEMMA 7.1. For any monotone f l , . ~  fk E B~, R m < U m 
" '  f l O ' " O f k  - -  k , n "  

For this problem, it is much easier to prove a tight lower bound which 
relies on a connection between the monotone universal relation and the set 
disjointness problem. This connection was also used in [18]. 

THEOREM 7.2. C(U~n ) ~ nk  - 2. 

PROOF. Observe that  U~,~ is the problem in which every player gets a subset 
of [n] as input,  and their task is to find a member  of the intersection if it is 
nonempty. This gives the simple reduction In <2 U~,n, in which both players, 
after receiving the result of U~,~ on their input  subsets, check that  indeed it is 
a member  of their input. 
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It is natural to seek a similar reduction from I~ (k) to U TM but we are not 
r(^k) 

convinced that  one exists. Rather, we define a weaker function ~n , and 
reduce it to U m As for _f(k) the players get k pairs of subsets of In] (each k~n" n , 

player gets one set from each pair), but rather than deciding for each pair if it 
is intersecting, they are required only to output 1 if all k pairs are intersecting, 
and 0 otherwise (i.e., if some pair has empty intersection). I t  is easy to see 

that M ( I  (Ak)) is the kth tensor power of M(In). By Propositions 2.1 and 2.2, 

we have C(I(n Ak)) >_ kn. 
Note that  k sets $1, $2 , . . . ,  Sk can be used to define a labeling of T in the 

following way: the root is labeled 1, and the node at depth j defined by the 
path i!, i2 , . . . ,  ij is labeled 1 iff for all 1 < l < j ,  we have iz C Si (it is labeled 
0 otherwise). 

r(Ak) 
Given inputs for ~ , the players can use this procedure to define labelings 

~ , ~ u .  It is easy to check that in this case, the pair (9~i, 9~u) is legal for U m iff 
k ,n  

there exists a leaf I of T such that ~x(1) = ~H(1) = 1. This occurs iff all the k 

input pairs for r(Ak) consist of intersecting subsets. The reduction I (Ak) (_2 U m .~ n k i n  

is given now by applying a protocol for U m k,~ on the pair (~i, ~xr) and Checking 
that indeed both labelings have 1 on the answer. 

Therefore, we have C(U~,,n ) >> C(I  (^k)) - 2 > nk - 2. [] 

8. T h e  a p p r o a c h  a n d  m N C  1 v s .  m P  

In this section, we show that the proposed approach provides us with a simple 
new way of separating the monotone classes mNC 1 from raP. This separation 
was first proved in [15] by providing an f~((log n) 2) monotone depth lower bound 
for the st-connectivity flmction. That  proof relied on complicated combinato- 
rial and probabilistic arguments, tn contrast, the new proof uses a sequence 
of simple reductions, following the monotone version of the ideas in Section 
5. Still, we remark that the lower bound obtained here is only lognloglogn,  
This bound can be slightly improved, using the fact that  the complexity of the 
function f below is O(nl~ 

Recall that  the intuition behind our belief that C(Rfog) is close to C(Rf)  + 
C(Rg) was that, to solve Rfog, we have to solve an instance of Rf and an 
instance of Rg. In the monotone case, we can prove the following result. 

LEMMA 8.1. For every monotone f, g, 1 ~  | R~ ~ t~lmog. 
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PROOF. A minterm (or maxterm) of f • g consists of a minterm m I (or 
i (or a a maxterm Mr) of f and for each i C mf  (or i C Mr) a minterm mg 

maxterm M~, respectively) of g. This understood, we can define the reduction 
by letting the pair (mr, rag) be mapped to the minterm of f ~> g defined by 

i = m g  for every i, and similarly with the maxterms. [] mg 

COROLLARY 8 .2 .  C(R~ • Rg) <_ C(R?og ). 

COROLLARY 8 .3 .  (Rr~) (k) ~ Rfm(k). 

If we could find a monotone function f such that  C( (R?)  (k)) = w(k logn), 

then we would have mNC 1 ~ mP by the above considerations. Fortunately, 
the following theorem is implicit in Razborov [19], and was made explicit in 
[12] 

THEOREM 8.4 ([19],[12]). Let l = c logn  for some suitable c > 0. There 
exists a monotone function f on n variables such that Ii,n <_1 R~. 

In fact, the function f can be explicitly described--it  is the SET-COVERING 
problem. However, this is not important for us. We also remark that  while 
this theorem is the only step in the whole proof that  is technically nontrivial, 
this reduction is reasonably simple. 

COROLLARY 8.5. For f and 1 as above, I{, k) ~_k (RT)(k) ~_ Rf~k). 

We can now give a simple proof that  mNC 1 ~ mP. 

THEOREM 8.6. mNC 1 r raP. 

PROOF. To apply the ideas of Section 5, we scale the number of variables 
logarithmically. Let l = c loglogn and f be the function on log n variables 

m (k) given by Theorem 8.4. C(Rf(k) ) > C(Ii,logn) = f~(k(log log n) 2) follows from 
Corollary 8.5, the additivity of the rank lower bound (Proposition 3.4) and 
Theorem 2.6. If k = logn / tog  log n, then f(k) has n variables and C(RI~k) ) = 
~(log n .  log log n). 

Note that  it does not mat ter  if f is an explicit function or not; as it has 
only log n variables, its t ruth table could be given as an extra n input bits. [] 
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9.  C o n c l u s i o n s  a n d  f u t u r e  w o r k  

In this paper, we have presented a concrete new approach for proving non- 
monotone super-logarithmic lower bounds for circuit depth. This approach has 
generated new types of questions in communication complexity, which were 
studied here and in subsequent papers [6],[13],[4],[9], some of which show that 
this approach is useful in restricted settings. We feel that the results obtained 
so far are encouraging enough to seriously at tempt co use this approach for the 
general model, and we make it somewhat more concrete below. 

Our approach suggests to consider the following: first, the intuition that to 
solve R fog one has to solve an instance of Rf  and an instance o f / ~ :  second, the 
intuition that one cannot save much by solving two problems together. The 
following plan to show NC 1 r NC ~ comes to mind. 

(1) Show that C(RI(k)) is close to C(R~k)). 

(2) Show that there is a hard function f E Bn such that C(R~ k)) = w(k logn). 

Note that Item 2 asks for the existence, rather than for an explicit construc= 
tion, of a hard function. 

OPEN QUESTION 9.1. Is there a function f E Bn such that (I)(Rf) = cJ(10g n) ? 

An affirmative answer will put us half way through our plan. A negative 
answer, on the other hand, will break most of our intuition. It is worthwhile to 
note that Khrapchenko's lower bound [11] is additive with respect to | so that 
�9 (R,~) _> 21ogn where | is the parity of n variables. Also, it is not hard to 
show that (I)(Ul,n) _> n - 1. w e  believe that  (I) is not far from C. 
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