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Abstract 

We have synthesised novel composite particles made of single-domain nano-magnets 

chemically bound to nano-crystals of diamond. Optically detected magnetic resonance 

spectra of nitrogen-vacancy centers in diamond allowed to estimate the magnetic field 

of the nano-magnets and to observe the saturation of their magnetisation when an 

external field of few tens of mT has been applied. The saturation effect is in agreement 

with the size of the domains measured using transmission electron microscopy and a 
simple model of magnetisation. 

Introduction 

Single-domain magnetic particles (also called super-paramagnetic nanoparticles) are small 

crystals of ferromagnetic material where all the unpaired electronic spins are aligned parallel 

to each other.1 Properties of such particles are interesting for a number of reasons. For ex- 

ample, they define the smallest size of a recording magnetic material which can reliably store 

information.2 The nano-magnets also have found applications in biotechnology, for magnetic 

separation and isolation of specific molecules or other particles bound to the nano-magnets.3 

Magnetic nano-particles are used in medical diagnostics, magnetic resonance imaging and 

hypothermal therapy.4  Another interesting direction for applications is computing based on 

nano-magnetic logic.5 Such a computer potentially could use orders of magnitude less energy 

than modern highly integrated electronic circuits. 

Properties of single-domain magnets such as, for example, the rate of spontaneous mag- 

netisation reversal6–8 and the transition from a single-domain superparamagnetic particle to 

ferromagnetic are strongly dependent on their size. Therefore even a relatively narrow dis- 

tribution of particle dimensions affects the ensemble measurements.7  Observation of a single 

particle eliminates the effect of the size inhomogeneity and isolated single-domain magnets 

have been observed using, for example, micro-SQUID magnetometry to study magnetisation 

reversal9  which is still a hot topic of research.10 
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Nitrogen-vacancy centers, in diamond were identified about 40 years ago.11,12 They pos- 

sess a set of unique properties enabling applications in quantum information processing,13,14 

luminescent labeling,15 sub-diffraction imaging16 and as sensitive and optically addressable 

nano-sensors of electromagnetic fields17  and temperatures.18,19  While full scale quantum 

computing  is  a  remote  future,  the  nano-sensing  field  is  at  the  stage  of  practical  realiza- 

tion.  For example, noise floor of 3.5 K s1/2  has been achieved in all-optical measurements 

of the temperature using a method which is compatible with standard optical microscopes 

used in biological research.20 More recently21 the results have been improved by an order of 

magnitude to reach 0.3 K s1/2. 

The NV centers have been shown to be among the most sensitive detectors of magnetic 

fields. The electronic ground state of NV-centers has spin 1 and the magnetic field dependent 

splitting between its m = ±1 and m = 0 states can be measured with very high sensitivity 

using optically detected magnetic resonance (ODMR) technique which exploits the depen- 

dence of the luminescence intensity of NV centers on the magnetic quantum number m.  The 

states with m = ±1 can decay non radiatively from the electronically excited state 3E first to 

intermediate singlet states and then to the m = 0 level of 3A, the electronic ground state.22 

The m = 0 state of 3E decay only directly to m = 0 level of the 3A state. Under continuos 

optical pumping, such selectivity populates the m = 0 spin level. Applied in resonance to 

the ∆m = ±1 transitions, Radio Frequency (RF) magnetic field repopulates the m = ±1 

levels and causes the luminescence intensity to decrease (population of m = ±1 reopens the 

not radiative decay channel). 

The theoretical noise floor of NV-magnetometry (the minimum detectable change of the 

field multiplied by the square root of the measurement time) can be23 as low as few  fT s1/2. 

The experimentally demonstrated noise floor is about 3 nT s1/2  with NV -centers in bulk 

diamond,24 about 100 nT s1/2 with the centre being close to the surface,25 and about 500 nT 

s1/2  in a nanocrystal.24  The magnetic sensitivity of NV- centers enables detection of 19-nm 

magnetic particles using bulk diamond crystals.26  Because a single crystal of diamond can 
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host NV-centers with 4 different orientations of their axes, it is possible to perform a vector 

magnetometry,27,28  that is to determine the magnitude and the direction (relative to the 

crystal axes) of an unknown magnetic field vector. 

Here we present the first step towards development of composite nanoparticles where a 

single nano-diamond is connected to a single nano-magnet. Such particles represent a new 

class of nanosystems with unique optical and magnetic properties.  For example, the NV- 

centers in diamond may work as sensors of the temperature, which is a critical parameter 

for the hypothermal treatment.  Fe3O4  nanoparticles have been demonstrated recently to 

exhibit high heating efficiency but a wide size distribution.29  The coupled nano-diamonds 

could measure each particle temperature individually and investigate the effect of the size- 

inhomogeneity on the heating.  On the other hand, the temperature sensitivity of the pro- 

posed composite particles can be higher than the sensitivity of plain NV-centers due to the 

temperature dependent magnetisation of the nano-magnets.30 The use of the composite parti- 

cle would reduce the size of such a sensor dramatically (to tens of nanometers) in comparison 

to the apparatus used in the original publication.30 Magnetic sensitivity of NV-centers can 

also be used to read the state of a nano magnetic register or to probe magnetisation reversal 

on a single particle level without the limitations of the SQUID or scanning-probe microscopy. 

In this paper, we aim at synthesis of novel composite particles made of a single nano-diamond 

of approximately 40-nm across chemically attached to single-domain nano-magnets of about 

12 nm in diameter. In addition to the synthesis, the goal of this work is to demonstrate that 

NV-centers in nano-diamonds can be used to detect the field created by the nanomagnets 

and thus to confirm their presence on the surface of the diamonds. 
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Experimental 

Materials 

Iron (III) chloride hexahydrate (FeCl3·6H2O, 97%), iron (II) sulfate heptahydrate (FeSO4· 

7H2O, ≥ 99%), ammonium hydroxide solution (NH3·H2O, 28%), hydrochloric acid (HCl, 

37%),  (3-aminopropyl)triethoxysilane  (APS,  99%),  ammonium  hydroxide  solution  (28.0- 

30.0% NH3 basis) were purchased from Sigma-Aldrich. 

Experimental  Methods 

The Fe3O4  magnetic nanoparticles were prepared by a coprecipitation method.  Typically, 
50 mL Mili-Q water was purged with nitrogen to remove oxygen and heated to 100 ◦C in an 

oil bath (130  C) to reflux. Meanwhile, FeCl3·6H2O (0.1378 g, 0.51 mmol) and FeSO4·7H2O 

(0.0701 g, 0.252 mmol) were dissolved in concentrated HCl (1 mL). Then, the mixture of 

iron precursors was quickly injected into the hot water, followed by the addition of concen- 

trated ammonia solution (15 mL, 28%).  The solution became black immediately, and the 

resultant black solution was refluxed for 2 h. The as-obtained black precipitates were washed 

thoroughly with deionized water and absolute alcohol several times, respectively, and finally 

re-dispersed in Mili-Q water for further use. 

The batch of nano-magnets has been characterised using High Resolution Transmis- 

sion Electron Microscopy (HRTEM), X-ray Diffraction (XRD) and Selected Area Electron 

Diffraction ( SAED). The data (presented in the Supporting Information) confirm the syn- 

thesis of super-paramagnetic nano particles. 

The diamond particles were functionalised with APS. Briefly, 10 µL APS was added to 

10 mL of an ethanol dispersion of diamond containing 0.68 ml NH4OH and 1 mL H2O. This 

mixture was stirred for 12 h at room temperature.  The resultant product was purified via 

centrifugation (7830 rpm) with ethanol and water several times and re-dispersed in 1 mL 

H2O for further use. 

5 
 



 Page 6 of 20  
 

Electrostatic self-assembly approach was explored to prepare C/Fe3O4.  Briefly, 20 µL 

as-prepared Magnetic Nanoparticles solution was slowly added to 1 mL as-made Amino- 

Functionalize Diamond Particles dispersion with room temperature stirring. Six hours later, 

the mixture was separated by centrifugation and washed with water for further use. 

Diamond crystals with a mean size of about 40 nm prepared from synthetic sub-micron 

diamond powder by irradiation with 40-keV α-particles followed by annealing at about 1070 

K to increase concentration of NV-centers and milled down to the size of nano-particles. 

The estimated concentration of NV centers in the diamond nanocrystals was about 12 ppm 

from ensemble characteristcs.15  The water suspension of the nano-diamonds covered with 

single-domain magnets was casted on a spinning surface of a fused quartz substrate. The 

substrate was then placed in the focal plane of a microscope objective (Olympus, NA 0.9) 

and illuminated with 532 nm wavelength laser light. The laser illuminated spot on the 

surface of the slide had approximately a two-dimensional Gaussian shape and 30 microns 

diameter.  Near infrared emission of NV−  centers in diamond was collected with the same 

microscope objective and imaged on the photo sensitive matrix of a CCD (Andor iXon). 

The spectra were obtained with 532-nm excitation wavelength. A long-pass filter (Semrock) 

transmitting only light at longer than 600-nm wavelength was placed between the objective 

and the CCD. The external magnetic field was created by a cylindrical permanent magnet 

of 4 mm in diameter and 6 mm long. The strength of the field could be regulated between 0 

and 0.4 T by the distance between the magnet and the sample.  The RF field was produced 

with a U-shaped golden wire deposited on the surface of the substrate. 

Transmission electron microscope (TEM) images have been obtained with JEOL 2011, 

200 keV electron microscope. 
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Results and Discussion 

A TEM image of the sample (Fig.  1) shows a pile of nano-magnets and nano-diamonds. 

The magnets are seen as approximately round dark objects.  The mean and the standard 

deviation of their diameters have been estimated from the image to be about 12 nm and 2 

nm respectively.  The nano-diamonds are a bit more transparent, larger and have irregular 

shapes.  The dimensions of the nano diamonds are widely distributed between 10 and 70 

nm. The concentration of the nano-magnets indicates that many magnets can be attached 

to a single diamond crystal but the coverage of the diamond surface is quite inhomogeneous. 

There are many factors which could cause the difference in the coverage.  The main reason 

is that defects on the surface of nanodiamonds which actually serve as active sites for subse- 

quent coating with (3-aminopropyl)triethoxysilane (APS) are usually dependent on particle 

size and their distribution on the surface is very inhomogeneous even for the same batch 

of nano-diamonds. Another reason is that these nano-diamonds are only dispersed in water 

rather than dissolved and they couldn’t form homogenous solution during coating which also 

leads to differences in the coating density. 

20 

15 

10 

5 

Figure 1 

5 10 15 20 
Size (nm) 

Fig. 1. TEM image of the diamond nano-crystals (large objects of irregular shapes) and 
the single-domain magnets (smaller and darker round objects) covering the surface of the 
diamonds. The inset shows approximately Gaussian (the Gaussian with a mean of 12 nm 
and standard deviation of 2 nm is shown as a solid line in the inset) size distribution of 

nano-magnets. 

An example of an optical image is shown in Fig. 2 (left panel) where darker spots 
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correspond to stronger luminescence. The image analysis shows that a very large majority 

of  the  diamonds  is  located  on  gold  electrodes  used  for  running  RF  current  in  the  ODMR 

experiments. The gold electrode is seen as a band in the bottom part of the image (below 

approximately 33 microns on the vertical scale). 
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Figure 2 
Fig. 2. Left panel shows wide-field optical image of the diamonds (dark-red diffraction 

limited spots) on a substrate. The colorbar on the right to the image represents a natural 
logarithm of the luminescence intensity. The right panel is an ODMR spectrum of NV− 

centres in a selected diamond crystal indicated by a circle in the left panel. The external 
magnetic field is about 21 mT. The numbers show frequencies of the six RF transitions. 

To investigate the magnetic properties of the sample, it has been placed in an external 

magnetic field.  The wide-field imaging allows simultaneous detection of ODMR spectra of 

many diamonds (all diamonds in the field of view) under nearly identical conditions.  The 

right panel in Fig. 2 shows ODMR spectrum of a single diamond enclosed in a circle in the 

left panel.  The solid theoretical curve is a sum of six Lorenzians and a straight line.  The 

straight  line  represents  the  base  level  of  the  luminescence  intensity  (the  intensity  which  is 

not affected by the RF selective repopulation of the m = ±1 spin states). The six lines in the 

spectrum indicate the presence of the NV centres with three different orientations relative 

to the magnetic field because only three out of four theoretical possibilities are realised in 

this particular crystal. In other crystals we could identify 1 to 4 directions of NV axes. 

In principle, each diamond crystal can poses NV-centers with four distinct but symmetry 
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equivalent orientations of the N-V axis relative to the crystal axes. But not all these possibil- 

ities are realised in each crystal. The formation of NV-centers is a quasi random process and 

some of the four directions may be represented by several centers while other possibilities 

may be not realised at all. Significant statistical fluctuations in the distribution of the small 

number centers (typically about 15 per crystal) between the four possibilities is expected. 

All the centers with the same orientation produce a pair of lines in an ideal crystal when 

ODMR spectra are taken in external magnetic fields. These lines are positioned symmetri- 

cally relative to the line at zero-field if the field is oriented strictly parallel to the center axes 

or if the field strength is small so that the linear approximation holds.31 In our experiments 

neither of the two conditions holds and the positions of the two lines are asymmetrical and 

their relative intensities are different. 

The ODMR frequencies have been used to find the parameters of an emprical Hamilto- 

nian22 

Ĥ = DŜ2 + E(Ŝ2 − Ŝ2) + g 
µB B · Ŝ  (1) 

z
 

−1 

y x h 

where µB /h ≈ 13.996 GHzT is the Bohr magneton, g ≈ 2.0023 is the electron g-factor, 

Sx,y,z and Ŝ are the S = 1 spin operators. The strength of the magnetic field B and the 

angles between the magnetic field vector and the directions of the NV axes are the fitting 

parameters. The values of D ≈ 2870 MHz, the zero-field fine-structure splitting (associated 

mainly with spin-spin interactions) and the crystal-strain related parameter E ≤ 5 MHz 

(the stress breaks the C3v symmetry of the centre and splits m = ±1 levels) have been found 

from zero-field ODMR spectra which also have been measured for each crystals.  The relative 

orientations  of  NV  axes  determined  from  the  fitting  are  consistent  with  the  orientation 

expected for orientations of the NV axes in a single diamond crystal. The consistency 

confirms that the white spots in the figure represent single crystal of diamond. 

The strength of the local magnetic field has been measured with 15 crystals for four 

settings of the field. The strength of the field measured by a commercial magnetometer and 

confirmed by numerical modelling of the field with magnetisation of the permanent magnet 
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Fig. 3. Scatter plot for the field estimated by different crystals distributed within 30 × 30 

microns image area. The plot shows deviation of the estimated values (15 sample data) 
from the sample mean divided by the sample standard deviation. The figure shows clear 

correlation between the high field values and low field values. The straight line is the linear 
fit with a gradient of 0.97 ± 0.15. The inset shows results obtained when no magnets are 
attached to the nano-diamonds. The scatter shows no statistically significant correlation. 

being a single fitting parameter was 5.15 ± 0.15, 10.6 ± 0.4 mT, 21.3 ± 0.9 mT and 40.8 ± 1.6 

mT (we will refer to these fields as 5 mT, 10 mT, 21 mT and 40 mT settings in the following 

discussion). A scatter correlation plot for two settings is shown in Fig.3. It is clear that 

there is a very strong correlation in the distribution of the data points. If a crystal detects a 

stronger field at 10 mT setting, then the same crystal detects a stronger than average field at 

20 mT setting. Note that these crystals have been distributed within a small region of about 

30 × 30 micros and the variation of the external magnetic field within this area is smaller 

than 0.01% according to our numerical simulations.  Such correlation could result from a 

number of reasons intrinsic to the diamond crystals.  For example, strong distortion of the 

crystal lattice in nm-sized crystals or surface proximity effects. But the inset in Fig.3 shows 

no statistically significant correlation if the diamond crystals are free from the nano-magnets. 

Therefore we conclude that the correlation results from the presence of the single-domain 

magnets. 

10 
 



Page 11 of 20   
 
 

To explain the correlation we need to take into account that the single-domain magnets 

have a nonzero average magnetisation in the presence of an external magnetic field (otherwise 

the magnetisation spontaneously changes its direction and averages to zero). The averaged 

over time magnetic moment (for the case of the external field being aligned with the direction 

of easy magnetisation) reads1 

MsV B   
md = MsV tanh 

 

kB T , (2) 

where Ms  is the instantaneous (or saturated) magnetisation of the domain, V  is its vol- 

ume (MsV  being the instantaneous magnetic moment of the domain), kB  is the Boltzmann 

constant, and T is the temperature.  The magnetic moment is proportional to the external 

magnetic field if the field is much smaller than B0  ≡ kB T /(MsV ).  While the value of Ms 

depends on the size of the domain very little (but increases with the size), the dependence 

on the volume makes B0 quickly decreasing with the domain diameter. The contributions 

of the nano-magnets to the total field also varies from crystal to crystal because the number 

of magnets and their position on the surface as well as the shape of the crystals vary. This 

explains why the local fields measured with different crystal vary as seen in Fig.3. But the 

deviation of the local field from its mean value, ∆B will be proportional to the strength 

of the external field despite of these variations.  This proportionality explains the strong 

correlation between the values of ∆B measured with the same crystal at different external 

fields. 

At fields comparable to B0  and higher, the magnetic moment saturates and does not 

increase as quickly as the external field strength. Therefore the relative contribution of the 

nano-magnets to the total magnetic field, ∆B/B ∝ md/B decreases. Therefore it is expected 

that the value of ∆B/(B) will decrease for every diamond crystal as the field increases. The 

magnitude of this decrease will be not exactly the same for all crystals as the saturation effect 

depends on the size of the magnetic domains and possible coupling between the domains if 
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Fig. 4. Scatter plot of ∆B/(B), the relative deviations of magnetic field from (B) its 

mean value measured using different nano-diamonds distributed within about 30 microns 
wide area on the silica substrate. The sensitivity of the field measurements is indicated by 
the error bars which are on average ±0.04 mT. The straight lines represent linear fits to 

the data points. The gradients of the lines are 1.09 ± 0.17 (top), 0.76 ± 0.08 (middle), and 
0.50 ± 0.09 (bottom). The error bars are estimated from the noise in the ODMR spectra 

and the quality of the fit of the Lorentzian lines to the observed ODMR lines. The 
difference in the gradients between the middle panel and the other two is about three 

standard deviations (the corresponding confidence interval is 99.5%). The change of the 
gradient is explained by the saturation of the single-domain magnetisation. 

It is clear from the figure that the dispersion of the points in the vertical direction 

decreases as the field gets stronger (note, the vertical scale is the same in all panels). The 

theoretically expected gradient a can be estimated as follows 
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a = 

 
 
 
 
 
Bhtanh (Bv/B0) 
Bvtanh (Bh/B0) 

 

 
 
 
 
 
(3) 

where Bh and Bv are magnitudes of the two external fields (the results of the measurements 

with Bh  external field are used as the horizontal coordinates in the scatter plot and the 

values obtained with Bv as the vertical coordinates). Given the average size of the magnets 

(12 nm) and a typical magnetisation of 3.1 × 105  A/m (60 emu/g or 310 emu/cm3),32  the 

estimated value of B0  is about 15 mT. This value is in a satisfactory agreement with the 

value obtained by measuring the magnetisation curve of the synthesised paramagnetic nano- 

particles (see Supporting Information). The expected theoretical gradients estimated using 

Eq. (3) are then 1.1, 0.72, and 0.42 for the three panels (from the top and the bottom). 

These theoretical estimates are close to the experimental values of 1.09 ± 0.17, 0.76 ± 0.08 

and 0.50 ± 0.09 obtained by fitting straight lines to the data points in the scatter plots as 

shown in Fig.4. Given that the size of the nano-magnets obtained from TEM images can be 

slightly different from the size estimated using measured average magnetisation the Langevin 

equation as observed by Li et al32 and that this size has about 20% variation in our sample, 

the agreement is good. 

The direction of the field changes little because the contribution of a nano-magnet is 

not larger than 5% of the external field applied to the sample. The corresponding maximum 

change of the direction of the total field is less than 3 degrees (achieved if the field of a magnet 

is strictly perpendicular to the external field).  But the field of many uniformly distributed 

nano-magnets is nearly parallel to the external field due to the approximate axial symmetry 

(around the external field direction) of the average magnetisation . 

The ODMR spectra of the 15 crystals used in this study showed line broadening of about 

10 MHz at 40-mT external field. The broadening varied from crystal to crystal significantly. 

The  broadening  is  observed  because  the  field  produced  by  nano-magnets  has  a  different 

strength at the locations of different NV-centers (if there are several centers with an identical 

orientation within a single nanocrystal). A relatively small broadening has several qualitative 
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explanations.   First, most of the crystals in the field of view (see Fig.   2) show shallow 

and broad ODMR lines and could not be used for the purpose of the field measurements 

within the 5mT to 40 mT range. The selected ”good crystals” could be the crystals with 

approximately uniform field.  Second, a permeable material uniformly covering a spherical 

shell creates inside the shell a uniform shielding field.33  Although we do not have such an 

ideal shielding, the variation of the field could be still small across each of the crystals. Third, 

the main contribution to the narrow ODMR lines comes from the centres located away from 

the surface, in the middle of the crystals where the field is most uniform. 

As the last point of the discussion, we will estimate the field in the centre of the crystals. 

We can treat a single-domain magnet as a point dipole.  Given an average radius of the 

crystals rc   ≈ 20 nm and the radius of the nanomagnet rnm   ≈ 6 nm,  the approximate 

location of the centre of the crystal is at the distance of r ≈ rc + rnm  ≈ 26 nm from the 

magnet. The magnetic field of a nano-magnet then can be estimated as follows 

B ≈  µ0   M V tanh nm 4πr3 s
 

  B   
B0 

 

(4) 

where µ0 is the vacuum permeability. Given B0 = 15mT and the external field of 10 mT, 

the contribution of a single domain is about 0.9 mT. By the order of magnitude, this value is 

in agreement with about 10% range of the relative deviations from the mean value observed 

at 10 mT setting (see Fig.4). 

Conclusion 

In this paper we have presented synthesis of novel composite particles. These particles are 

made of chemically bound luminescent nano-diamonds and single-domain magnets. We have 

developed a method based on nano-magnetometry (using ODMR of negatively charged NV 

centers embedded in the bound to magnets diamond nano-crystals) which clearly demon- 

strates the presence of the magnets on the surface of the nano-diamonds. The ODMR also 
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shows saturation of the average magnetisation of the nano-magnets in external fields from 

10 to 40 mT, in agreement with a simple model of single-domain magnetisation. A relatively 

high homogeneity of the local fields created by the magnets has been explained qualitatively 

but needs further research to obtain a quantitative agreement. These results demonstrate a 

new class of composite nano-particles with potential applications in a variety of fields such 

as intracellular diagnostics, hypothermal therapy, and computing. 
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of Magnetization Reversal. Phys. Rev. Lett. 1997, 78, 1791–1794. 

(10)  Chudnovskiy, A.; Ch.Huebner,; Baxevanis, B.; Pfannkuche, D. Spin Switching:  From 

Quantum to Quasiclassical Approach. Phys. Status Solidi b 2014, 251, 1764–1776. 

(11) Davies, G. Vibronic Spectra in Diamond. J. Phys. C: Solid State Phys 1974, 7, 3797– 

3809. 

(12) Davies, G.; Nazare, M. H.; Hamer, M. F. The H-3 (2.463 EV) Vibronic Band in Dia- 

mond -Uniaxial Stress Effects and Breakdown of Mirror Symmetry. Proc. R. Soc. Lond. 

A. 1976, 351, 245–265. 

(13)  Maurer, P. C.; Kucsko, G.; Latta, C.; Jiang, L. Y.; Bennett, N. Y.; Pastawski, S. D.; 

Hunger, F.;  Chisholm,  D.;  Markham,  N.;  Twitchen,  M.  et al.  Room  -Temperature 

Quantum Bit Memory Exceeding One Second. Science 2012, 336, 1283–1286. 

16 
 



Page 17 of 20   
 
 

(14)  Beveratos, A.;  Brouri, R.;  Gacoin, T.;  Villing, A.;  Poizat, J.-P.;  Grangier, P. Single 

Photon Quantum Cryptography. Phys. Rev. Lett. 2002, 89, 187901. 

(15) Su, L.-J.; Fang, C.-Y.; Chang, Y.-T.; Chen, K.-M.; Yu, Y.-C.; Hsu, J.-H.; Chang, H.- 

C. Creation of High Density Ensembles of Nitrogen-Vacancy Centers in Nitrogen-Rich 

Type Ib Nanodiamonds. Nanotechnology 2013, 24, 315702. 

(16) Rittweger, E.; Han, K. Y.; Irvine, S. E.; Eggeling, C.; Hell, S. W. STED Microscopy 

Reveals Crystal Colour Centres With Nanometric Resolution. Nature Photonics 2009, 

3, 144–147. 

(17)  Dolde, F.; Fedder, H.; Doherty, M. W.; Nöbauer, T.; Rempp, F.; Balasubramanian, G.; 
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