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Abstract. For a long time, phase arrays have been used in a variety of

wave transmission applications because of their simplicity and versatility.

Conventionally, there is a trade-off between the compactness of a phase array

and its directivity. In this paper, we demonstrate how by embedding a normal

phase array within a superlens (made of negative refractive index material) we

can overcome this constraint, and create compact phase arrays with a virtual

extent much larger than the physical size of the array. In this paper, we also

briefly discuss the apparent unphysical field divergences in superlenses, and how

to resolve this issue.
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1. Introduction

A phase array is a group of transmitters in which the relative phases of the respective signals

feeding the transmitters are varied in such a way that the effective radiation pattern of the array

is reinforced in a desired direction and suppressed in undesired directions. The phase array has

a long history, and was first developed by Karl Ferdinand Braun in 1905, when he demonstrated

that a phase array has an enhanced transmission of radio waves in one direction. By varying

the relative phases of the phase array antennas, one can also electronically steer (without any

mechanical moving parts) a radiating beam rapidly in a desired direction. This was exploited

by Luis Alvarez during World War II, when he used a phase array antenna to create a rapidly

steerable radar system to aid the landing of airplanes in England. Owing to its versatility and

simplicity, even now the phase array has a wide variety of modern military, commercial and

research applications.

The principle of the phase array antenna comes from the Huygens principle, where an

advancing wavefront can be regarded as a sum of contributions from an infinite set of radiating

points preceding the wavefront. This means that if we have an infinite extent of transmitters

spaced at sub-wavelength intervals and if we can adjust the phase and amplitude of each

transmitter, we can, in principle, recreate any wavefront. In practice we can relax the condition

of an infinite extent of radiating transmitters, but the cost of having a finite extent of transmitters

is the loss of directivity. In general, the larger the extent (aperture size) of the transmitters, the

greater the directivity, hence a compromise between the physical extent and the directivity of a

phase array.

In [1, 2], we have demonstrated that by using a suitable negative refractive index material

(NRIM) we can create super-scatterers (SSs) [3]—scatterers with a scattering cross section

much larger than the physical dimension of the scatterer. Here we hope to extend the ideas

introduced in [2] to create a super phase array—a phase array with an apparent size much larger
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Figure 1. A conventional phase array can, in principle, recreate any wavefront

when each transmitter of the array is radiating at the right amplitude and phase.

A smaller super phase array can emulate a physically larger conventional phase

array by amplifying the evanescent optical modes.

than its physical dimension, and hence more compact than any conventional phase array—yet

without the loss of directivity (see figure 1).

With this intent, the paper is divided into the following three sections. Firstly, in section 2,

we discuss how we can create a super phase array, and how we can achieve beam forming using

an N-array phase array. Following this in section 3, we discuss the analytical methods used to

study the super phase array. Finally in section 4, we apply the methods from section 3 to study

the effects of losses, and show some numerical simulations of beam forming using a super phase

array.

2. Super phase array

2.1. How to create a super phase array

Basically, if we embed a conventional phase array in a transparent SS [2] (transparent SS) we get

a super phase array. What is a transparent SS? A transparent SS is a scatterer that compactifies

a region of transparent space2 to a smaller region within the scatterer. Conversely, this implies

that any object (scatterers/transmitters) placed within the transparent SS would appear larger by

the degree of compaction (see figure 1). To illustrate the principles, we focus only on a specific

case of the cylindrically symmetric transparent SS in this paper. We can easily generalize this

to other geometry by using transformation optics [4]–[7].

The permittivity and permeability (ǫ and µ, respectively) for a cylindrical transparent SS

is given by

ǫI = µI = diag
[

ǫ(I )
x , ǫ(I )

y , ǫ(I )
z

]

, r I−1 < r 6 r I , (1)

2 This region may or may not be surrounding the transparent SS.
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where the index I = 1, 2, 3 denotes the three main regions of the transparent SS (region I is

defined by r I +1 < r 6 r I ) and

ǫ(1)
x = +1, ǫ(1)

y = +1, ǫ(1)
z = +1, r2 < r 6 r1,

ǫ(2)
x = −1, ǫ(2)

y = −1, ǫ(2)
z = −

r 4
2

r 4
, r3 < r 6 r2,

ǫ(3)
x = +1, ǫ(3)

y = +1, ǫ(3)
z = +

r 4
2

r 4
3

, r 6 r3,

(2)

where region 1 is the vacuum surrounding the transparent SS (given by r2 < r 6 r1, where

r1 = r 2
2/r3), region 2 is the NRIM layer (r2 and r3 are the outer and inner radii of the NRIM

annulus), which is designed to optically cancel3 out region 1, and region 3 is the interior region

of the transparent SS, designed such that it is optically equivalent to vacuum of radius r1.

When the NRIM layer optically cancels the surrounding vacuum, the resulting image

of region 3 is magnified to fill up the canceled regions. Effectively such a transparent SS

then behaves like a magnifying glass—a superlens [1], [8]–[10]—such that objects within are

magnified by a factor of r1/r3 = r 2
2/r 2

3 . What is remarkable is that any object with a radius larger

than r 2
3/r2 would cast an image larger than the physical size of the lens (>r2), something that

cannot be achieved by a conventional lens. The reason why this is so is because conventional

optics work by manipulating only the propagating far-fields. An NRIM lens can capture both

the propagating far-fields and the evanescent near-fields (through resonances in the lens).

This implies that if we embed a phase array within such a lens, the array would appear to

be larger by a factor of r1/r3. In addition, if the phase array has a size larger than r 2
3/r2, then the

image of the phase array would appear to be larger than the physical size of the setup.

Now before we proceed to the next section, it is interesting to note that the material

parameters for the superlens given by (2) can be relaxed/simplified in the quasi-static limit—

that is when all length scales (the dimensions of the super phase array, and the distance that the

detector is placed) are smaller than the wavelength of radiation (l ≪ ωc), we can decouple the

E and H fields, so that the scattering of p-polarization (s-polarization) waves depends solely on

spatial variations of ǫ (µ) alone [8]. This means that for antennas radiating only p-polarization,

and if we are only interested in measurement of the near fields, we can simplify the superlens

structure by ignoring µ setting µ(2)
x = µ(2)

y = µ(2)
z = 1 and ǫ(2)

x = ǫ(2)
y = ǫ(2)

z = −1 (similarly for

s-polarization). This simplification for instance was exploited by [11]–[13] to create a ‘poor

man’s’ cylindrical superlens for use in external cloaking.

2.2. N-array and beam forming

Having seen how to create a super phase array, we shall now briefly discuss how phase arrays

in general transmit radiation of a desired pattern—beam forming. By varying the amplitude and

the phase of the input for each transmitter in the phase array, we can reshape the transmitted

wavefront in any manner we desire. In this paper, we will explore two specific examples of such

beam forming using the super phase array—beam steering and beam focusing.

Firstly, consider a linear phase array with N evenly distributed transmitters (let N be an

odd number). Let each transmitter be labeled n = 1 to N , and let each transmitter be separated

3 This optical cancelation can be understood as the phase and amplitude reversal of a wave when it passes from

one medium to its optical complementary. This is true for both the propagating and evanescent waves.
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by a distance r0. We note that for the phase array to work r0 < λ, where λ is the wavelength of

the transmitted wave in the medium that the phase array is embedded in. Transmitters that are

spaced larger than the wavelength apart will interfere nontrivially in the far field.

Suppose the linear array lies along the x-axis, with the center of the array (n = (N − 1)/2)

at the origin (x = y = 0). If we want to recreate a wavefront that has the following field

amplitude 9(x, y) exp(−iωt) (propagating in the y-direction), we can do so when the signal

input for the nth transmitter is given by

9n =

∫

9(x, y = 0) · δ(x − n · r0) dx . (3)

For simplicity, in this paper we assume that 9n = 1. Now we can add a further refinement to

the phase array when we allow the signal input, Ĩ n, for the nth transmitter in the array to be

given by

Ĩ n =
[

An · exp(−iφn)
]

· 9n, (4)

where An is the aperture function while φn dictates the additional phase to be added to the

transmitted wave. To suppress side lobes due to a finite extent of the array, we need to choose

an aperture function with a smoother cut-off. For this reason, we choose the following aperture

function with a Gaussian envelope:

An = exp

[

−

(

(n − (N − 1)/2) · r0

w0

)2
]

, (5)

where the Gaussian envelope is centered at the (N − 1)/2 transmitter and w0 is the width of the

Gaussian envelope. Here in this paper we choose w0 = (N − 1)/2 · r0.

Now by applying a linear phase delay to each transmitter in the phase array (assuming the

transmitters are equally spaced), we can tilt a wavefront while preserving its shape. That is, if

φn is given by

φn = k · n · r0 sin(α), (6)

where k is the wave vector of the transmitted wave in the medium that the array is embedded in,

then the wavefront can be tilted by an angle α (where α = 0 lies in the perpendicular direction

to the linear phase array), thus achieving beam steering.

Now other than beam steering, we can demonstrate beam focusing by applying a parabolic

phase shift to the array, such that φn is given by

φn = k
[

√

((n − (N − 1)/2) · r0)
2 + f 2 − f 2

]

, (7)

where f is the distance from the center of the array that the beam would focus at. For f ≫ N · r0

the phase φn from (7) can be simplified as

φn ≈
k

2 f
· ((n − (N − 1)/2) · r0)

2 . (8)

When we substitute (5) and (8) into (4), the resulting beam profile compares closely

with the initial value of the theoretical 2D Gaussian beam, and the resultant wave propagation

problem can be compared with the theoretical 2D Gaussian beam propagation. In section 4 of

the paper, we shall demonstrate the use of the super phase array to beam steer and beam focus.
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Figure 2. Illustration of the addition theorem. We can create the fields of a

displaced source by placing an infinite series of virtual sources at the origin.

3. Analytical model

Having seen from section 2 how one can create a super phase array, and having briefly discussed

how we can achieve beam forming with a suitable input to the phase array, we shall now discuss

the analytical methods that we use to model such a super phase array.

3.1. Addition theorem

First, to model the radiation from a transmitting phase array embedded in a cylindrically

symmetric transparent SS, it is wise to decompose the transmitted wave into a series of

cylindrical waves (which respect the cylindrical symmetry of the lens). Initially this may seem

to be a futile task since a linear phase array clearly breaks the cylindrical symmetry of the

problem. This, however, can be circumvented when we make use of the addition theorem [14]

to displace the non-centric transmitters to the origin, thus restoring cylindrical symmetry of

the problem. By displacing or relocating all the transmitting sources to the origin, we can then

make use of the result from the paper [2] to determine the exact field solutions of a super phase

array.

Now, suppose we have a point source with angular coordinates (r0, θ0), which emits

cylindrical waves of angular order v (Hankel function of the first kind of order v). According to

the addition theorem, we can recreate the displaced point source by placing an infinite number

of point sources (with all angular orders) at r = 0 (see figure 2) given by

H (1)
ν (kR) eiν(�−θ0) =

∞
∑

m=−∞

Jm(kr0)H (1)
ν+m(kr) ei(ν+m)(θ−θ0) r > r0, (9)

New Journal of Physics 12 (2010) 033047 (http://www.njp.org/)
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where the left-hand side of (9) is the outgoing cylindrical wave centered at (r0, θ0), and the right-

hand side is the outgoing wave for an infinite series of sources (of all angular orders) centered

at the origin, weighted by some Bessel function Jm(kr 0).

In this paper, we shall assume the sources in the phase array to be simple dipoles aligned

along the axial direction, so all the transmitting sources have angular order v = 0. Now we note

that the field for a single displaced source (at (r0, θ0)) or an infinite series of sources located at

the origin are exactly identical for r > r0, but for the latter the field diverges for r < r0. This has

some physical implications for the superlens, in that the (perfect) image of this divergent region

is also divergent, even though the region of space where the image sits on does not contain

any divergent sources. This poses a problem since such an unphysical situation is impossible;

it therefore implies that a superlens cannot exist in the first place. Fortunately, this problem can

be resolved and we address this problem in section 3.3.

3.2. Transfer matrices

Since the problem we have set out with is essentially 2D, we only need concern ourselves with

TE polarization, and the solution of the electric field vector only lies along the axial direction

(z-axis). The solution for the electric field vector is given by E (I )
z (r, φ), where the superscript

denotes the region, according to the definition from (2). According to the discussion of our

previous paper [2], the field solutions for the various regions in the transparent SS are then

given by the following:

E (1)
z = Ez0

m=∞
∑

m=−∞

[

dm H (1)
m (k1r)

]

ime(imφ−iωt), r > r2, (10)

E (2)
z = Ez0

m=∞
∑

m=−∞

[

bm H (1)
m

(

k2

[

r 2
2

r

])

+ cm Jm

(

k2

[

r 2
2

r

])]

ime(imφ−iωt), r3 6 r 6 r2, (11)

E (3)
z = Ez0

m=∞
∑

m=−∞

[

Im H (1)
m (k3r) + am Jm(k3r)

]

ime(imφ−iωt), r 6 r3. (12)

With the wave vectors in (10)–(12) given by

k1 = ω/c,

k2 = (1 − iδ)k1,

k3 =

(

r2

r3

)2

k1,

(13)

where δ is the loss tangent—a measure of losses in the NRIM layer of the transparent SS.

Im, bm, dm and am, cm of (10)–(12) are the scattering coefficients of the outgoing and

incoming cylindrical waves, respectively. Except for Im , all the other coefficients are unknown

and, when they are determined, would give the exact field solution to the problem. The

coefficient Im is dependent on the configuration and the signal input of the phase array. Using

the addition theorem from (9), we can shift all the transmitters to the origin. Together with the

signal input Ĩ n (from (4)) for the nth transmitter of the array, this would give us

Im =

N
∑

n=0

Ĩ n Jm(k3rn) exp(imθn), (14)

New Journal of Physics 12 (2010) 033047 (http://www.njp.org/)
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Figure 3. By matching boundary conditions at the interface, we can determine

the field amplitudes for each cylindrical wave mode of order m.

where (rn, θn) are the position vectors of the nth transmitter. For our particular configuration—

the linear phase array—these are given by

rn =

(

n −
(N − 1)

2

)

· r0, (15)

θn =

(

1 − 2

(

n −
(N − 1)

2

))

· π. (16)

Now we can determine the remaining four unknown scattering coefficients by matching

the boundary conditions at the interface of each region (see figure 3), namely that the tangential

E and H field vectors projected onto the surface of the interface have to be continuous, that is

E
(I )

‖ (r) = E
(I +1)

‖ (r), I = 1, 2,

H
(I )

‖ (r) = H
(I +1)

‖ (r), I = 1, 2,
(17)

where explicitly for our case

E
(I )

‖ = E (I )
z ẑ,

H
(I )

‖ = H
(I )
φ φ̂ =

−i

µφµ0w
.
∂

∂r
E (I )

z φ̂.
(18)

Substituting (10)–(12) into the boundary conditions (17), we can then solve the remaining

unknown scattering coefficients (see appendix). As expected, when there are no losses in

the NRIM (δ = 0), we would get no reflections (am = cm = 0) and all the waves would be

transmitted without loss (bm = dm = Im) (see (A.1)). It is also important to note that since

k3rn = k1[(r 2
2/r 2

3 ) · rn] (according to (13)), the argument in Im in (14) for fields in region 3 is

the same as that for fields in region 1. This, together with the fact that for the lossless case, the

scattering coefficients in both regions are the same, implies that the functional forms of the fields

according to (10) and (12) are the same—except that the array when viewed from the outside

(region 1) appears to be magnified by a factor of r 2
2/r 2

3 compared to the inside (region 3).

Hence for the lossless case, we can reverse the addition theorem, and see that the size of

the virtual image of the array would be the same as that of the embedded array, magnified by a

factor of r 2
2/r 2

3 , as discussed previously.
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Figure 4. (a) Illustration of the problem of field divergence for a perfectly

homogeneous NRIM lens. This problem of divergence can be accounted for since

all real materials have losses or have a finite length scale where the homogeneity

of the NRIM breaks down as shown in (b).

3.3. Resolving divergences

The perfect lens theorem [1] tells us that the field within a medium (say PRIM4) is a mirror

image (in some planar coordinates) to its complementary (say NRIM). This means that if we

know what the field solution is like for a PRIM, we can immediately write down the field

solution for its complementary by reflection. Now the perfect lens theorem only holds true

when there are no sources in between the two media. If we have any sources between, we need

to translate these sources (for instance, via the addition theorem from section 3.1) outside the

region of interest before we can apply the perfect lens theorem. Thus when we have a non-

centric source in a cylindrical perfect lens, we need to relocate the source to the origin in order

to determine the fields in the NRIM layer. This relocation, according to the addition theorem,

would create a virtual region of divergent fields and this virtual region would in turn cast a

divergent image as illustrated in figure 4(a).

This divergence in the image region now is not merely a numerical construct, but physically

present, implying that it is not physically possible for a homogeneous NRIM to exist in the first

place. In a similar argument, others have disputed the existence of a homogeneous NRIM [15].

It should also be noted that the exact solutions for the asymptotic behavior of these divergences

are discussed in [16, 17].

This apparent paradox, however, can be accounted for by limiting the divergence in (9)

through (i) imposing a higher angular momentum cut-off, (ii) imposing losses in the NRIM

and (iii) considering a finite time interval in the measurement of fields. First, the source of

the divergence is due to the higher angular order terms in (9). These terms, however, do not

contribute to the divergence in the image region because of the following reasons:

(i) Higher angular momentum cut-off: all real materials are inhomogeneous at some length

scale. So for an NRIM, the length scale at which we would see this inhomogeneity is

about the size δ of the individual meta-particles (say split ring resonators etc). Now the

‘perfect lensing’ abilities of an NRIM assume that the NRIM is homogeneous; therefore,

4 Positive refractive index material, or a right-handed material.
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the perfect lens theorem does not apply when field fluctuations are at a length scale η < δ.

For a cylindrical wave of angular order v, and a meta-particle at a radial distance rm , the

length scale of field fluctuation near the meta-particle is given by η ≈ 2π · rm/v. This means

that any cylindrical wave with angular order v > vh (where vh = 2π · rm/δ) would not see

the perfect lens, and hence would not contribute to the infinite series in (9), curtailing the

divergence.

(ii) Losses in NRIM: an NRIM generally requires permittivity/permeability, ǫ, µ < 0. Since

the energy density of electromagnetic fields in any medium must be positive, this means

that ∂(ωǫ)/∂ω, ∂(ωµ)/∂ω > 0. This in turn implies that if NRIM exists, it would be highly

dispersive. It is also necessary then, by the Kramers Kronig relation, that a passive NRIM

is also lossy. Now the higher angular order cylindrical waves present in the NRIM material

are more affected by losses; thus losses in the NRIM would naturally impose a higher

angular momentum cut-off to the series in (9).

(iii) Finite time interval: generally NRIM works on the principle of resonance, and these

resonances take time to be established [18]; hence the perfect lens scenario strictly holds

true only when t → ∞. In general, the higher angular order terms of the excitation

field take a longer time to be established. Hence even in the case where there are no

inhomogeneities/losses, the higher angular order terms will only contribute to the image

as t → ∞. For finite time intervals therefore, we would not see this divergence.

4. Results

Now applying the analytical methods introduced in section 3, we can construct simulations of

the super phase array and examine how losses in general affect the performance of such an array.

Firstly, to understand how losses affect a general super phase array, we study how losses affect

a single displaced antenna within a transparent SS in section 4.1. Following that in section 4.2,

we demonstrate the performance of a super phase array in beam tilting and beam forming in

comparison with a normal phase array.

4.1. Single displaced antenna

Generally, a transmitter placed at (x0, 0) within a transparent SS would create an

image/impression of a virtual transmitter at (ximage, 0) (where ximage = r 2
2/r 2

3 · x0). This

means that if a transmitter is placed at distances x0 > r 2
3/r2, then the image would exist

outside the physical structure of the super phase array. This result is clearly shown in figure 5.

Figures 5(a) and (c) are the ray solutions, while figures 5(b) and (d) are the full wave solutions

for transmitters placed at x0 > r 2
3/r2 and x0 < r 2

3/r2, respectively.

It is instructive to take note of the ray diagram for x0 > r 2
3/r2 (5(a)). Here we can see that

there are two types of rays emitting from the source: blue rays and red + green rays [2]. Blue

rays (called impact rays) impact the NRIM layer and get refracted by it through the conventional

Snell’s law. Red + green rays are more interesting and are called non-impact rays. The red self-

closed loops are localized resonant optical modes in the NRIM layer, which are evanescently

coupled to the green rays—rays that do not impact the superlens at all. In general, the smaller

(red) self-closed loops are coupled to non-impact (green) rays with a larger impact parameter.

Now, because the smaller self-closed loops are coupled to non-impact rays that are further away,
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(a) (b)

(c) (d)

Figure 5. Parts (a) and (b) show the ray and full wave solution, respectively, of a

single antenna displaced by x = x0 = 7, y = 0 from the origin. Similarly, (c) and

(d) show the ray and wave solution for x = x0 = 4, y = 0. The outer and inner

radii of the NRIM are r2 = 20 and r3 = 10. For (a) and (c), the blue and magenta

rays are impact rays, while the red and green rays are non-impact ones.

the coupling strengths for these loops are weaker than for larger loops. Hence, any losses in the

NRIM layer would therefore destroy the coupling of the smaller self-closed loops first before

the larger ones.

In general then, impact rays are even more robust than non-impact rays to losses, and non-

impact rays with smaller impact parameters are more robust than larger ones.

This can be clearly seen in figure 6. Figures 6(a) and (b) are plots for the field amplitude

|Ez| as a function of x at a distance y = 28.75 for a single antenna. These correspond to the

same values of x0 as in figures 5(a) and (c), respectively. From figure 6(a), we can clearly

see that as losses increase, the field strength |Ez| for rays with larger impact parameter decay

first, and this corresponds to a dip in |Ez| centered at x = r 2
2/r 2

3 · x0 (the position of the largest

impact parameter). Eventually with sufficient losses, all the evanescently coupled non-impact

rays are killed, leaving only the impact rays. From figure 6(b), since all rays are impact rays,

this configuration is more robust to losses, and we do not see any dip in |Ez|.
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(a) (b)

Figure 6. Parts (a) and (b) show the field amplitude |Ez| as a function of x at

a distance y = 28.75, for a single antenna displaced at x = x0 = 7, y = 0 and

x = x0 = 4, y = 0 units away from the origin.

(a) (b)

Figure 7. (a) The contour plot of an N = 19 array with each element separated

by r0 = 1 and the signal input to each with a linear phase shift (given by (6)) such

that a planar waveform is tilted at angle α = π/10. The outer and inner radii of

the NRIM are r2 = 20, and r3 = 10, and losses are δ = 5 × 10−4. (b) How the

gain of the same setup is affected by losses.

4.2. N-array antenna

Having seen the effects of losses—that they affect non-impact rays (with larger impact

parameters) more than non-impact rays—we can now understand how losses in general affect

super phase arrays. In this section, we demonstrate the ability of an N-array super phase array

to beam steer and beam focus, and we demonstrate how even with losses, they can outperform

a conventional phase array.

4.2.1. Beam steering. Figure 7(a) shows the contour plot of an N = 19 super phase array with

each element separated by r0 = 1. The signal input is given a linear phase shift according to (6)
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(a) (b)

Figure 8. (a) The contour plot of an N = 19 array with each element separated

by r0 = 1 and the signal input to each with a near-parabolic phase shift (given

by (7)) such that a focus is created at f0 = 48. The outer and inner radii of the

NRIM are r2 = 20 and r3 = 10, and losses are δ = 5 × 10−4. (b) How the field

amplitude |Ez| at the focus is affected by losses.

such that the beam is tilted by α = π/10. Now the outer and inner radii of the NRIM are

r2 = 20 and r3 = 10, so this means that for a perfectly lossless NRIM, the super phase array has

a physical size of d = 2 · r2 = 40, but a virtual size of dvirtual = r 2
2/r 2

3 · N · r0 = 76 > d—about

twice the physical extent.

Now since the directivity (inverse of angular spread) is proportional to the extent of the

phase array, a super phase array would have a directivity dvirtual/d better than a normal phase

array with the same physical extent. Indeed when we look at the gain of our super phase array

(see figure 7(b)), we can clearly see that a lossless super phase array has a directivity about twice

that of a normal phase array (with a physical extent of d = 40). As we have discussed, we would

expect that with increasing losses, the virtual extent of the super phase array would decrease

and, as expected, we see that the directivity of the super phase array drops correspondingly.

Still, even with a moderate amount of losses at δ = 3 × 10−2 the directivity of a lossy super

phase array still outperforms that of a normal phase array.

4.2.2. Beam focusing. Now when we apply a near-parabolic phase shift according to (7), we

would expect the super phase array to focus to a spot a distance f0 = r 2
2/r 2

3 · f units away. In

figure 8(a), we can see the super phase array (with losses δ = 5 × 10−4) focusing light to a tight

spot at x = 0, y = f0 = 48.

Now the focusing power (the inverse of the angular spread) of a phase array is again

proportional to the extent of the array, so we would expect the focal size of our super phase

array to be dvirtual/d smaller than a normal phase array with the same physical extent. Indeed if

we examine the field strength at the focus, |Ez|, as a function of x (see figure 8), we can see

that a slightly lossy super phase array (δ = 5 × 10−5) has about twice the focusing power than

a normal phase array. Again with increasing losses, the performance of a super phase array, as

we would expect, drops.
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5. Conclusion

We have demonstrated how one can create a super phase array by embedding a normal phase

array within a transparent SS, and how by varying the signal input to the phase array, we can alter

the radiation pattern—in particular beam tilting and beam forming. In this paper, although we

study the specific example of a cylindrically symmetric super phase array, the ideas can be easily

extended to other geometries. We have also outlined a simple analytical procedure to study the

full wave solution of the super phase array, by using the addition theorem, to translate the non-

cylindrically symmetric phase array to a cylindrically symmetric one. Through the addition

theorem, and the perfect lens theorem, we have also shown the potential problem that a perfect

lens would pose, namely that fields (when calculated in frequency domain) would unphysically

diverge in some regions of space. This issue is subsequently addressed in section 4, namely by

considering the fact that all real materials are non-homogeneous (at some length scale), lossy,

and divergences only occur at t = ∞, curtailing the unphysical divergences. Finally, we also

examine how losses in general affect the performance of a super phase array, namely that losses

in the NRIM would destroy the non-impact rays with the largest impact parameter first followed

by impact rays. Nevertheless, even with moderate losses, it has been shown that a super phase

array has better directivity and focusing power than a normal phase array (of the same physical

extent).

Appendix

The scattering coefficients of (10)–(12) are given by

am =
C1C2 − C3C4

C2C5 − C4C6

· Im,

bm =
2i

π
·

1

k3r3

·
C2

C2C5 − C4C6

· Im,

cm = −
2i

π
·

1

k3r3

·
C4

C2C5 − C4C6

· Im,

dm =

(

2i

π

)2

·
1

k2r2

·
1

k3r3

·
1

C2C5 − C4C6

· Im,

(A.1)

where Im is given by (14) and the constants C1 to C6 are given by:

C1 = H (1)
m (k2r1)H (1)′

m (k3r3) − H (1)
m (k3r3)H (1)′

m (k2r1),

C2 = Jm(k2r2)H (1)′
m (k1r2) − H (1)

m (k1r2)J ′
m(k2r2),

C3 = Jm(k2r1)H (1)′
m (k3r3) − H (1)

m (k3r3)J ′
m(k2r1),

C4 = H (1)
m (k2r2)H (1)′

m (k1r2) − H (1)
m (k1r2)H (1)′

m (k2r2),

C5 = Jm(k3r3)H (1)′
m (k2r1) − H (1)

m (k2r1)J ′
m(k3r3),

C6 = Jm(k3r3)J ′
m(k2r1) − Jm(k2r1)J ′

m(k3r3),

(A.2)

where the wavevectors k1 to k3 are given by (13) and r1 = r 2
2/r3.
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