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Themagnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent

conductor (N). SuchFjN bilayers have become basic building blocks in awide variety of spin-based devices.

We evaluate the shot noise of the spin current traversing the FjN interface when F is subjected to a coherent

microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency,

and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin

transfer, which results from quasiparticles with effective spin ℏ� ¼ ℏð1þ δÞ. For typical ferromagnetic thin

films, δ ∼ 1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.

DOI: 10.1103/PhysRevLett.116.146601

Introduction.—The fluctuations of amacroscopic observ-

able, often called noise, constitute a fundamental manifes-

tation of the underlying microscopic dynamics. While the

thermal equilibrium noise is directly related to the linear

response coefficients via the fluctuation-dissipation theorem

[1], nonequilibrium shot noise provides novel information

not accessible via the observable average [2–4]. Shot noise

has been extremely useful in a wide range of phenomena.

The optics community has been exploiting intensity shot

noise in, among several phenomena [5], observing non-

classical photon states [6]. Charge current shot noise has

proven to be an effective probe of many-body effects in

electronic systems [3,4]. It has also been employed to

ascertain the unconventional quanta of charge transfer in

the fractional quantum Hall phase [7–10] and superconduc-

tor-normal metal hybrids [11–14]. Noise has furthermore

been proposed as a means to observe quantum spin [15] or

mode [16] entanglement in electronic circuits.

Spin current forms an observable of interest in a wide

range of systems, such as topological insulators [17], triplet

superconductors [18], magnetic insulators [19,20] and so

on, in which the spin degree of freedom plays an active role.

While spin-dependent charge current noise has been dis-

cussed [21–23], the potential of spin current noise has

remained largely untamed. Foros et al. have considered the

applied voltage driven, and thus conduction electrons

mediated, spin current shot noise in metallic magnetic

nanostructures [24]. The recent experimental observations

of pure spin current thermal noise [25] and nonequilibrium

spin accumulation driven charge current shot noise [26]

indicate the feasibility of and bring us closer to exploiting

this potential. In semiconductor physics, spin noise spec-

troscopy has already become an established experimental

technique [27,28].

Heterostructures formed by interfacing a nonmagnetic

conductor (N) with a ferromagnet (F), typically an insu-

lator (FI), are of particular interest since they allow transfer

of pure spin current carried by the collective magnetization

dynamics in F to electrons in N. This spin transfer

phenomenon has come to be known as spin pumping

[29]. FIjN bilayers have been the playground for a plethora

of newly discovered and proposed effects [20,30] making a

microscopic understanding of the spin transfer process

highly desirable. In this Letter, we investigate spin transfer

between the collective magnetization modes in F and

electrons in N by examining the zero-temperature spin

current shot noise when F is driven by a coherent micro-

wave magnetic field (Fig. 1). Within the commonly used

terminology [29,31], this may be called coherently driven

spin pumping shot noise.

The three key findings of this Letter are spontaneous

squeezing [5] of F eigenmodes, the super-Poissonian

nature of spin transport, and a nontrivial frequency

dependence of the spin current noise power spectral density

SðΩÞ [Fig. 1(b)]:

SðΩÞ ¼ ℏ
� Idc
ω

ðjωþΩj þ jω −ΩjÞ; ð1Þ

FIG. 1. (a) Schematic of the ferromagnet (F) and nonmagnetic

conductor (N) bilayer analyzed in the text. The coordinate system

is depicted in blue. A static magnetic field H0ẑ saturates F
magnetization along ẑ while a coherent microwave field

h0 cosωtx̂ creates magnonic excitations in F. The latter annihi-

late at the interface creating excitations and injecting z-polarized
spin current in N. (b) Schematic plot of SðΩÞ=2Idc versus Ω

[Eq. (1)]. SðΩÞ and Idc are, respectively, the noise power spectral
density and the dc value of the interfacial spin current.
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with ω the drive frequency, Idc the dc spin current,

ℏ� ¼ ℏð1þ δÞ, and the expression for δ is derived below.

If dipolar interaction is disregarded, spin ℏ quasiparticles—

magnons [32,33]—constitute the collective magnetization

eigenmodes in F. Hence, the spin transfer to N is often

assumed to take place in lumps of ℏ [34–36]. However, due

to the dipolar interaction, the actual F eigenmodes turn out

to be squeezed-magnon (s-magnon) states. Here, the term

squeezing refers to reduction of quantum uncertainty in one

quadrature at the expense of increased uncertainty in the

other [5]. Thus, the super-Poissonian statistic of spin

transfer reflects the super-Poissonian distribution [5] of

the magnon number in the coherent squeezed-magnon state

of F generated by the coherent microwave drive. The same

shot noise is interpreted in the F eigenbasis as being a result

of Poissonian spin transfer via the squeezed-magnon

quasiparticles which have spin ℏ� [Fig. 1(a)].

Hamiltonian.—The Hamiltonian for the system of inter-

est, depicted in Fig. 1(a), is composed of magnetic ( ~HF),

electronic ( ~HN), interaction between F and N ( ~Hint), and

microwave drive ( ~Hdrive) contributions:

~H ¼ ~HF þ ~HN þ ~Hint þ ~Hdrive; ð2Þ

where the tilde is used to denote operators. We first evaluate
~HF by quantizing the classical magnetic Hamiltonian HF,

which includes contributions from Zeeman, anisotropy,

exchange, and dipolar interactions [33,37]: HF ¼
R

VF
d3rðHZ þHaniso þHex þHdipÞ, with VF the volume

of the ferromagnet. An applied static magnetic field H0ẑ

saturates the F magnetization M along the z direction such

that Mx;yð≪ Mz ≈MsÞ become the field variables describ-

ing the excitations. Ms is the saturation magnetization. We

retain terms up to second order in Mx;y. Employing the

relation M2
x þM2

y þM2
z ¼ M2

s and dropping the constant

terms, the Zeeman and anisotropy contributions are

obtained as [38,39] HZþHaniso¼ðω0=2jγjMsÞðM2
xþM2

yÞ,
with ω0 ¼ jγj½μ0H0 þ 2ðK1 þ KuÞ=Ms�, where γ ¼ −jγj is
the typically negative gyromagnetic ratio of F, μ0 is the

permeability of free space, and Kuð> 0Þ and K1ð> 0Þ,
respectively, parametrize uniaxial and cubic magnetocrys-

talline anisotropies [40]. The exchange contribution is

[33,39] Hex ¼ ðA=M2
sÞ½ð∇MxÞ2 þ ð∇MyÞ2�, with A the

exchange constant [41]. The dipolar interaction is treated

within a mean field approximation via the so-called

demagnetization field Hm produced by the magnetization:

Hdip ¼ −ð1=2Þμ0Hm ·M. For spatially constant M,

Hm ¼ −ðNxMxx̂þ NyMyŷþ NzMzẑÞ, with Nx;y;z the ele-

ments of the demagnetization tensor, which is diagonal in

the chosen coordinate system [37].

The classical magnetic Hamiltonian is quantized by

defining the magnetization operator ~M ¼ −jγj ~SF [33,37],

with ~SF the F spin density operator. The magnetization is

expressed in terms of bosonic excitations by the Holstein-

Primakoff transformations [32,33]: ~Mþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jγjℏMs

p

½1−
ðjγjℏ=2MsÞ ~a† ~a� ~a, ~M−¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jγjℏMs

p

~a†½1−ðjγjℏ=2MsÞ ~a† ~a�,
and ~Mz ¼ Ms − jγjℏ ~a† ~a, where ~M� ¼ ~Mx � iðγ=jγjÞ ~My.

The operator ~a† ≡ ~a†ðrÞ creates a magnon at position r,

satisfies the bosonic commutation relation, ½ ~aðrÞ; ~a†ðr0Þ� ¼
δðr − r0Þ, and is expressed in terms of the Fourier space

magnon creation operators ~b†q via ~a†ðrÞ ¼ P

qϕ
�
qðrÞ ~b†q

with plane wave eigenstates ϕqðrÞ¼ð1= ffiffiffiffiffiffi

VF

p Þexpðiq ·rÞ.
Following the quantization procedure [33,37], the magnetic

Hamiltonian simplifies to

~HF ¼
X

q

½Aq
~b†q ~bq þ B�

q
~b†q ~b

†
−q þ Bq

~bq ~b−q�; ð3Þ

where Aq¼A−q¼ℏðω0þDq2þjγjMsμ0ðNxzþNyzÞ=2Þþ
ℏωAðqÞ and Bq ¼ B−q ¼ ℏjγjMsμ0Nxy=4þ ℏωBðqÞ. Here,
D ¼ 2Ajγj=Ms, Nxy ¼ Nx − Ny, and so on, ωA;BðqÞ are the
dipolar interaction contributions for magnons with q ≠ 0

[33,37], and ωBðqÞ is complex in general. The Hamiltonian

Eq. (3) is diagonalized by a Bogoliubov transformation

[32,33] to new bosonic excitations defined by ~βq ¼
uq ~bq − v�q ~b

†
−q,

~HF ¼
X

q

ℏωq
~β
†
q
~βq; ð4Þ

with transformation parameters ℏωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
q − 4jBqj2

q

,

vq ¼ −2Bq=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAq þ ℏωqÞ2 − 4jBqj2
q

, vq=uq ¼ −2Bq=

ðAq þ ℏωqÞ, and u2q ¼ 1þ jvqj2. Here, uq has been chosen

to be real positive while vq is in general complex, with

v0 real.

If the dipolar interaction is disregarded, Bq ¼ 0, ~βq ¼ ~bq,
and magnon modes are the eigenstates of F. To gain insight
into the effect of the dipolar interaction on the eigenmodes,

we note that the vacuum corresponding to the new

excitations j0iβ is defined by ðuq ~bq − v�q ~b
†
−qÞ j0iβ ¼ 0.

Employing the Baker-Hausdorff lemma and relegating

detailed derivations to the Supplemental Material [42],

this becomes ~S2ðξqÞ ~bq ~S†2ðξqÞj0iβ ¼ 0, with ξq ¼
−ðvq=jvqjÞtanh−1ðjvqj=uqÞ, where ~S2ðξqÞ ¼ expðξ�q ~bq ~b−q−
ξq ~b

†
q
~b†−qÞ is the two-mode squeeze operator [5], considering

q ≠ 0. This leads to j0iβ ¼ ~S2ðξqÞj0ib showing that the ~βq
vacuum is obtained by squeezing the magnon vacuum, two

modes ( ~b�q) at a time. In other words, βq excitations are

obtained by squeezing ~b�q, and are thus called squeezed

magnons (smagnons). Instead of deriving a similar relation

for the q ¼ 0 mode, we demonstrate its squeezing by

evaluating the vacuum fluctuations of ~Mx;y ¼
R

VF

~Mx;yd
3r ∝ ðb†

0
� b0Þ:
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hðδ ~Mx;yÞ2i0 ¼
jγjℏM0

2
expð∓2ξ0Þ; ð5Þ

where hi0 denotes expectation value in the ground state,

M0 ¼ MsVF is the total magnetic moment, and ξ0 ¼
−tanh−1ðv0=u0Þ is real. The sign of ξ0, and thus the

direction (x or y) of squeezing, is determined by the sign

of −v0=u0 ∝ B0 ∝ Nxy. Hence, we find reduced quantum

noise in one component of the total magnetic moment while

the noise is increased in the other component. Owing to

dipolar interactions, the F ground state exhibits sponta-

neous squeezing.

The electronic Hamiltonian for N can be written as
~HN ¼

P

k;s¼�ℏωk ~c
†

k;s ~ck;s, where ~c†k;s are fermionic oper-

ators that create electrons with spin sℏ=2 along the z
direction in orbitals with wave functions ψkðrÞ. We con-

sider that F and N couple via an interfacial exchange

interaction parametrized by J [34,35]:

~Hint ¼ −
J

ℏ
2

Z

A

d2ϱ( ~SFðϱÞ · ~SNðϱÞ); ð6Þ

where A denotes the interfacial area and ϱ is the interfacial

2D position vector. ~SN ¼ ðℏ=2ÞPs;s0
~Ψ
†
sσs;s0

~Ψs0 is the N

spin density operator, where ~ΨsðrÞ ¼
P

kψkðrÞ~ck;s annihi-
lates electrons with spin sℏ=2 at r, and the components of σ

are the Pauli matrices. In terms of the normal mode

operators [43],

~Hint ¼
X

k1k2q

ℏWk1k2q
~c†k1þ ~ck2−

~bq þ H:c:; ð7Þ

with ~bq ¼ uq ~βq þ v�q ~β
†
−q, and ℏWk1k2q

¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ms=2jγjℏ
p

×
R

A
d2ϱψ�

k1
ðϱÞψk2

ðϱÞϕqðϱÞ. The microwave drives the sys-

tem via Zeeman coupling between its magnetic field

h0 cosðωtÞx̂ and the F total magnetic moment M:

~Hdrive ¼ −μ0h0 cosðωtÞBð~β0 þ ~β
†

0
Þ; ð8Þ

with B ¼ ðu0 þ v0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jγjℏM0=2
p

.

Since the magnonic excitations possess spin along the z
direction, we are interested in z-polarized spin current

injected into N by F. The corresponding spin current

operator is given by

~Iz ¼
1

iℏ
½ ~Sz; ~Hint� ¼

X

k1k2q

− iℏWk1k2q
~c†k1þ ~ck2−

~bq þ H:c:;

with ~S ¼
R

VN
d3r ~SNðrÞ, where VN denotes the volume

of N.

Equations of motion.—We have thus expressed the total

Hamiltonian and the spin current operator in terms of the

creation and annihilation operators of F (smagnons) and N
(electrons) eigenmodes. Working in the Heisenberg picture,

the time resolved expectation value of an observable can be

obtained by evaluating the time evolution of electron and s-
magnon operators. Since the microwave drives the q ¼ 0

magnetic mode coherently leaving all other modes essen-

tially unperturbed, we make the quasiclassical approxima-

tion replacing ~βq by c numbers βδq;0, and derive the

dynamical equation for βðtÞ ¼ h~β0ðtÞi below. This

“approximation” is equivalent to disregarding the equilib-

rium noise and allows us to focus on the shot noise. The

contribution of thermal and vacuum noises shall be

considered elsewhere.

The Heisenberg equations of motion _~ckþ¼
ð1=iℏÞ½~ckþ; ~H� simplify to

_~ckþ ¼ −iωk ~ckþ − i
X

k2;q

Wk;k2;q
~ck2−

~bq: ð9Þ

Similarly, equations of motion can be obtained for ~ck− and
~βq. As detailed in the Supplemental Material [42], we

obtain solutions to these equations up to the lowest non-

vanishing order in J using the method employed by

Gardiner and Collett [44] in deriving the input-output

formalism [5]. Until some initial time t0, F and N do not

interact with each other and are in equilibrium so that the

density matrix of the system, which stays the same in the

Heisenberg picture, factors into the equilibrium density

matrices ofF andN. The terms ~Hint and ~Hdrive are turned on

at t ¼ t0. The steady state solution for any time t > t0 is

obtained by taking the limit t0 → −∞ in the end. Thegeneral

solution to Eq. (9) for t > t0 can then be written as [44]

~ckþðtÞ ¼ e−iωkðt−t0Þ ~ckþðt0Þ

− i
X

k2;q

Wk;k2;q

Z

t

t0

e−iωkðt−t0Þ ~ck2−ðt0Þ ~bqðt0Þdt0: ð10Þ

Employing analogous expressions for ~ck−, the Heisenberg

equation of motion for ~β0, and retaining terms up to second

order in J , we obtain the dynamical equation for

βðtÞ ¼ h ~β0ðtÞi:

_β ¼ − iω0β − ðu2
0
þ v2

0
ÞΓNβ þ 2u0v0ΓNβ

�

þ i
μ0h0B

ℏ
cosðωtÞ; ð11Þ

where ΓN ¼ ωα0 ¼ ωπjWϵFermi;0
j2V2

Nℏ
2g2ðϵFermiÞ represents

the magnetic dissipation caused by the electronic bath in N.

Here, gðϵFermiÞ is the electronic density of states at the Fermi

energy ϵFermi, and we assume that Wk1;k2;0
¼ WϵFermi;0

depends only on k1;2 magnitudes, and hence on ϵFermi.

Thus far, we have not considered any internal dissipation in

F. This can be done by including nonlinear interactions with

another bath [electrons, phonons, (s) magnons, etc.] in ~HF

[44]. The resulting dynamical equation for β is obtained by
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replacing ΓN by Γ ¼ ΓF þ ΓN in Eq. (11), where ΓF

depends on the details of the nonlinear interaction consid-

ered in ~HF.

Results and discussion.—Substituting the ansatz β ¼
βþ expðiωtÞ þ β− expð−iωtÞ in Eq. (11), we find that

βþ ≪ β− for Γ ≪ ω0, and hence βþ is disregarded making

the rotating wave approximation:

βðtÞ ¼ μ0h0B

2ℏ

1

ðω0 − ωÞ − iΓðu2
0
þ v2

0
Þ e

−iωt: ð12Þ

Thus, we obtain resonant excitation of the q ¼ 0 s-magnon

mode at ω ¼ ω0. The analysis leading to Eq. (12) is

employed to obtain the expectation value of the spin

current operator up to the order J 2:

IzðtÞ ¼h~IzðtÞi ¼ Idc ¼ 2ℏα0ωjβj2: ð13Þ

Thus, the spin current injection also exhibits resonant

behavior akin to magnetization dynamics [45].

The single-sided spectral density of spin current noise

SðΩÞ is obtained via the Wiener-Khintchine theorem for

nonstationary processes [46]: SðΩÞ ¼ 2
R

∞
−∞

RðtÞeiΩtdt,
with RðtÞ ¼ limτ0→∞ð1=2τ0Þ

R

τ0
−τ0

Φðτ; τ − tÞdτ, where

Φðt1; t2Þ ¼ ð1=2Þh ~δIzðt1Þ ~δIzðt2Þ þ ~δIzðt2Þ ~δIzðt1Þi is the

expectation value of the symmetrized spin current fluctua-

tions [ ~δIz ¼ ~Iz − h~Izi] correlator. Assuming zero temper-

ature and again retaining terms up to order J 2, the spin

current shot noise simplifies to Eq. (1) with

ℏ
� ¼ ℏð1þ 2v2

0
Þ, which is the main result of this Letter.

The zero frequency noise thus becomes Sð0Þ ¼ 2ℏð1þ
2v2

0
ÞIdc [Eq. (1)]. Equations (12) and (13) show that Sð0Þ

exhibits resonant behavior as a function of ω. Under certain

conditions, the low frequency shot noise for a Poissonian

transport process with transport quantum q and dc current

I0 is known to be 2qI0 [3,5]. Thus, in the N eigenbasis, in

which electrons undergo spin flips by absorbing magnons,

our result for low frequency spin current shot noise can be

understood as due to correlated spin transfer in lumps of ℏ.

This interpretation is corroborated by the squeeze param-

eter ξ0 dependent super-Poissonian distribution of the

particle (in this case, magnon) number in a coherent

squeezed state [5].

An alternate interpretation for the low frequency noise is

obtained in the F eigenbasis: spin transport takes place via

the coherent state driven Poissonian transfer [5] of β0 s
magnons which have a spin of ℏ

� ¼ ℏð1þ δÞ with

δ ¼ 2v2
0
. This nonintegral spin of s magnons can also be

obtained directly by evaluating the expectation value of the

z component of the total spin in F:
R

VF
h ~SzFðrÞid3r ¼

−M0=jγj þ
P

qℏð1þ 2jvqj2Þnβq þ
P

qℏjvqj2, where the

last term in this expression represents the vacuum noise

[32], and n
β
q denotes the number of s magnons with wave

vector q. Thus, we see that the smagnon with wave vector q

has spin ℏð1þ 2jvqj2Þ.
However, vq is considerable only when the relative

contribution of the dipolar interaction to the total eigenmode

energy ℏωq is not negligible. In particular, with ω0=2π ¼
1 GHz, δ ¼ 2v2

0
≈ 0.4 for yttrium iron garnet (jγj ¼ 1.8×

1011 Hz=T,Ms ¼ 1.4 × 105 A=m [40]) and δ ≈ 3.0 for iron

(jγj ¼ 1.8 × 1011 Hz=T, Ms ¼ 1.7 × 106 A=m [40]) thin

films (Nx ¼ 1; Ny;z ¼ 0). δð∝ N2
xyÞ vanishes when

Nxy ¼ 0, and δ → 0 when H0=Ms → ∞.

To discuss a physical understanding of the spin current

shot noise frequency dependence [Eq. (1)], we note that the

charge current noise at frequency Ω is due to absorption

and emission of photons at the same frequency [47]. We

make an analogous interpretation of spin current noise in

terms of absorption and emission of photonlike quasipar-

ticles, keeping in mind that the analogy is mathematical.

Thus, forΩ < ω, the only possible processes are absorption

of photonlike quasiparticle and s magnon while creating an

excitation in N [process (1) in Fig. 2] and absorption of s
magnon while creating a photonlike quasiparticle and an

excitation in N [process (3) in Fig. 2]. The rate of each

process is proportional to the number of states available for

creating an excitation in N, which, at zero temperature, is

proportional to the energy of the N excitation governed by

energy conservation in the process. Similar arguments can

be made when Ω > ω (Fig. 2), thereby motivating the

frequency dependence in Eq. (1).

Summary.—We have evaluated the zero-temperature

shot noise of spin current injected into a nonmagnetic

conductor (N) by an adjacent ferromagnet (F) driven by a

coherent microwave drive. The low frequency shot noise

indicates spin transfer in quanta of ℏ
� ¼ ℏð1þ δÞ asso-

ciated with the zero wave vector excitations in F. We

demonstrate that owing to dipolar interaction [48], the F
ground state exhibits spontaneous squeezing [5], and its

normal excitations are squeezed magnons with nonintegral

spin. Our work thus provides important new insights into

the magnetization mediated spin transfer mechanism in

FjN bilayers, and paves the way for exploiting the

spontaneously squeezed F ground state.

FIG. 2. Processes contributing to spin current noise at fre-

quencyΩ. The blue, green, and gray circles, respectively, depict s
magnon, excitation created in N, and spin current analog of a

photon (see text). For Ω < ω (the drive frequency), only

processes (1) and (3) are allowed, while for Ω > ω, only

processes (1) and (2) take place.
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