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1. Introduction

Let (X, ω) be a compact Kähler manifold. It is in general quite difficult to develop a
calculus on cycles of codimension >2. An important approach has been introduced by
Gillet–Soulé [35] who constructed appropriate potentials with tame singularities for cycles
of arbitrary codimension. See also Bost–Gillet–Soulé [9], Berndtsson [7] and Polyakov–
Henkin [42] for the resolution of ∂∂̄- and ∂̄-equations in the projective space.

On the other hand, the calculus on positive closed currents of bidegree (1, 1) using
potentials is very useful and quite well developed. Demailly’s papers [11], [12] and book
[13] contain a clear exposition of this subject. It has many applications in complex
geometry and to holomorphic dynamics, see the surveys [29] and [44] for background.
The recent papers [20], [18] and [14] by the authors give other applications.

Our main goal in this article is to develop a calculus on positive closed currents of
bidegree (p, p). For simplicity, we restrict here to the case of the projective space Pk. We
first explain the familiar situation of currents of bidegree (1, 1). The reader will find in
§2 some basic notions and properties of positive closed currents and of plurisubharmonic
functions.

Denote by ω the standard Fubini–Study form on Pk normalized by
∫

Pk ωk=1. Let
S be a positive closed (1, 1)-current on Pk. We assume that the mass ‖S‖:=〈S, ωk−1〉 is
1, that is, S is cohomologous to ω. A quasi-potential of S is a quasi-plurisubharmonic
function u such that

S−ω = ddcu.

Recall that dc :=(i/2π)(∂̄−∂). Such a u is unique when we normalize it by
∫

Pk uωk=0.
The correspondence S$u is very useful. Indeed, u has a value at every point if we
allow the value −∞. This makes it possible to consider the pull-back of S by dominant
meromorphic maps [40] or to consider the wedge-product (intersection)

S∧S′ := ω∧S′+ddc(uS′)

when u is integrable with respect to the trace measure of a positive closed current S′.
From our point of view, the formalism in this case is as follows. Let δx denote the

Dirac mass at x. We consider a (k−1, k−1)-current v, non-uniquely determined, such
that 〈v, ω〉=0 and ddcv=δx−ωk. We then have, formally,

u(x) = 〈u, δx〉= 〈u, δx−ωk〉= 〈u, ddcv〉= 〈ddcu, v〉= 〈S−ω, v〉= 〈S, v〉.

So, 〈S, v〉 is in particular independent of the choice of v. Moreover, we can extend the
action of u to the convex set of probability measures Ck. If ddcUν =ν−ωk with ν∈Ck

and 〈Uν , ω〉=0, we get
〈u, ν〉= 〈S, Uν〉,
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where the value −∞ is allowed. We prefer to consider that the quasi-potential is acting
on Ck. Define

US(ν) := 〈u, ν〉= 〈S, Uν〉.

This is somehow irrelevant in this case, since Dirac masses are the extremal points of Ck

and US is simply the affine extension of u to Ck.
Let Cp denote the convex compact set of positive closed currents S of bidegree (p, p)

on Pk and of mass 1, i.e. ‖S‖:=〈S, ωk−p〉=1. Let US denote a solution to the equations

ddcUS = S−ωp and 〈US , ωk−p+1〉= 0.

We introduce US as a function on Ck−p+1 that we will call the super-potential of S of
mean 0. Suppose that R is in Ck−p+1 and let ddcUR=R−ωk−p+1 with 〈UR, ωp〉=0.
Then, formally,

US(R) := 〈US , R〉= 〈US , R−ωk−p+1〉= 〈US , ddcUR〉

= 〈ddcUS , UR〉= 〈S−ωp, UR〉= 〈S, UR〉.

The function US determines S. We will show that it is defined everywhere if the value
−∞ is allowed.

To develop the calculus, we have to consider Cp and Ck−p+1 as infinite-dimensional
spaces with special families of currents that we parametrize by the unit disc ∆ in C. We
call these families special structural discs of currents. When US is restricted to such discs
we get quasi-subharmonic functions. More precisely, if x 7!Rx is a special structural disc
of currents parametrized by x∈∆, then

ddc
xUS(Rx) >−α,

where α is a smooth (1, 1)-form independent of S. The above definition of US(R) is valid
for S or R smooth. In general, we have

US(R) = lim
x!0

US(Rx)

for some special discs with R0=R.
In §2, we introduce a geometry on the space Cp, in particular the structural varieties

and their curvature forms α. In §3, we establish the basic properties of super-potentials,
in particular convergence theorems which make the theory useful. The main point is to
extend the definition of the super-potential US from smooth forms in Ck−p+1 to arbitrary
currents in Ck−p+1. We introduce (Definition 3.2.3) the notion of Hartogs convergence
(or H-convergence for short) for currents, which is technically useful. In §4 we deal with a
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theory of intersection of currents. We give good conditions for the intersection of currents
of arbitrary bidegrees. Two currents R1∈Cp1 and R2∈Cp2 are wedgeable if and only if
a super-potential of R1 is finite at R2∧ωk−p1−p2+1. The calculus on differential forms
can be extended to wedgeable currents: commutativity, associativity, convergence and
continuity of wedge-product for the H-convergence. If R2 is of bidegree (1, 1), then the
condition means that the quasi-potentials of R2 are integrable with respect to the trace
measure of R1. As a special case, we obtain the usual intersection of algebraic cycles.
The question of developing such a theory was raised by Demailly in [11]. We give, in
the last section, a satisfactory approach to the problem of pulling back a current in Cp

by meromorphic maps. Also, in that section, we apply the theory of super-potentials to
complex dynamics in higher dimension. The main applications are the following results.

As a first application, we construct Green currents of bidegree (p, p) for a large class
of meromorphic maps on Pk. This requires a good calculus using the pull-back operation.
The following result holds for holomorphic maps and for Zariski generic meromorphic
maps which are not holomorphic.

Theorem 1.0.1. Let f be an algebraically p-stable meromorphic map on Pk with
dynamical degrees ds, 16s6k. Assume that dp−1<dp and that the union of the infinite
fibers is of dimension 6k−p. Then, d−n

p (fn)∗(ωp) converge to an f∗-invariant current
T which is extremal among f∗-invariant currents in Cp.

Note that the convergence result also holds for regular polynomial automorphisms.
The current T is called the Green current of f of bidegree (p, p). The convergence is still
valid if we replace ωp by a current with bounded super-potentials. The case p=1 was
considered by the second author in [44].

Let Md(Pk) denote the space of dominant meromorphic self-maps of algebraic degree
d>2 on Pk. Such a map can be lifted to a homogeneous polynomial self-map of Ck+1 of
degree d. The lift is unique up to a multiplicative constant. The space Md(Pk) has the
structure of a Zariski dense open set in PN with N :=(k+1)(d+k)!/d!k!−1. The space
Hd(Pk) of holomorphic self-maps of algebraic degree d>2 on Pk is a Zariski open subset
of Md(Pk) and Md(Pk)\Hd(Pk) is an irreducible hypersurface of Md(Pk), see [5] and
[34, p. 427].

Theorem 1.0.2. There is a Zariski dense open set H ∗
d (Pk) in Hd(Pk) such that , if

f is in H ∗
d (Pk) and if S is a current in Cp, then d−pn(fn)∗(S) converges to the Green

current of f of bidegree (p, p) uniformly with respect to S.

A more precise description is known for p=1 and k=2 in [31] and [27], for p=1 and
k>2 in [24] and for p=k in [17] and [24] (see also [30] and [10]). Applying the previous
theorem to the currents of integration on subvarieties H gives the equidistribution of
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f−n(H) in Pk. Another application is a rigidity theorem for polynomial automorphisms
of Ck that we consider as birational maps on Pk.

Theorem 1.0.3. Let f be a polynomial automorphism of Ck which is regular in the
sense of [44]. Let I+ denote the indeterminacy set of f at infinity and p be the integer
such that dim I+=k−p−1. Let K+ be the set of points z∈Ck with bounded orbits. Then,
the Green (p, p)-current associated with f is the unique positive closed (p, p)-current of
mass 1 with support in 	K+.

This result was proved by Fornæss and the second author in dimension k=2 [30].
Note that when k=2 and p=1, regular automorphisms are the Hénon-type automor-
phisms of C2. It is known that dynamically interesting polynomial automorphisms in C2

are conjugated to the regular ones [33]. Let H be an analytic subset of pure dimension
k−p which does not intersect the indeterminacy set I− of f−1. As a consequence of
Theorem 1.0.3, we obtain that the currents of integration on f−n(H), properly normal-
ized, converge to the Green (p, p)-current of f . The case k=2 and p=1 of this result was
proved by Bedford and Smillie in [6].

Remark 1.0.4. The super-potential US can be extended to a function on weakly
positive closed currents of bidegree (k−p+1, k−p+1). For simplicity, we consider only
(strongly) positive currents. We can also define super-potentials for weakly positive
closed (p, p)-currents; they are functions on (strongly) positive closed currents of bidegree
(k−p+1, k−p+1). The super-potentials are introduced on currents of mass 1 but they
can be easily extended by linearity to currents of arbitrary mass. Their domain of
definition can also be extended to positive closed currents of arbitrary mass.

Other notation. ∆r is the disc of center 0 and of radius r in C, ∆ denotes the unit
disc, ∆k the unit polydisc in Ck and ∆∗ :=∆\{0}. The group of automorphisms of Pk is
a complex Lie group of dimension k2+2k that we denote by Aut(Pk)'PGL(k+1, C). We
will work with a fixed holomorphic chart and local holomorphic coordinates y of Aut(Pk).
The automorphism with coordinates y is denoted by τy. Choose y so that |y|<2 and
y=0 at the identity id∈Aut(Pk). In order to simplify the notation, choose a norm |y| of
y which is invariant under the involution τ 7!τ−1. Fix a smooth probability measure %

with compact support in {y :|y|<1}. Choose % radial and decreasing when |y| increases.
So, the involution τ 7!τ−1 preserves %. The mass of a positive or negative (p, p)-current
S on Pk is defined by ‖S‖:=|〈S, ωk−p〉|. Throughout the paper, Sθ, Rθ, ..., will denote
the regularization of S, R, ..., defined in §2.1 below.

Acknowledgment. We thank the referee who has carefully read the first version of
this paper. He suggested several clarifications which allowed to improve the exposition.
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2. Geometry of currents on projective spaces

In this section, we introduce some basic facts about the convex set Cp of positive closed
(p, p)-currents of mass 1 in Pk.

2.1. Topology and distances on the spaces of currents

Let X be a complex manifold of dimension k. Recall that a (p, p)-form Φ on X is
(strongly) positive if it is positive at every point a∈X, that is, Φ is equal, at the point a,
to a linear combination of forms with positive coefficients of the type

(iϕ1∧ �ϕ1)∧...∧(iϕp∧ �ϕp),

where ϕj are (1, 0)-forms on X. Positive (0, 0)-forms are positive functions and positive
(k, k)-forms are products of volume forms with positive functions.

A (p, p)-form Φ is weakly positive if Φ∧Ψ is a positive form of maximal bidegree
for every positive (k−p, k−p)-form Ψ. A (p, p)-current T on X is positive (resp. weakly
positive) if T∧Ψ is a positive measure for every weakly positive (resp. positive) smooth
(k−p, k−p)-form Ψ. Positive forms and currents are weakly positive. The notions of
positivity and of weak positivity coincide only for bidegrees (0, 0), (1, 1), (k−1, k−1)
and (k, k). We also say that Φ and T are negative or weakly negative if −Φ and −T are
positive or weakly positive. For real (p, p)-currents T and T ′, we will write T >T ′ and
T ′6T when T−T ′ is positive.

Assume that X is a compact Kähler manifold and ωX is a Kähler form on X. If T

is a positive or negative (p, p)-current, the mass of T on a Borel set K⊂X is the mass
of the trace measure T∧ωk−p

X of T on K; that is,

‖T‖K := |〈T, ωk−p
X 〉K |.

The mass of T means its mass ‖T‖ on K=X. Assume that T is positive and closed.
Then, ‖T‖ depends only on the class of T in the Hodge cohomology group Hp,p(X, C).
We recall the notion of density of positive closed currents. Let x denote local coordinates
in a neighbourhood of a point a∈X such that x=0 at a, and β :=ddc|x|2 denote the
standard Euclidean form. Let Br denote the ball {x:|x|<r}. The Lelong number of T

at a is defined by

ν(T, a) := lim
r!0

‖T∧βk−p‖Br

πk−pr2k−2p
.

When r decreases to 0, the expression on the right-hand side decreases to ν(T, a), which
does not depend on the choice of coordinates x [47]. The Lelong number compares the
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mass of the current on Br with the Euclidean volume πk−pr2k−2p/(k−p)! of a ball of
radius r in Ck−p. A theorem of Siu says that {a:ν(T, a)>c} is an analytic subset of X

of dimension 6k−p for every c>0 [47].
The Kähler manifolds we consider in this paper are the projective space Pk and the

product Pk×Pk. Let π1 and π2 be the canonical projections of Pk×Pk onto its factors.
Let ω denote the Fubini–Study form on Pk normalized so that

∫
Pk ωk=1, and define

ω̃ := π∗1(ω)+π∗2(ω),

the canonical Kähler form on Pk×Pk. If T is a positive closed (p, p)-current on Pk, one
proves easily that ν(T, a)6‖T‖ for every a∈Pk.

Example 2.1.1. Let V be an analytic subset of pure dimension k−p in Pk. Lelong
showed in [39] that the integration on the regular part of V defines a positive closed
(p, p)-current [V ]. The mass of [V ] is equal to the degree of V , i.e. the number of points
in the intersection of V with a generic projective plane P of dimension p. By a theorem
of Thie, the Lelong number of [V ] at a is the multiplicity of V at a, i.e. the multiplicity
at a of V ∩P for P generic passing through a. This number is also equal to the number of
points, in a small neighbourhood of a, of V ∩P ′ for P ′ generic close enough to P . From
the definition of the Lelong number, we deduce that there are constants c, c′>0 such that

cr2k−2 6 volume(V ∩B) 6 c′r2k−2

for every ball B with center in V of radius r61.

We will use the weak topology in Cp, i.e. the topology induced by the weak topology of
currents. Recall that a sequence {Rn}n>0 of (p, p)-currents converges weakly to a current
R if 〈Rn, Φ〉!〈R, Φ〉 for every smooth (k−p, k−p)-form Φ on Pk. Since the currents in
Cp are positive, we obtain the same topology on Cp if we consider real continuous forms
Φ instead of smooth forms. For this topology, Cp is compact.

We introduce some natural distances on Cp as follows. For α>0 let [α] denote the
integer part of α. Let C α

p,q be the space of (p, q)-forms whose coefficients admit derivatives
of all orders 6[α] and these derivatives are (α−[α])-Hölder continuous. We use here the
sum of C α-norms of the coefficients for a fixed atlas. If R and R′ are currents in Cp,
define

distα(R,R′) := sup
‖Φ‖Cα 61

|〈R−R′, Φ〉|,

where Φ is a smooth (k−p, k−p)-form on Pk. Observe that Cp has finite diameter with
respect to these distances, since 〈R, Φ〉 and 〈R′, Φ〉 are bounded.
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Lemma 2.1.2. For every 0<α<β<∞ there is a constant cα,β>0 such that

distβ 6 distα 6 cα,β [distβ ]α/β .

In particular , a function on Cp is Hölder continuous for distα if and only if it is Hölder
continuous for distβ.

Proof. The first inequality is clear. Let L: C∞
k−p,k−p!C be a continuous linear form.

Assume that there are constants A and B such that

|L(Φ)|6A‖Φ‖C 0 and |L(Φ)|6B‖Φ‖C β .

The theory of interpolation between Banach spaces [49] implies that

|L(Φ)|6 cα,βA1−α/βBα/β‖Φ‖C α

with cα,β independent of A, B and L. Applying this to L:=R−R′ with R and R′ as
above, gives the second inequality in the lemma.

When p=k, Ck is the convex set of probability measures on Pk and its extremal
elements are the Dirac masses. One can identify the set of extremal elements of Ck

with Pk. Let δa and δb denote the Dirac masses at a and b, and let ‖a−b‖ denote the
distance between a and b induced by the Fubini–Study metric.

Lemma 2.1.3. We have

distα(δa, δb)'‖a−b‖min{α,1}.

Proof. It is enough to consider the case where a and b are close. Let x=(x1, ..., xk)
be local coordinates so that a and b are close to 0. Without loss of generality, one can
assume that a=0 and b=(t, 0, ..., 0). It is clear that

distα(δa, δb) = sup
‖Φ‖Cα 61

|Φ(a)−Φ(b)|. ‖a−b‖min{α,1}.

Using a cut-off function, one easily constructs a function Φ with bounded C α-norm such
that, near 0, Φ(x)=|Re(x1)|α if α<1 and Φ(x)=Re(x1) if α>1. Hence,

distα(δa, δb) & |Φ(a)−Φ(b)|= ‖a−b‖min{α,1}.

This implies the lemma.

Proposition 2.1.4. For α>0, the topology induced by distα coincides with the weak
topology on Cp. In particular , Cp is a compact separable metric space.
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Proof. It is clear that the convergence with respect to distα implies the weak conver-
gence. Conversely, if a sequence converges weakly in Cp, then it converges uniformly on
compact sets of test forms with uniform norm. By Dini’s theorem, the set of test forms
Φ with ‖Φ‖C α 61 is relatively compact for the uniform convergence. The proposition
follows.

Note that, since the convex set Cp is a Polish space, measure theory on Cp is quite
simple. We show in Lemma 2.1.5 and Proposition 2.1.6 below that smooth forms are
dense in Cp; see [18] for the case of arbitrary compact Kähler manifolds. Here, since
Pk is homogeneous, one can use the group Aut(Pk) of automorphisms of Pk in order to
regularize currents; see also [13] and [43].

Let hθ(y):=θy denote the multiplication by θ∈C and for |θ|61 define %θ :=(hθ)∗%; see
the introduction for the notation. Then, %0 is the Dirac mass at the identity id∈Aut(Pk)
and %θ is a smooth probability measure if θ 6=0. Moreover, for every α>0 there is a
constant cα>0 such that

‖%θ‖C α 6 cα|θ|−2k2−4k−α,

where 2k2+4k is the real dimension of Aut(Pk). Define, for any positive or negative
(p, p)-current R on Pk not necessarily closed,

Rθ :=
∫

Aut(Pk)

(τy)∗R d%θ(y) =
∫

Aut(Pk)

(τθy)∗R d%(y) =
∫

Aut(Pk)

(τθy)∗R d%(y).

The last equality follows from the fact that % is radial and the involution τ 7!τ−1 preserves
the norm of y.

Define Rθy :=(τθy)∗R. If R is positive and closed, then Rθy and Rθ are also positive
and closed. Observe that, since % is radial, Rθ=Rθ′ when |θ|=|θ′|.

Lemma 2.1.5. When θ tends to 0, Rθy and Rθ converge weakly to R. If the restric-
tion of R to an open set W⊂Pk is a form of class C α, then Rθy and Rθ converge to R

in C α(W ′) for any W ′bW .

Proof. The convergence of Rθy follows from the fact that τθy converges to the identity
in the C∞ topology. This and the definition of Rθ imply the convergence of Rθ.

Proposition 2.1.6. If θ 6=0, then Rθ is a smooth form which depends continuously
on R. Moreover , for every α>0 there is a constant cα independent of R such that

‖Rθ‖C α 6 cα‖R‖ |θ|−2k2−4k−α.

If K is a compact set in ∆∗, then there is a constant cα,K >0 such that for θ, θ′∈K,

‖Rθ−Rθ′‖C α 6 cα,K‖R‖ |θ−θ′|.
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Proof. We may assume that R is supported at a point a, that is, R=δa∧Ψ for some
tangent (k−p, k−p)-vector Ψ defined at a with norm 61 (here, we use Federer’s notation
and we consider the vector Ψ as a form with negative bidegree (p−k, p−k)). The general
case is deduced using a disintegration of R as currents with support at a point. We have

Rθ =
∫

Aut(Pk)

(δτy(a)∧(τy)∗Ψ) d%θ(y).

Hence, Rθ is smooth and depends continuously on R. The estimate on ‖Rθ‖C α follows
from the estimate on the C α-norm of %θ. The last estimate in the proposition follows
from the inequality ‖%θ−%θ′‖C α .|θ−θ′| on K.

Remark 2.1.7. We call Rθ the θ-regularization of R. In Proposition 2.1.6 we can
replace |θ|−2k2−4k−α by |θ|−2k−α but the estimates become more technical.

Let dist(τ, τ ′) denote the distance between τ and τ ′ for a fixed smooth metric on
Aut(Pk). The following simple lemma will be useful in the next sections.

Lemma 2.1.8. Let K be a compact subset of Aut(Pk). Let W and W0 be open sets
in Pk such that �W0⊂τ(W ) for every τ∈K. If R is of class C α on W , α>0, then τ∗(R)
is of class C α on W0. Moreover , there is a constant c>0 such that for all τ, τ ′∈K,

‖τ∗(R)‖C α(W0) 6 c‖R‖C α(W )

and
‖τ∗(R)−τ ′∗(R)‖C α(W0) 6 c‖R‖C α(W ) dist(τ, τ ′)min(α,1).

Proof. Since �W0⊂τ(W ), it is clear that τ∗(R) is of class C α on W0. For τ∈K, we
have ‖τ−1‖C α+1 6A, which implies the first estimate. For the second one, observe that

τ∗(R)−τ ′∗(R) = τ∗[R−τ∗τ ′∗(R)] = τ∗[R−(τ−1
�τ ′)∗(R)].

This and the inequality
‖τ−1

�τ ′−id‖C α+1 . dist(τ, τ ′)

imply the estimate.

2.2. Quasi-plurisubharmonic functions and capacity

Positive closed currents of bidegree (1, 1) admit quasi-potentials which are quasi-plurisub-
harmonic functions (quasi-psh for short). The compactness properties of these functions
are fundamental in the study of positive closed (1, 1)-currents. We recall here some facts;
see [13] and [21].
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A quasi-psh function is locally the difference of a psh function and a smooth one;
see [13]. The first important property we will use is the following that we state only in
dimension 1. It is a direct consequence of [38, Theorem 4.4.5].

Lemma 2.2.1. Let F be a compact family in L 1
loc(∆) of subharmonic functions on

∆. Then, for every compact subset K⊂∆, there are constants c>0 and A>0 such that

‖e−Au‖L 1(K) 6 c for every u∈F .

Recall that a function ϕ: Pk!R∪{−∞} is quasi-psh if and only if
• ϕ is integrable with respect to the Lebesgue measure and ddcϕ>−cω for some

constant c>0;
• ϕ is strongly upper semi-continuous (strongly u.s.c. for short), that is, for any Borel

subset A⊂Pk of full Lebesgue measure, we have ϕ(x)=lim supy!x ϕ(y) with y∈A\{x}.
A set E⊂Pk is pluripolar or completely pluripolar if there is a quasi-psh function ϕ

such that E⊂ϕ−1(−∞) or E=ϕ−1(−∞), respectively.
If ϕ is as above, then the (1, 1)-current T :=ddcϕ+cω is positive closed and of mass

c, since it is cohomologous to cω. We say that ϕ is a quasi-potential of T ; it is defined
everywhere on Pk. There is a continuous one-to-one correspondence between the positive
closed (1, 1)-currents of mass 1 and the quasi-psh functions ϕ satisfying ddcϕ>−ω, nor-
malized by

∫
Pk ϕωk=0 or by maxPk ϕ=0. The following compactness property is deduced

from the corresponding properties of psh functions.

Proposition 2.2.2. Let {ϕn}n>0 be a sequence of quasi-psh functions on Pk with
ddcϕn>−ω. Assume that ϕn is bounded from above by a constant independent of n.
Then, either {ϕn}n>0 converges uniformly to −∞, or there is a subsequence {ϕnj}j>0

converging , in L p for 16p<∞, to a quasi-psh function ϕ with ddcϕ>−ω.

The next result is a consequence of the classical Hartogs lemma for psh functions.

Proposition 2.2.3. Let ϕn and ϕ be quasi-psh functions on Pk with ddcϕn>−ω

and ddcϕ>−ω. Assume that ϕn converge in L 1 to ϕ. Let ϕ̃ be a continuous function
on a compact subset K of Pk such that ϕ<ϕ̃ on K. Then, ϕn<ϕ̃ on K for n large
enough. In particular , we have lim supn!∞ ϕn6ϕ on Pk.

We recall a compactness property of quasi-psh functions and also an approximation
result (see also Proposition 3.1.6 below).

Proposition 2.2.4. Let {ϕn}n>0 be a decreasing sequence of quasi-psh functions
with ddcϕn>−ω. Then, either ϕn converge uniformly to −∞, or ϕn converge pointwise
and also in L p, 16p<∞, to a quasi-psh function ϕ with ddcϕ>−ω. Moreover , for every
quasi-psh function ϕ with ddcϕ>−ω, there is a sequence {ϕn}n>0 of smooth functions
such that ddcϕn>−ω which decreases to ϕ.
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Consider now a hypersurface V of Pk of degree m and the positive closed (1, 1)-
current [V ] of integration on V which is of mass m. Let ϕ be a quasi-potential of [V ],
i.e. a quasi-psh function such that ddcϕ=[V ]−mω. Let δ be an integer such that the
multiplicity of V is 6δ at every point. The following lemma will be useful in the next
sections.

Lemma 2.2.5. There is a constant A>0 such that

δ log dist( · , V )−A 6ϕ 6 log dist( · , V )+A.

Proof. Let x=(x1, ..., xk)=(x′, xk) denote the coordinates of Ck. Let Π: Ck!Ck−1

with Π(x):=x′ be the projection on the first k−1 factors. We can reduce the problem to
the local situation where V is a hypersurface of the unit polydisc ∆k such that the pro-
jection Π: V!∆k−1 defines a ramified covering of degree s6δ. For x′∈∆k−1, denote by
xk,1, ..., xk,s the last coordinates of points in Π−1(x′)∩V . Here, these points are repeated
according to their multiplicity. So, V is the zero set of the Weierstrass polynomial

P (x) := (xk−xk,1) ... (xk−xk,s).

This is a holomorphic function on ∆k. It follows that ϕ(x)−log |P (x)| is a smooth
function. We only have to prove that

dist(x, V )s . |P (x)|. dist(x, V )

locally in ∆k. The first inequality follows from the definition of P . Since the derivatives
of P are locally bounded, it is clear that for every a in a compact set of V we have

|P (x)|= |P (x)−P (a)|. |x−a|.

Hence, |P (x)|.dist(x, V ).

Recall that an integrable function ϕ on Pk is said to be dsh if it is equal outside a
pluripolar set to a difference of two quasi-psh functions [21]. We identify two dsh functions
if they are equal outside a pluripolar set. The space of dsh functions is endowed with
the following norm:

‖ϕ‖DSH := ‖ϕ‖L 1 +inf ‖T+‖,

where T± are positive closed (1, 1)-currents such that ddcϕ=T+−T−. The currents T+

and T− are cohomologous and have the same mass. Note that the notion of dsh function
can be easily extended to compact Kähler manifolds. We have the following lemma.



super-potentials of currents, intersection theory and dynamics 13

Lemma 2.2.6. Let χ: R∪{−∞}!R be a convex increasing function such that χ′ is
bounded. Then, for every dsh function ϕ, χ(ϕ) is dsh and

‖χ(ϕ)‖DSH . 1+‖ϕ‖DSH.

Proof. Up to a linear change of coordinate on R∪{−∞}, we can assume that
‖ϕ‖DSH61. Since χ(x).1+|x|, ‖χ(ϕ)‖L 1 is bounded. So, it is enough to prove that
χ(ϕ) is dsh and to bound ddcχ(ϕ). We can write ϕ=ϕ+−ϕ− outside a pluripolar set,
where ϕ± are quasi-psh with bounded DSH-norm such that ddcϕ±>−ω. Since ϕ± can
be approximated by decreasing sequences of smooth quasi-psh functions, it is enough to
consider the case where ϕ± and ϕ are smooth. It remains to bound ddcχ(ϕ). Since χ′′

is positive, we have

ddcχ(ϕ) = χ′(ϕ) ddcϕ+χ′′(ϕ) dϕ∧dcϕ >χ′(ϕ) ddcϕ >−‖χ′‖∞T−.

Because χ′ is bounded, ddcχ(ϕ) can be written as a difference of positive closed currents
with bounded mass. The lemma follows.

Let Vt denote the t-neighbourhood of V , i.e. the open set of points whose distance
from V is smaller than t.

Lemma 2.2.7. For every t>0 there is a smooth function χt, 06χt61, with compact
support in VA1t1/δ , equal to 1 on Vt and such that ‖χt‖DSH6A1, where A1>0 is a
constant independent of t.

Proof. We only have to consider the case where t�1. We will construct χt using
Lemma 2.2.6 applied twice to the function ϕ in Lemma 2.2.5. Let χ: R∪{−∞}![0,∞[
be a smooth function which is convex increasing. We choose χ such that χ(x)=0 on
[−∞,−1] and χ(x)=x for x>1. So, we have max{x, 0}6χ6max{x, 0}+1. Let ϕ and A

be as in Lemma 2.2.5. Define

φt :=−χ(ϕ−log t−A−1) and χt := χ(φt+1).

Then φt−log t and χt are smooth. From the computation in Lemma 2.2.6, their DSH-
norms are bounded uniformly with respect to t. We deduce from the properties of χ

that χt>0, φt60 and φt=0 on Vt. It follows that χt=1 on Vt. Outside VA1t1/δ with
A1�1, by Lemma 2.2.5, we have that ϕ−log t−A−1�0, hence φt=−ϕ+log t+A+1.
We deduce that φt+16−1 and χt=0 there. This implies the lemma.

We recall a notion of capacity that we introduced in [21] which can be extended to
any compact Kähler manifold; see also [3] and [45]. Let

P :=
{

ϕ quasi-psh : ddcϕ >−ω and max
Pk

ϕ = 0
}

.
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For E⊂Pk, define
cap(E) := inf

ϕ∈P
exp

(
sup
E

ϕ
)
.

We have cap(Pk)=1, and E is pluripolar if and only if cap(E)=0.
Consider a quasi-potential ϕ of a current T∈C1, i.e. a quasi-psh function such that

ddcϕ=T−ω. Quasi-potentials of T differ by constants. We can associate with each point
a∈Pk the Dirac mass δa at a. Define a function U on the extremal elements of Ck by

U (δa) := ϕ(a).

We can extend this function in a unique way to an affine function on Ck by setting

U (ν) :=
∫

Pk

ϕ dν for ν ∈Ck.

The upper semi-continuity of ϕ implies that U is also u.s.c. on Ck. We say that U is a
super-potential of T . Super-potentials of a given current differ by constants.

Let
P1 :=

{
U super-potential of a current T ∈C1 : max

Ck

U = 0
}

.

For each set E of probability measures in Ck, define

cap(E) := inf
U ∈P1

exp
(

sup
ν∈E

U (ν)
)
.

It is easy to check that for a single measure ν, cap(ν)>0 if and only if quasi-psh functions
are ν -integrable, i.e. ν is PB in the sense of [17] and [21]. A definition of super-potentials
for currents of any bidegree will be given in the next section.

Lemma 2.2.8. Let E′⊂Pk be a Borel set. Let E be the set of measures ν∈Ck with
ν(E′)=1. Then, cap(E′)=cap(E).

Proof. Since U is affine and u.s.c., the supremum can be taken on the set of extremal
points. It follows that maxCk

U =0 if and only if maxPk ϕ=0. Moreover, we have that
supE U =supE′ ϕ. It is now clear that cap(E′)=cap(E).

2.3. Green quasi-potentials of currents

Let R be a current in Cp with p>1. If U is a (p−1, p−1)-current such that ddcU =R−ωp,
we say that U is a quasi-potential of R. The integral 〈U, ωk−p+1〉 is the mean of U . Such
currents U exist but they are not unique. When p=1 the quasi-potentials of R differ by
constants, when p>1 they differ by ddc-closed currents which can be singular. Moreover,
for p>1, U is not always defined at every point of Pk. This is one of the difficulties in the
study of positive closed currents of higher bidegree. We will constantly use the following
result which gives potentials with good estimates.
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Theorem 2.3.1. Let R be a current in Cp. Then, there is a negative quasi-potential
U of R, depending linearly on R, such that for every r and s with 16r<k/(k−1) and
16s<2k/(2k−1), one has

‖U‖L r 6 cr and ‖dU‖L s 6 cs

for some positive constants cr and cs independent of R. Moreover , U depends continu-
ously on R with respect to the L r topology on U and the weak topology on R.

We will construct U using a kernel solving the ddc-equation for the diagonal of
Pk×Pk. We need a negative kernel with tame singularities. In the case of arbitrary com-
pact Kähler manifolds, this is not always possible [9]. In order to simplify the notation,
consider the following general situation. Let X be a homogeneous compact Kähler man-
ifold of dimension n and let G be a complex Lie group of dimension N acting transitively
on X. The following proposition gives some precisions on a result in Bost–Gillet–Soulé
[9, Proposition 6.2.3]; see also Andersson [4].

Proposition 2.3.2. Let D be a submanifold of pure dimension n−p in X with
p>1 and Ω be a real closed (p, p)-form cohomologous to the current [D]. Then, there is
a negative (p−1, p−1)-form K on X smooth outside D such that ddcK=[D]−Ω which
satisfies the following inequalities near D:

‖K( ·)‖∞ .−dist( · , D)2−2p log dist( · , D) and ‖∇K( ·)‖∞ . dist( · , D)1−2p.

Moreover , there is a negative dsh function η and a positive closed (p−1, p−1)-form Θ
smooth outside D such that K>ηΘ, ‖Θ( ·)‖∞.dist( · , D)2−2p and η−log dist( · , D) is
bounded near D.

Note that ‖∇K‖∞ is the sum
∑

j |∇Kj |, where the Kj ’s are the coefficients of K

for a fixed atlas of X. We first prove the following lemmas.

Lemma 2.3.3. There is a negative dsh function η on X smooth outside D such that
η−log dist( · , D) is bounded.

Proof. Let π: X̃!X be the blow-up of X along D. Denote by D̂:=π−1(D) the
exceptional divisor. If α is a real closed (1, 1)-form on X̃ cohomologous to [D̂], there
is a negative quasi-psh function η̃ such that ddcη̃=[D̂]−α. It is clear that η̃ is smooth
outside D̂ and η̃−log dist( · , D̂) is bounded. Define η :=η̃�π−1. Hence, η−log dist( · , D)
is bounded. Moreover, by a theorem of Blanchard [8], X̃ is Kähler. Hence, ddcη̃ can be
written as a difference of positive closed currents. It follows that ddcη=π∗(ddcη̃) is also
a difference of positive closed currents. We deduce that η is dsh.
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Proof of Proposition 2.3.2. Let ΓD⊂G×D×X denote the graph of the map

G×D−!X,

(g, x) 7−! g(x).

Let ΠG and ΠX denote the projections of ΓD onto G and X, respectively. Observe that
ΠG defines a trivial fibration. The map ΠX also defines a fibration which is locally trivial.
Indeed, we can pass from a fiber to another one using the action

(g, x, g(x)) 7−! (τ(g), x, τ(g(x))

on G×D×X, of an element τ of G. So, ΠX is a submersion. The integrals that we
consider below are computed on some compact subset of ΓD.

Let z be a local coordinate on G with |z|<1 such that z=0 at the identity. Let
χ be a smooth positive function with compact support in {z :|z|<1} and equal to 1 in
a neighbourhood of 0. Define KG :=χ(ddc log |z|)N−1 log |z|. This is a negative current
with support in {z :|z|<1} and ΩG :=−ddcKG+δ0 is a smooth form. We have

‖KG( ·)‖∞ .−|z|2−2N log |z| and ‖∇KG( ·)‖∞ . |z|1−2N .

Observe that D̃:=Π−1
G (id)∩ΓD is compact and is sent by ΠX biholomorphically to D.

Therefore, locally near D̃, one can find coordinates (xD, %D, xG)∈Cn−p×Cp×CN−p such
that D̃={%D=xG=0} and ΠX(xD, %D, xG)=(xD, %D). Define the negative form K by

K := (ΠX)∗(Π∗
G(KG)).

So, K is smooth outside D. Using the coordinates (xD, %D, xG) and the fact that
ΠG: ΓD!G is a trivial fibration, we obtain

η�ΠX . log dist( · , D̃) .− log |ΠG|.

This, Lemma 2.3.3 and the above estimates on KG imply that

K & η (ΠX)∗(Π∗
G(ΘG)),

where ΘG :=χ(ddc log |z|)N−1.
Define

Θ := (ΠX)∗(Π∗
G(ΘG)).

Using the local coordinates (xD, %D, xG) and the fact that

‖Π∗
G(ΘG)‖∞ . dist( · , D̃)2−2N . (|%D|2+|xG|2)1−N
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on ΓD, we obtain

‖Θ( ·)‖∞ .
∫
|xG|61

dxG

(|%D|2+|xG|2)N−1
6

∫
|xG|61

dxG

|%D|2N−2+|xG|2N−2

'
∫ 1

0

x2N−2p−1 dx

|%D|2N−2+x2N−2
. |%D|2−2p

∫ ∞

0

ds

1+s2N−2
. |%D|2−2p.

So, we have the estimate ‖Θ( ·)‖∞.dist( · , D)2−2p.
We then deduce the desired estimate on ‖K( ·)‖∞. We also have, near D̃,

‖∇Π∗
G(KG)( ·)‖∞ . dist( · , D̃)1−2N .

A similar computation as above gives that ‖∇K( ·)‖∞.dist( · , D)1−2p. So, the singular-
ities of K satisfy the estimates in the proposition. We have finally

ddcK = (ΠX)∗(Π∗
G(ddcKG)) = (ΠX)∗(Π∗

G(δid−ΩG))

= (ΠX)∗(Π∗
G(δid))−(ΠX)∗(Π∗

G(ΩG))

= [D]−(ΠX)∗(Π∗
G(ΩG)) =: [D]−Ω′.

Because ΩG is smooth, Ω′ :=(ΠX)∗(Π∗
G(ΩG)) is also smooth. Since Ω and Ω′ are both

cohomologous to [D], there is a smooth real (p−1, p−1)-form U such that ddcU =Ω−Ω′.
Adding to U a positive closed form large enough allows one to assume that U is positive.
Replacing K by K−U gives a negative form such that ddcK=[D]−Ω with the desired
tame singularities.

Proof of Theorem 2.3.1. We apply Proposition 2.3.2 to X :=Pk×Pk,

G := Aut(Pk)×Aut(Pk)

and D the diagonal of X. Since Aut(Pk)'PGL(k+1, C), we can identify Aut(Pk) with
a Zariski open set in Pk2+2k which is the projective space associated with the space of
(k+1)×(k+1) matrices. The assumptions in Proposition 2.3.2 are easily verified. Let
(z, ξ) denote the homogeneous coordinates of Pk×Pk with z=[z0 :...:zk] and ξ :=[ξ0 :...:ξk].
The diagonal D is given by {(z, ξ):z=ξ}. Choose

Ω(z, ξ) :=
k∑

j=0

ω(z)j∧ω(ξ)k−j .

This form is cohomologous to [D]. Using the notation from Proposition 2.3.2, we define

U(z) :=
∫

ξ 6=z

R(ξ)∧K(z, ξ).
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Observe that K is smooth outside D and that its coefficients have singularities like

|z−ξ|2−2k log |z−ξ|

near D (there is an abuse of notation: we should write |z−ξ|2−2k log |z−ξ| on charts
{(z, ξ):zj =ξj =1}, j=0, ..., k, which cover D). It follows that the definition of U makes
sense for every current R with measure coefficients. This is a form with coefficients in
L r. An easy way to see this, is to disintegrate R into currents with support at a point.
The continuity with respect to the L r-norm of U and the weak topology on Cp, and the
estimate on the L r-norm of U are easy to check.

For the rest of the theorem, by continuity, we may assume that R is a smooth form
in Cp. Denote by π1 and π2 the projections of Pk×Pk onto its factors. Note that

U = (π1)∗(π∗2(R)∧K).

Hence, U is negative since K is negative and R is positive. As R is closed, we also have

ddcU = (π1)∗(π∗2(R)∧ddcK) = (π1)∗(π∗2(R)∧[D])−(π1)∗(π∗2(R)∧Ω) = R−ωp.

Therefore, U is a quasi-potential of R. We also have

dU = (π1)∗(π∗2(R)∧dK).

Since dK has singularities like |z−ξ|1−2k near D, it is clear that ‖dU‖L s is bounded by
a constant independent of R.

Remark 2.3.4. We call U the Green quasi-potential of R. By Theorem 2.3.1, the
mean m of U is bounded by a constant independent of R. So, U−mωp−1 is a quasi-
potential of mean 0 of R. Its mass is bounded uniformly with respect to R. Note that
U depends on the choice of K.

We now give some properties of Green quasi-potentials.

Lemma 2.3.5. Let W ′bW be open subsets of Pk and R be a current in Cp. Assume
that the restriction of R to W is a bounded form. Then, there is a constant c>0
independent of R such that

‖U‖C 1(W ′) 6 c(1+‖R‖∞,W ).

Proof. Observe that the derivatives of the coefficients of K have integrable singu-
larities of order |z−ξ|1−2k. This and the definition of U imply the result.
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The precise estimate on the behavior of U in the following proposition will be needed
for the dynamical applications. It is used several times in the proof of Theorem 5.4.4.

Proposition 2.3.6. Let V , Vt and δ be as in Lemmas 2.2.5 and 2.2.7. Let Tj ,
16j6k−p+1, be positive closed (1, 1)-currents on Pk, smooth on Pk\V . Assume that
the quasi-potentials of Tj are αj-Hölder continuous with 0<αj 61. If U is the Green
quasi-potential of a current R∈Cp, then∣∣∣∣∫

Vt\V
U∧T1∧...∧Tk−p+1

∣∣∣∣ 6 ctβ , with β := (20k2δ)−kα1 ... αk−p+1,

where c>0 is a constant independent of R and of t.

We will use the notation from Theorem 2.3.1 and Proposition 2.3.2. For M>0,
define ηM :=min{0,M +η}. As in Lemma 2.2.6, we can show that ‖ηM‖DSH is bounded
independently of M . We have ηM−M6η. Define KM :=−MΘ and K ′

M :=ηMΘ. Then,
KM is negative closed and we have KM +K ′

M .K. Define also

UM (z) :=
∫

ξ

R(ξ)∧KM (z, ξ) and U ′
M (z) :=

∫
ξ

R(ξ)∧K ′
M (z, ξ).

The form UM is negative closed of mass 'M and UM +U ′
M .U . Choose M :=t−β . We

estimate UM and U ′
M separately. Recall that U is negative and that Θ has singularities

of order dist(z, ξ)2−2k.

Lemma 2.3.7. We have ∣∣∣∣∫
Vt

UM∧ωk−p+1

∣∣∣∣ . t.

Proof. We may assume that t< 1
2 . We do not need that R is closed. So, we may

assume that R has support at a point a∈Pk. We define UM using the same integral
formula as above. Then, the coefficients of UM have singularities of type M |x|2−2k,
where x are local coordinates such that x=0 at a. The problem is local. We may assume
that V is a hypersurface in a neighbourhood of the unit ball B. Since M6t−1/2, it is
sufficient to prove that ∫

Vt∩B

|x|2−2k(ddc|x|2)k . t3/2.

Let A be a maximal subset of V ∩B such that the distance between two points in A

is >t. The balls of radius 2t with center in A cover V ∩B and the ones of radius 3t

cover Vt∩B. Let An be the set of points p∈A such that nt6|p|<(n+1)t and mn be the
number of elements of An. Observe that the m0+...+mn balls of radius 1

2 t with centers
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in A1∪...∪An are disjoint. They cover an open subset of V ∩{x:|x|6(n+2)t}. Using
Lelong’s estimate in Example 2.1.1, see also [39], gives that

m0+...+mn .n2k−2.

Note that m0 is 0 or 1 and the integral of |x|2−2k(ddc|x|2)k on a ball of radius 3t with
center in A0 is bounded by the integral of this function on the ball of center 0 and of
radius 4t. Hence, it is of order t2. For n>1, it is clear that the integral of the considered
form on a ball with center in An is of order n2−2kt2. Using the estimates on mn and
Abel’s transform, one obtains∫

Vt∩B

|x|2−2k(ddc|x|2)k . t2+
∑

16n61/t

mnn2−2kt2

. t2+
∑

16n61/t

[n2k−2−(n−1)2k−2]n2−2kt2

. t2+t2
∑

16n61/t

1
n

.

This implies the lemma.

We continue the proof of Proposition 2.3.6. By continuity, it is enough to consider
the case where R and U are smooth. We also have that UM is smooth.

Lemma 2.3.8. For every 06l6k−p+1 we have∣∣∣∣∫
Vt

UM∧T1∧...∧Tl∧ωk−p−l+1

∣∣∣∣ . tβl , where βl := (20k2δ)−lα1 ... αl.

Proof. The proof is by induction. The previous lemma implies the case l=0. Assume
the lemma for l−1. Let χt be as in Lemma 2.2.7. We want to prove that∫

(−χtUM∧T1∧...∧Tl∧ωk−p−l+1) . tβl .

Write Tl=ω+ddcu with u negative quasi-psh of class C αl . By the induction hypothesis,
since χt has support in VA1t1/δ , we obtain∫

(−χtUM∧T1∧...∧Tl−1∧ωk−p−l+2) . tδ
−1βl−1 . tβl .

Therefore, we only have to prove that∫
(−χtUM∧T1∧...∧Tl−1∧ddcu∧ωk−p−l+1) . tβl .
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By Proposition 2.1.6 and Lemma 2.1.8, there is a smooth function uε such that

‖uε‖C 2 . ε−2k2−4k−2 and ‖u−uε‖∞ . εαl .

Using Stokes theorem we can write the left-hand side of the previous inequality as∫
(−χtUM∧T1∧...∧Tl−1∧ddcuε∧ωk−p−l+1)

+
∫

(−ddcχt∧UM∧T1∧...∧Tl−1(u−uε)∧ωk−p−l+1).

By the induction hypothesis, the previous estimates on ‖uε‖C 2 and Lemma 2.2.7, we
obtain that the first term is of order at most equal to tδ

−1βl−1ε−2k2−4k−2. If we write
ddcχt=T+−T− with T± positive closed of bounded mass, the second term is of order
less than

εαl

∫
T+∧UM∧T1∧...∧Tl−1∧ωk−p−l+1+εαl

∫
T−∧UM∧T1∧...∧Tl−1∧ωk−p−l+1.

These integrals can be computed cohomologically. The currents T± have bounded mass.
Since KM =−MΘ, we deduce from the definition of UM that −UM is positive and closed
of mass M =t−β . Therefore, the last sum is .t−βεαl .

Take ε:=tδ
−1(2k2+4k+2+αl)

−1βl−1 . We have

1− 2k2+4k+2
2k2+4k+2+αl

>
αl

10k2
.

Then
tδ
−1βl−1ε−2k2−4k−2 . tδ

−1βl−1(10k2)−1αl . tβl

and
t−βεαl . t−βt(10k2δ)−1βl−1αl . t−βt2βl . tβl .

This implies the desired estimate.

Lemma 2.3.9. We have ‖U ′
M‖.exp

(
− 1

2M
)
.

Proof. We can forget that R is smooth and assume that R has support at a point a.
The behavior of η implies that U ′

M has support in the ball of center a and radius
.exp(− 1

2M). The coefficients of U ′
M have singularities .−|x|2−2k log |x| for local co-

ordinates x with x=0 at a. Hence, ‖U ′
M‖.exp

(
− 1

2M
)
.

The following lemma completes the proof of Proposition 2.3.6, since

M = t−β �|log t|.
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Lemma 2.3.10. For every 06l6k−p+1 we have∣∣∣∣∫ U ′
M∧T1∧...∧Tl∧ωk−p−l+1

∣∣∣∣ . exp
(
− 1

2 (10k2)−lα1 ... αlM
)
.

Proof. The previous lemma implies the case l=0. Assume the lemma for l−1 and
use the notation from the proof of Lemma 2.3.8. The integral to bound is equal to∫

(−U ′
M∧T1∧...∧Tl−1∧ddcuε∧ωk−p−l+1)

+
∫

Pk×Pk

(−K ′
M∧R(ξ)∧T1(z)∧...∧Tl−1(z)ddc(u(z)−uε(z))∧ω(z)k−p−l+1).

Choose ε=exp(−(10k2)−lα1 ... αl−1M). Using the estimate on ‖uε‖C 2 , by the induction
hypothesis, the first integral is of order at most equal to

exp
(
− 1

2 (10k2)−l+1α1 ... αl−1M
)
ε−2k2−4k−2 . exp

(
− 1

2 (10k2)−lα1 ... αlM
)
.

The second one is equal to∫
Pk×Pk

(−ddcK ′
M∧R(ξ)∧T1(z)∧...∧Tl−1(z)(u(z)−uε(z))∧ω(z)k−p−l+1).

Since the DSH-norm of ηM in the definition of K ′
M is bounded, the first term in the

last integral can be bounded by a positive closed current with bounded mass. So, this
integral is of order at most equal to

‖u−uε‖∞ . εαl = exp(−(10k2)−lα1 ... αl−1αlM).

This implies the result.

We will use the following lemma in the study of deformation of currents.

Lemma 2.3.11. Let R be a current in Cp and U be a quasi-potential of mean m

of R. Let Rθy =(τθy)∗(R) be defined as in §2.1. Then, there is a quasi-potential U ′
θy of

Rθy of mean m such that U ′
θy−(τθy)∗(U) is a smooth form with

‖U ′
θy−(τθy)∗(U)‖C 2 6 c(1+‖U‖)|θ|,

where c>0 is a constant independent of R, U , θ and y.

Proof. Since ‖(τθy)∗(ωp)−ωp‖C 2 .|θ|, there is a (p−1, p−1)-form Ωθy such that
‖Ωθy‖C 2 .|θ| and ddcΩθy =(τθy)∗(ωp)−ωp. It is clear that the mean m′′ of Ωθy is of
order .|θ|. Set U ′

θy :=(τθy)∗(U)+Ωθy. So, the mean m′ of U ′
θy satisfies

|m′−m|=
∣∣∣∣∫ (τθy)∗(U)∧ωk−p+1+m′′−

∫
U∧ωk−p+1

∣∣∣∣
6 |m′′|+

∣∣∣∣∫ U∧[(τθy)∗(ωk−p+1)−ωk−p+1]
∣∣∣∣.

The last term is of order .‖U‖|θ| since ‖(τθy)∗(ωk−p+1)−ωk−p+1‖∞ is of order .|θ|.
Subtracting from U ′

θy the form (m′−m)ωp−1, which is of order .|θ|, gives a quasi-
potential satisfying the lemma.
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2.4. Structural varieties in the spaces of currents

The notion of structural varieties of Cp was introduced in [22]; see also [15]. In some
sense, we consider Cp as a space of infinite dimension admitting “complex subvarieties”
of finite dimension. The emphasis is that in order to connect two closed currents we
use a closed current in higher dimension. Holomorphic families of analytic cycles of
codimension p are examples of structural varieties in Cp. Other examples of structural
varieties can be obtained by deforming a given current in Cp using a holomorphic family
of automorphisms. The reader will find in Dujardin [26] and in [16] an application of
such a deformation to the dynamics of Hénon-like maps; see also [50]. General structural
varieties are more flexible, and this is crucial in our study.

Let X be a complex manifold, and πX : X×Pk!X and π: X×Pk!Pk denote the
canonical projections. Consider a positive closed (p, p)-current R in X×Pk. By slicing
theory [28], the slices 〈R, πX , x〉 exist for almost every x∈X. Such a slice is a positive
closed (p, p)-current on {x}×Pk (following [22], we can prove that the slices exist for x

outside a pluripolar set). We often identify 〈R, πX , x〉 with a (p, p)-current Rx in Pk.

Lemma 2.4.1. The mass of Rx does not depend on x.

Proof. Set R′ :=R∧π∗(ωk−p). Then, R′ is positive closed on X×Pk and (πX)∗(R′)
is closed of bidegree (0, 0) on X. Hence, it is a constant function. So, the function

ϕ(x) := ‖〈R′, πX , x〉‖=
∫

Pk

Rx∧ωk−p = ‖Rx‖

is constant. The lemma follows.

We assume that the mass of Rx is equal to 1. The map x 7!Rx is defined almost
everywhere on X with values in Cp.

Definition 2.4.2. We say that the map x 7!Rx or the family {Rx}x∈X defines a
structural variety in Cp. The positive closed (1, 1)-current

αR := (πX)∗(R∧π∗(ωk−p+1))

on X is called the curvature of the structural variety, see Propositions 3.1.3 and 3.2.1
below.

Definition 2.4.3. A structural variety associated with R is said to be special if Rx

exists for every x∈X, Rx depends continuously on x and the curvature is a smooth form.

In order to simplify the argument, we restrict to special structural varieties or discs.
The most useful structural discs in this work are {Rθ}θ∈∆; see the introduction and
Lemma 2.5.3 below.
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2.5. Deformation by automorphisms

Using the automorphisms of Pk, we will construct some special structural discs in Cp

that we will use later on. We first construct large structural varieties parametrized by
X=Aut(Pk).

Proposition 2.5.1. Let R be a current in Cp. Then, the map h: Aut(Pk)!Cp with
h(τ)=Rτ :=τ∗(R) defines a special structural variety in Cp. Moreover , its curvature is
bounded by a smooth positive (1, 1)-form independent of R.

Proof. For any smooth test form Φ, we have 〈Rτ , Φ〉=〈R, τ∗(Φ)〉. So, clearly τ 7!Rτ

is continuous. Consider the holomorphic map H: Aut(Pk)×Pk!Pk defined by H(τ, z):=
τ−1(z). The current R :=H∗(R) is positive closed of bidegree (p, p). It is easy to check
from the definition of slices that Rτ =〈R, πX , τ〉. Hence, h defines a continuous structural
variety.

Now, we have to show that the curvature

αR := (πX)∗(H∗(R)∧π∗(ωk−p+1))

is a smooth form. We prove this for any current R of mass 61 not necessarily closed.
Then, we may assume that R is supported at a point a, that is, there is a tangent
(k−p, k−p)-vector Ψ at a of norm 61 such that R=δa∧Ψ (the general case is obtained
using a disintegration of R into currents of the previous type). We have

H∗(R) = [H−1(a)]∧Ψ̃,

where Ψ̃ is a (k−p, k−p)-vector field with support in H−1(a) such that H∗(Ψ̃)=Ψ.
Because H is a submersion, we can choose Ψ̃ smooth on H−1(a).

Since H−1(a) is a holomorphic graph over Aut(Pk), the form αR defined above is
the direct image of [H−1(a)]∧Ψ̃∧π∗(ωk−p+1) by πX . So, αR is smooth. Moreover, the
C s-norm of αR on any fixed compact subset of Aut(Pk) is uniformly bounded for every
s>0. The proposition follows.

Remark 2.5.2. If j: ∆!Aut(Pk) is a holomorphic map, then x 7!j(x)∗R, which is
equal to h�j, defines a special structural disc. We can also construct a structural disc
passing through R and through the current of integration on a fixed plane of codimen-
sion p [15]. So, Cp is connected by structural discs.

Let R be a current in Cp. The following lemma gives us a useful special structural
disc passing through R.
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Lemma 2.5.3. Let Rθ be the currents constructed in §2.1. Then, the family {Rθ}θ∈∆

defines a special structural disc whose curvature is bounded by a smooth positive (1, 1)-
form α which does not depend on R.

Proof. By Proposition 2.5.1, for |y|<1, the family {Rθy}θ∈∆ defines a special disc
in Cp. Moreover, the C s-norm of its curvature is bounded uniformly with respect to R

and y. In particular, this curvature is bounded by a positive form α which does not
depend on R and y.

Let Ry denotes the (p, p)-current on ∆×Pk associated with the structural disc
{Rθy}θ∈∆ and define R :=

∫
Ry d%(y). Recall that Rθ=

∫
y
Rθy d%(y). Hence, {Rθ}θ∈∆

is the family of slices of R and it defines a structural disc in Cp. We know that Rθ

depends continuously on θ. This and the above properties of {Rθy}θ∈∆ imply that the
curvature of {Rθ}θ∈∆ is bounded by α.

3. Super-potentials of currents

Consider a current S in Cp. We introduce a super-potential associated with S. It is
an affine upper semi-continuous (u.s.c. for short) function US defined on Ck−p+1, with
values in R∪{−∞}.

3.1. Super-potentials of currents

Assume first that S is a smooth form in Cp. The general case will be obtained using a
regularization of S. Consider an element R of Ck−p+1 and fix a real number m. Define

US(R) := 〈S, UR〉, UR a quasi-potential of mean m of R. (3.1)

Lemma 3.1.1. The integral 〈S, UR〉 does not depend on the choice of UR with a fixed
mean m. It defines an affine continuous function US on Ck−p+1. Moreover , if US is a
smooth quasi-potential of S with mean m, then US(R)=〈US , R〉. In particular , we have
US(ωk−p+1)=m.

Proof. Let US be a smooth quasi-potential of S with mean m. Using Stokes formula,
we obtain

US(R) = 〈S, UR〉= 〈S−ωp, UR〉+〈ωp, UR〉= 〈ddcUS , UR〉+m

= 〈US , ddcUR〉+m = 〈US , R−ωk−p+1〉+m = 〈US , R〉.

This also shows that US(R) is independent of the choice of UR and it depends continu-
ously on R. It is clear that US is affine.
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We say that US is the super-potential of mean m of S. One obtains the super-
potential of mean m′ by adding m′−m to the super-potential of mean m. We will see
later that the following lemma holds also for an arbitrary current S in Cp smooth or not;
see Corollary 3.1.7 below.

Lemma 3.1.2. There is a constant c>0 independent of S such that if US is the
super-potential of mean m of S, then US 6m+c everywhere.

Proof. Without loss of generality, we may assume that m=0. Let U ′
R be the Green

quasi-potential of R which is a negative current and let m′ be the mean of U ′
R. Then,

UR :=U ′
R−m′ωk−p is a quasi-potential of mean 0 of R. By Lemma 3.1.1, since U ′

R is
negative and S is positive, we have

US(R) = 〈S, UR〉= 〈S, U ′
R〉−m′ 6−m′.

We have seen in Remark 2.3.4 that |m′| is bounded by a constant independent of R. This
implies the result.

As we have seen in §2.5, the convex set Ck−p+1 can be considered as an infinite-
dimensional space admitting “complex subvarieties” of finite dimension. With this point
of view, we can consider US as a quasi-psh function on Ck−p+1. More precisely, we will
show that the restriction of US to a special structural variety is a quasi-psh function, see
Proposition 3.2.1 below.

We now extend the definition of US to an arbitrary current S in Cp. For R smooth,
define US(R) as in (3.1) with UR smooth. Observe that US(R) depends continuously
on S. We can show, as in Lemma 3.1.1, that the definition is independent of the choice
of UR. We will extend US to a function on Ck−p+1 with values in R∪{−∞}. The reader
can check that for p=1 we will obtain the same super-potentials as introduced in §2.2.

Let {Rθ}θ∈∆ be the special structural disc in Ck−p+1 constructed in §2.1 and §2.5
and let α be as in Lemma 2.5.3. Recall that Rθ is smooth for θ 6=0.

Lemma 3.1.3. The function u(θ):=US(Rθ) defined on ∆∗ can be extended as a
quasi-subharmonic function on ∆ such that ddcu>−α.

Proof. Proposition 2.1.6 implies that u is continuous on ∆∗. Lemma 3.1.2 holds for
S singular and R smooth. So, u is bounded from above. Let R be the (k−p+1, k−p+1)-
current in ∆×Pk associated with {Rθ}θ∈∆, and let π∆ and π be as in §2.5. Observe that
R is smooth on ∆∗×Pk. If US is a quasi-potential of mean m of S, then, by the definition
of US , we have

u = (π∆)∗(R∧π∗(US))
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in the sense of currents on ∆∗. It follows that

ddcu = (π∆)∗(R∧π∗(ddcUS)) >−(π∆)∗(R∧π∗(ωp)) >−α.

If v is a smooth function such that ddcv=α, then u+v is subharmonic on ∆∗. Since u

is bounded from above, u+v can be extended to a subharmonic function. The lemma
follows. Observe that if R is a smooth form, then u(θ) is defined and is a continuous
function on ∆. It is quasi-subharmonic and satisfies ddcu>−α.

Recall that Sθ is defined as in §2.1 and §2.5 for S instead of R. By Lemma 2.1.5
and Proposition 2.1.6, Sθ is smooth and converges to S when θ tends to 0.

Proposition 3.1.4. Let USθ
denote the super-potential of mean m of Sθ. Then,

USθ
(R) converges to u(0) when θ!0. In particular , if R is a smooth form, then USθ

(R)
converges to US(R).

Proof. When R is smooth, we have u(0)=US(R). So, we deduce easily the last
assertion from the first one. By Lemma 3.1.3, there is a constant A>0 independent of R

and S such that u(θ)+A|θ|2 is subharmonic. Since this function is radial (recall here that
% is radial; see the introduction), it decreases to u(0) when |θ| decreases to 0. Therefore,
the proposition is deduced from Lemma 3.1.5 below.

Lemma 3.1.5. There is a constant c>0 independent of R and S such that

|USθ
(R)−US(Rθ)|= |USθ

(R)−u(θ)|6 c|θ|

for θ∈∆∗.

Proof. Since R can be approximated by smooth forms in Ck−p+1, we may assume
that R is smooth. Then, we may also assume that S is smooth. Indeed, the following
estimates are uniform with respect to R and S. Let US be a smooth quasi-potential of
mean m of S with bounded mass. Define Uθy :=(τθy)∗US . We have

US(Rθ) =
∫

y

〈US , (τθy)∗R〉 d%(y) =
∫

y

〈Uθy, R〉 d%(y).

As in Lemma 2.3.11, we show that there is a quasi-potential U ′
θy of mean m of (τθy)∗(S)

such that ‖U ′
θy−Uθy‖C 2 .|θ|. We have

USθ
(R) =

∫
y

〈U ′
θy, R〉 d%(y).

The estimate on U ′
θy−Uθy implies that

|USθ
(R)−US(Rθ)|=

∣∣∣∣∫
y

〈U ′
θy−Uθy, R〉d%(y)

∣∣∣∣ . |θ|.

The proof is complete.
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Proposition 3.1.6. There is a sequence of smooth forms {Sn}n>0 in Cp with super-
potentials Un of mean mn such that

• supp(Sn) converge to supp(S);
• Sn converge to S and mn!m;
• {Un}n>0 is a decreasing sequence;

Moreover , if Sn, mn and Un satisfy the last two properties, then Un(R) converge to
u(0). In particular , if R is a smooth form in Ck−p+1, then Un(R) converge to US(R).

Proof. Consider Sn :=Sθn
, where {θn}n>0 is a sequence in ∆∗ such that |θn| decrease

to 0 and that
∑∞

n=0 |θn| is finite. Define

mn := m+A|θn|2+2c

∞∑
j=n

|θj |,

where c and A are the constants introduced in Lemma 3.1.5 and in the proof of Propo-
sition 3.1.4. It is clear that Sn!S, supp(Sn)!supp(S) and mn!m. Define

Un := USn +mn−m.

This is the super-potential of mean mn of Sn. Lemma 3.1.5 implies that

Un(R)−Un+1(R) >USn
(R)−USn+1(R)+A(|θn|2−|θn+1|2)+2c|θn|

> [u(θn)+A|θn|2]−[u(θn+1)+A|θn+1|2].

We have seen that u(θ)+A|θ|2 is radial subharmonic and decreases to u(0) when |θ|
decreases to 0. Hence, {Un}n>0 is decreasing. This implies the first assertion of the
proposition.

For the second assertion, we show that un(0) converge to u(0). Observe that, by
definition, Un converge to US on smooth forms R in Ck−p+1. Define un(θ):=Un(Rθ).
Hence, un converge to u pointwise on ∆∗. On the other hand, Lemma 3.1.3 implies
that (un+A|θ|2) is a decreasing sequence of subharmonic functions for A large enough.
Hence, it converges pointwise to a subharmonic function. We deduce that un(0) converge
to u(0). This completes the proof.

Corollary 3.1.7. US can be extended in a unique way to an affine u.s.c. function
on Ck−p+1 with values in R∪{−∞}, also denoted by US, such that

US(R) = lim
θ!0

USθ
(R) = lim

θ!0
US(Rθ).

In particular, we have

US(R) = lim sup
R′!R

US(R′) with R′ smooth.

Moreover , if c is the constant in Lemma 3.1.2, then US 6m+c, independently of S.
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Proof. Proposition 3.1.6 implies that the decreasing limit of USn
is an extension of

US . Denote also this extension by US . Since USn are affine and continuous, US is affine
and u.s.c. with values in R∪{−∞}. In particular, we have

US(R) > lim sup
R′!R

US(R′) with R′ smooth.

Proposition 3.1.6 implies also that US(R)=u(0). By Proposition 3.1.4 and Lemma 3.1.5,
we have

US(R) = u(0) = lim
θ!0

u(θ) = lim
θ!0

US(Rθ) = lim
θ!0

USθ
(R).

The second limit is bounded above by

lim sup
R′!R

US(R′) with R′ smooth.

It follows that
US(R) = lim sup

R′!R
US(R′) with R′ smooth.

The uniqueness of the extension of US is clear. The inequality US 6m+c is a consequence
of Lemma 3.1.2.

Definition 3.1.8. We call US the super-potential of mean m of S.

It is clear that if US is the super-potential of mean m of S, then the super-potential
of mean m′ of S is equal to US +m′−m. The following result applied to I=∅, shows
that the super-potentials determine the currents.

Proposition 3.1.9. Let I be a compact subset in Pk with (2k−2p)-dimensional
Hausdorff measure 0. Let S and S′ be currents in Cp, with super-potentials US and US′ .
If US =US′ on smooth forms in Ck−p+1 with compact support in Pk\I, then S=S′.

Proof. If R is a current in Ck−p+1 with compact support in Pk\I, then Rθ has
compact support in Pk\I for θ small enough. On the other hand, since Rθ is smooth,
we have

US(R) = lim
θ!0

US(Rθ) = lim
θ!0

US′(Rθ) = US′(R).

Hence, US =US′ on every current R with compact support in Pk\I. The hypothesis on
the Hausdorff measure of I implies that a generic projective subspace P of dimension
p−1 does not intersect I. We can write ωk−p+1 as an average of currents [P ]. Since
US =US′ at [P ] and since US and US′ are affine, they are equal at ωk−p+1. Hence, US

and US′ have the same mean. We may assume that this mean is 0.
If K is compact in Pk\I, using an average of [P ], we may construct a smooth form

R1 in Ck−p+1 with compact support in Pk\I which is strictly positive on K. We show
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that S=S′ on K. Let Φ be a smooth (k−p, k−p)-form with compact support on K.
If c>0 is a large enough constant, cR1+ddcΦ is a positive closed form of mass c since
it is cohomologous to cR1. We can write cR1+ddcΦ=cR2 with R2∈Ck−p+1. We have
US(R1)=US′(R1) and US(R2)=US′(R2). If US is a quasi-potential of mean 0 of S, we
have

〈S, Φ〉= 〈S−ωp, Φ〉+〈ωp, Φ〉= 〈ddcUS , Φ〉+〈ωp, Φ〉= 〈US , ddcΦ〉+〈ωp, Φ〉

= 〈US , cR2−cR1〉+〈ωp, Φ〉= cUS(R2)−cUS(R1)+〈ωp, Φ〉.

The current S′ satisfies the same identity. We deduce that 〈S, Φ〉=〈S′, Φ〉. Hence, S=S′

on K. It follows that S=S′ on Pk\I. The hypothesis on the Hausdorff measure of I

implies that S and S′ have no mass on I [37]. Therefore, S=S′ on Pk.

3.2. Properties of super-potentials

The following proposition extends Lemma 3.1.3. It shows that in some sense super-
potentials can be considered as quasi-psh functions on Ck−p+1. In particular, they inherit
the compactness property of Cp.

Proposition 3.2.1. Let {Rx}x∈X be any special structural variety in Ck−p+1 and let
α be the associated curvature. Then, either US(Rx)=−∞ for every x∈X or x 7!US(Rx)
is a quasi-psh function on X such that ddcUS(Rx)>−α.

Proof. By Proposition 3.1.6, it is enough to consider the case where S is smooth.
The proof is the same as in Lemma 3.1.3. Let R, πX and π be as in §2.4. Then,
x 7!US(Rx) is continuous and we have

US(Rx) = (πX)∗(R∧π∗(US)),

which implies that

ddcUS(Rx) = (πX)∗(R∧π∗(ddcUS)) >−(πX)∗(R∧π∗(ωp)) =−α.

This completes the proof.

The following result is the analogue of the classical Hartogs lemma for psh functions;
see also Proposition 2.2.3.

Proposition 3.2.2. Let {Sn}n>0 be a sequence in Cp converging to a current S. Let
USn (resp. US) be the super-potential of mean mn (resp. m) of Sn (resp. S). Assume
that mn converge to m. Let U be a continuous function on a compact subset K of
Ck−p+1 such that US <U on K. Then, for n large enough, we have USn <U on K. In
particular , we have lim supn!∞ USn 6US on Ck−p+1.
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Proof. Recall that US is u.s.c., U is continuous and Ck−p+1 is compact. The propo-
sition can be applied to K=Ck−p+1. Assume that there are currents Rn in K such that
USn(Rn)>U (Rn). Extracting a subsequence allows one to assume that Rn converge to
a current R in K. Let {Rn,θ}θ∈∆ be the special structural disc associated with Rn con-
structed as in §2.1 and §2.5. Define un(θ):=USn(Rn,θ). Proposition 3.2.1 implies that
un is quasi-subharmonic and ddcun>−α with α as in Lemma 2.5.3. The first assertion of
Proposition 2.1.6 implies that un converge pointwise to u(θ):=US(Rθ) on ∆∗. It follows
from the Hartogs lemma for subharmonic functions that

US(R) = u(0) > lim sup
n!∞

un(0) = lim sup
n!∞

USn
(Rn) >U (R).

This is a contradiction. The proof of the first assertion is complete. Taking K={R} and
U (R)=US(R)+ε gives the second assertion.

Definition 3.2.3. Let Sn, S, USn
, US , mn and m be as in Proposition 3.2.2. If

USn >US for every n, then we say that Sn converge to S in the Hartogs sense, or Sn

H-converge to S for short. If a current S′ in Cp admits a super-potential US′ such that
US′>US , we say that S′ is more H-regular than S or simply S′ is more diffuse than S.

Remarks 3.2.4. By Lemma 3.2.5 below, the property that USn
converge pointwise

to US implies that mn!m and Sn!S. If Sn H-converge to S as in Definition 3.2.3 then,
by Proposition 3.2.2, we have that USn!US pointwise. If USn decrease to US , then Sn

H-converge to S; see also Corollary 3.2.7 below. We have seen in Proposition 3.1.6 that
Sθ H-converge to S when θ!0.

Lemma 3.2.5. Let {Sn}n>0 be a sequence in Cp and USn
be super-potentials of mean

mn of Sn. Assume that USn converge to a finite function U on smooth forms in Ck−p+1.
Then, mn converge to a constant m, Sn converge to a current S and U is equal to the
super-potential of mean m of S on smooth forms in Ck−p+1.

Proof. We have mn=USn
(ωk−p+1). Hence, mn converge to m:=U (ωk−p+1). Let S

and S′ be limit currents of {Sn}n>0. From the definition of super-potential, we deduce
that the super-potentials of mean m of S and of S′ are equal to U on smooth forms in
Ck−p+1. By Proposition 3.1.9, S=S′. Hence, {Sn}n>0 is convergent.

We now give a compactness property of super-potentials.

Proposition 3.2.6. Let USn be a super-potential of a current Sn in Cp. Assume
that {USn}n>0 is bounded from above and does not converge uniformly to −∞. Then,
there is an increasing sequence {nj}j>0 of integers such that Snj converge to a current S

and USnj
converge on smooth forms in Ck−p+1 to a super-potential US of S. Moreover ,

lim sup
j!∞

USnj
6US .



32 t.-c. dinh and n. sibony

Proof. By the last assertion in Corollary 3.1.7, since {USn
}n>0 is bounded from

above and does not converge to −∞, their means mn are bounded from above uniformly
with respect to n and do not converge to −∞. Extracting a subsequence allows one to
assume that Sn converge to a current S and mn converge to a finite value m. So, we
may assume that mn=m=0. Let US denote the super-potential of mean 0 of S. By
the definition of US(R) for R smooth, we have that USn(R)!US(R). The inequality
lim supj!∞ USnj

6US is a consequence of Proposition 3.2.2.

Corollary 3.2.7. Let USn be super-potentials of mean mn of Sn. Assume that
USn decrease to a function U which is not identically −∞. Then, Sn converge to a
current S, mn converge to a constant m and U is the super-potential of mean m of S.

Proof. By Lemma 3.2.5, Sn converge to a current S and mn converge to a con-
stant m. Define u(θ):=U (Rθ) and un(θ):=USn(Rθ). As in Proposition 3.1.6, the func-
tions un are quasi-subharmonic and decrease to u. Hence, u is quasi-subharmonic. On the
other hand, since Rθ is smooth for θ 6=0, we have that u(θ)=US(Rθ) for θ 6=0, where US is
the super-potential of mean m of S. The function θ 7!US(Rθ) is also quasi-subharmonic
on ∆. So, we necessarily have US(R)=u(0)=U (R). This holds for every R in Ck−p+1.
Therefore, U is the super-potential of mean m of S.

Corollary 3.2.8. Let US and UR be super-potentials of the same mean m of S

and R, respectively. Then, US(R)=UR(S).

Proof. We have seen in the proof of Lemma 3.1.1 that the corollary holds for
smooth S. Let Sn be smooth forms as in Proposition 3.1.6. The upper semi-continuity
implies that

US(R) = lim
n!∞

USn(R) = lim
n!∞

UR(Sn) 6UR(S).

In the same way, we prove that UR(S)6US(R).

Lemma 3.2.9. Let S and S′ be currents in Cp, and let US and US′ be their super-
potentials of mean m. Assume that there is a positive (p−1, p−1)-current U such that
ddcU =S′−S. Then, US′+‖U‖>US. In particular , if S has bounded super-potentials,
then S′ has bounded super-potentials. If UR is a super-potential of a current R∈Ck−p+1,
then UR(S′)+‖U‖>UR(S).

Proof. Let US be a quasi-potential of mean m of S. Then, US +U is a quasi-potential
of mean m+‖U‖ of S′. For R smooth, we have

US′(R)+‖U‖= 〈US +U,R〉> 〈US , R〉= US(R).

Then, Corollaries 3.1.7 and 3.2.8 imply the result.
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We have the following important result which can be considered as a version of
Lemma 2.2.1 for super-potentials. We can apply it to K=W =Pk.

Proposition 3.2.10. Let W⊂Pk be an open set and K⊂W be a compact set. Let
S be a current in Cp with support in K and R be a current in Ck−p+1. Assume that the
restriction of R to W is a bounded form. Then, the super-potential US of mean 0 of S

satisfies

|US(R)|6 c(1+log+ ‖R‖∞,W ),

where c>0 is a constant independent of S and R, and log+ :=max{0, log}.

Proof. Recall that u(θ):=US(Rθ) is a quasi-subharmonic function on ∆ such that
ddcu>−α. By Proposition 2.1.6, the family of these functions u for (S, R)∈Cp×Ck−p+1

is compact. So, Lemma 2.2.1 implies that ‖e−Au‖L 1(∆1/2)6c for some positive constants
c and A.

Suppose that the estimate in the lemma is not valid. Recall that US is bounded from
above by a constant independent of S. Then, for ε>0 arbitrarily small, there is an R such
that M :=log ‖R‖∞,W�0 and US(R)6−2M/ε. It follows that u(0)=US(R)6−2M/ε.
We will show that u(θ)6−M/ε on a disc of radius e−M , which contradicts the above
estimate on e−Au for ε small enough.

Let U be the Green quasi-potential of R and let m be its mean. The mass of U is
bounded by a constant independent of R. By Lemma 2.3.11, there is a quasi-potential
U ′

θy of Rθy of mean m such that

‖U ′
θy−(τθy)∗(U)‖∞ . |θ|.

We deduce that

|US(Rθ)−US(R)|=
∣∣∣∣∫

y

〈S, U ′
θy−U〉 d%(y)

∣∣∣∣ . |θ|+
∣∣∣∣∫

y

〈S, (τθy)∗(U)−U〉 d%(y)
∣∣∣∣.

Because θ is small, τ−1
θy (K)⊂W ′ for some fixed open set W ′bW . Since τθy is close to

the identity, using Lemma 2.3.5, we obtain

‖(τθy)∗(U)−U‖∞,K . |θ| ‖U‖C 1(W ′) . |θ|eM .

Therefore,

|u(θ)−u(0)|= |US(Rθ)−US(R)|. |θ|eM .

This implies the above claim and completes the proof.
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3.3. Currents with regular super-potentials

The PB or PC currents are introduced in [17], [19] and [21] in the study of holomorphic
dynamical systems. They correspond to currents with bounded or continuous super-
potentials. We first recall the definition of the space DSHk−p(Pk) of dsh currents. A
real (k−p, k−p)-current Φ of finite mass is dsh if there are positive closed currents R±

of bidegree (k−p+1, k−p+1) such that(1) ddcΦ=R+−R−. Define

‖Φ‖DSH := ‖Φ‖+min ‖R±‖

with R± as above. We consider a weak topology on DSHk−p(Pk). A sequence {Φn}n>0

converges to Φ in DSHk−p(Pk) if Φn!Φ in the sense of currents and ‖Φn‖DSH is uniformly
bounded. A positive closed (p, p)-current S is said to be PB if there is a constant c>0
such that

|〈S, Φ〉|6 c‖Φ‖DSH

for smooth real forms Φ of bidegree (k−p, k−p). We say that S is PC if it can be
extended to a linear form on DSHk−p(Pk) which is continuous with respect to the weak
topology on DSHk−p(Pk).

Proposition 3.3.1. If a super-potential US of S is finite everywhere, then it is
bounded. A current S is PB if and only if the super-potentials of S are bounded. A
current S is PC if and only if the super-potentials of S are continuous.

Proof. Subtracting a constant from US , we may assume US 60. Assume that US is
unbounded. Then, there are currents Rn such that US(Rn)6−2n. Set R:=

∑∞
n=0 2−nRn.

Since US is affine and negative, we have that US(R)6
∑N

n=0 2−nUS(Rn) for every N .
Hence, US(R)=−∞. This is a contradiction. So, US is bounded. Note that this property
is false for quasi-psh functions on Pk.

Assume that the super-potential US of mean 0 of S satisfies |US |<M for some
constant M>0. Consider a real smooth form Φ of bidegree (k−p, k−p) and a constant
A>‖Φ‖DSH. We will prove that |〈S, Φ〉|6A(1+2C+2M) with C>0 independent of S.
This implies that S is PB. Since we can approximate S in the Hartogs sense by smooth
forms, it is enough to prove this inequality for smooth S. Write ddcΦ=A(R+−R−) with
‖R±‖=1. By Remark 2.3.4, there are quasi-potentials U± of mean 0 of R± such that
‖U±‖DSH6C, where C>0 is a constant. Define Ψ:=Φ−AU++AU−. Then ddcΨ=0 and

‖Ψ‖6 ‖Φ‖+A‖U+‖+A‖U−‖6A(1+2C).

(1) It is also useful to consider the space generated by such currents Φ which are negative. This is
necessary in order to defined the pull-back of dsh currents by holomorphic maps.
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As ddcΨ=0 and since S is cohomologous to ωp, we have

|〈S, Ψ〉|= |〈ωp, Ψ〉|6A(1+2C).

It follows that

|〈S, Φ〉|6 |〈S, Ψ〉|+A|〈S, U+〉|+A|〈S, U−〉|

= |〈S, Ψ〉|+A|US(R+)|+A|US(R−)|6A(1+2C+2M).

Hence, S is PB.
Conversely, if S is PB, we show that US is bounded. Consider a smooth form R in

Ck−p+1. Let UR be a quasi-potential of R of mean 0 such that ‖UR‖DSH6C. We have
US(R)=〈S, UR〉. Since S is PB, US(R) is bounded by a constant independent of R. This
implies that US is bounded.

It is clear that if S is PC, 〈S, UR〉 for smooth R can be extended to a continuous
function on Ck−p+1. Indeed, we can choose UR depending continuously on R with respect
to the weak topology in DSHk−p(Pk); see Theorem 2.3.1 and Remark 2.3.4. This implies
that US is continuous. Conversely, if US is continuous, we show that S is PC. If Φ and
R± are smooth as above, we obtain

〈S, Φ〉= 〈ωp, Ψ〉+AUS(R+)−AUS(R−).

The right-hand side depends on Ψ and on AR+−AR−=ddcΦ but not on the choice of
A and R±. Hence, since Ψ and ddcΦ depend continuously on Φ, we can extend S to
a continuous linear form on DSHk−p(Pk). The continuity is with respect to the weak
topology on DSHk−p(Pk). This completes the proof.

Lemma 3.3.2. If S is a form of class L s with s>k, then S has continuous super-
potentials.

Proof. Let r be the positive number such that 1/r+1/s=1. Then, r<k/(k−1). The
Green quasi-potential UR of R is a form of class L r. Moreover, with respect to the L r

topology, it depends continuously on R, see Theorem 2.3.1. The mean mR of UR depends
continuously on R. On the other hand, the super-potential of mean 0 of S satisfies

US(R) = 〈S, UR〉−mR

for smooth R. The right-hand side is defined for every R and depends continuously on
R. Therefore, UR is continuous.

Remark 3.3.3. UR is in the Sobolev space W 1,r with r<2k/(2k−1). So, we can
assume that S∈W−1,s with 1/r+1/s=1, and still US is continuous.
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Proposition 3.3.4. Let S and S′ be currents in Cp such that S′6cS for some posi-
tive constant c. If S has bounded super-potentials, then S′ has bounded super-potentials.
If S has continuous super-potentials, then S′ has continuous super-potentials.

Proof. Write S=λS′+(1−λ)S′′ with 0<λ61 and S′′ being a current in Cp. Let US ,
US′ and US′′ denote the super-potentials of mean 0 of S, S′ and S′′. By the definition
of super-potentials, we have λUS′+(1−λ)US′′=US on smooth forms R. Corollary 3.1.7
implies that this equality holds for every R. Since US′′ is bounded from above, if US is
bounded, it is clear that US′ is bounded. If US is continuous, as US′ and US′′ are u.s.c.,
they are continuous.

Proposition 3.3.5. Let S be a current with bounded super-potentials. Then, S has
no mass on pluripolar sets of Pk. In particular , S does not give mass to proper analytic
subsets of Pk.

Proof. Assume that S has bounded super-potentials. Let E⊂Pk be a pluripolar
set and u be a quasi-psh function such that ddcu>−ω and E⊂{z :u(z)=−∞}. Define
R:=(ddcu+ω)∧ωk−p. This is a current in Ck−p+1.

Let {un}n>0 be a sequence of smooth functions decreasing to u and such that
ddcun>−ω. Define Rn :=(ddcun+ω)∧ωk−p. Observe that unωk−p are quasi-potentials
of mean mn :=

∫
unωk of Rn. If US is the super-potential of mean m:=

∫
uωk of S, then

〈S, unωk−p〉 decrease to US(R). Hence, US(R)=〈S, uωk−p〉. Since S has bounded super-
potentials, 〈S, uωk−p〉 is finite. It follows that S has no mass on {z :u(z)=−∞}.

Proposition 3.3.6. Assume that S admits a super-potential which is α-Hölder con-
tinuous with respect to the distance dist1 on Ck−p+1 for some exponent α61. Let σS

denote the trace measure of S. There is a constant c>0 such that if Br is a ball of
radius r, then σS(Br)6cr2k−2p+α. In particular , S has no mass on Borel subsets of Pk

with Hausdorff dimension less than 2(k−p)+α.

Using Lemma 2.1.2, we deduce analogous results for a general distance distβ on
Ck−p+1. Note that the last assertion in the proposition is deduced from the first one and
some classical arguments. In order to prove the first assertion, it is enough to consider
r small. So, we may assume that Br is a ball of center 0 in an affine chart Ck⊂Pk. It is
sufficient to show that

∫
∆k

r
S∧ωk−p.r2k−2p+α. Let z denote the canonical coordinates

in Ck.

Lemma 3.3.7. There are positive constants A and c independent of r, a positive
(k−p, k−p)-current Φ and two currents R± in Ck−p+1 such that Φ>(ddc|z|2)k−p on
∆k

r , ‖Φ‖6Ar2k−2p+2, ddcΦ=cr2k−2p(R+−R−) and dist1(R+, R−)6Ar.
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Proof. Observe that (ddc|z|2)k−p is a combination of the forms

(idzj1∧dz̄j1)∧...∧(idzjk−p
∧dz̄jk−p

).

Without loss of generality, one only has to construct Φ and R± satisfying the last three
properties in the lemma and the inequality

Φ > (idz1∧dz̄1)∧...∧(idzk−p∧dz̄k−p)

on ∆k
r . Taking a combination of such currents gives currents satisfying the lemma.
Let χ be a smooth cut-off function with compact support in ∆k

2 , equal to 1 on ∆k
1 .

Let v(zk−p+1) be a smooth function with support in {zk−p+1 :|zk−p+1|<2r} such that
06v61, ‖v‖C 1 .r−1, ‖v‖C 2 .r−2 and v=1 on {zk−p+1 :|zk−p+1|6r}. Let π: Ck!Ck−p

and π′: Ck!Ck−p+1 denote the canonical projections on the first factors of Ck. Consider
the restriction Θ of idz1∧dz̄1∧...∧idzk−p∧dz̄k−p to ∆k−p

r and define

Φ := v(zk−p+1)χ(z)π∗(Θ).

Then, Φ satisfies the desired lower estimate on ∆k
r . We have to check the last three

properties in the lemma.
Since π can be extended to a rational map from Pk to Pk−p, π∗(Θ) can be extended

to a positive closed current on Pk of mass ‖Θ‖'r2k−2p. Moreover, Cauchy–Schwarz’s
inequality implies that

−ddc[v(zk−p+1)χ(z)] . r−2idzk−p+1∧dz̄k−p+1+ω.

Denote by Θ′ the restriction of idz1∧dz̄1∧...∧idzk−p+1∧dz̄k−p+1 to ∆k−p
r ×∆2r and let

Ω− := λ(π′)∗(r−2Θ′)+λω∧π∗(Θ)

with λ>0 large enough independent of r. Then, Ω+ :=Ω−+ddcΦ is positive and closed.
We have ddcΦ=Ω+−Ω−. The currents Ω± can be extended to positive closed currents
on Pk. They have the same mass since they are cohomologous. This mass is of order
r2k−2p and we denote it by cr2k−2p. We obtain

ddcΦ = cr2k−2p(R+−R−)

with R± :=c−1r2p−2kΩ±. The currents R+ and R− are in Ck−p+1. We want to bound
dist1(R+, R−). For any test form Ψ with ‖Ψ‖C 1 61, we have

|〈R+−R−, Ψ〉|' r2p−2k|〈ddcΦ, Ψ〉|= r2p−2k|〈dcΦ, dΨ〉|. r2p−2k‖dcΦ‖.

On the other hand, we deduce from the definition of Φ that

‖dcΦ‖. r2k−2p‖dcv‖∆2r . r2k−2p+1.

This implies the result.
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End of the proof of Proposition 3.3.6. Let US be a super-potential of S. Since US

is α-Hölder continuous, we deduce from the previous lemma that∫
∆k

r

S∧ωk−p 6 〈S, Φ〉= 〈ωp, Φ〉+〈ddcUS , Φ〉= 〈ωp, Φ〉+〈US , ddcΦ〉

. 〈ωp, Φ〉+r2k−2p(US(R+)−US(R−)) . r2k−2p+α.

This is the required estimate.

3.4. Capacity of currents and super-polar sets

We will define a notion of capacity for Borel subsets E of Ck−p+1. This capacity does
not describe how “big” the set E is, but rather how singular the currents in E are. The
definition mimics the notion of capacity that we introduced in [21] for compact Kähler
manifolds. Let

Pp :=
{

US super-potential of S ∈Cp : max
Ck−p+1

US = 0
}

.

Definition 3.4.1. We define the capacity of E to be the following quantity:

cap(E) := inf
U ∈Pp

exp
(

sup
R∈E

U (R)
)
.

It is clear that the capacity is increasing as a set function. Propositions 3.1.6
and 3.2.2 imply that, when E is compact, in the previous definition we obtain the same ca-
pacity if we only consider super-potentials of smooth forms. We also have cap(Ck−p+1)=1
and it follows that the set of smooth forms in Ck−p+1 has capacity 1. Dense subsets of
smooth forms in Ck−p+1 also have capacity 1. So, there is a countable subset of Ck−p+1

with capacity 1.

Definition 3.4.2. We say that E is super-polar or completely super-polar in Ck−p+1

if there is a super-potential US of a current S in Cp such that

E⊂{R : US(R) =−∞} or E = {R : US(R) =−∞},

respectively.

Let Ê be the barycentric hull of E, i.e. the set of currents
∫

R dν(R), where ν is
a probability measure on Ck−p+1 such that ν(E)=1. Denote by Ẽ the set of currents
cR+(1−c)R′ with R∈Ê, R′∈Ck−p+1 and 0<c61. Then, Ẽ and Ê are convex.
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Proposition 3.4.3. The following properties are equivalent :
(1) E is super-polar in Ck−p+1;
(2) Ê is super-polar in Ck−p+1;
(3) Ẽ is super-polar in Ck−p+1;
(4) cap(E)=0.
Moreover , a countable union of super-polar sets is super-polar , completely super-

polar sets are convex and cap(E)=cap(Ê).

Proof. Since every function U in Pp is affine and negative, if U is equal to−∞ on E,
it is also equal to−∞ on Ê and Ẽ. Therefore, the first three properties are equivalent. We
also deduce that if E is completely super-polar, then E is convex and E=Ẽ. Moreover,
for any U we have supE U =supÊ U . This implies that cap(E)=cap(Ê).

It is clear that if E is super-polar, then cap(E)=0. Assume that cap(E)=0. We
show that E is super-polar. There are super-potentials USn

of Sn such that max USn
=0

and USn 6−2n on E. Corollary 3.1.7 implies that the means of USn are bounded. This
and Corollary 3.2.7 imply that U =

∑∞
n=1 2−nUSn is a super-potential of

∑∞
n=1 2−nSn.

It is equal to −∞ on E. Hence, E is super-polar. A similar argument implies that a
countable union of super-polar sets is super-polar.

Proposition 3.4.4. Let E⊂Ck−p+1 be a compact set. Then, E has positive capac-
ity if and only if its barycentric hull contains a current with bounded super-potentials.
Moreover , there is a current R in the barycentric hull Ê of E such that its super-potential
of mean 0 satisfies

UR > log cap(E) on Cp.

Proof. If R is a current with bounded super-potentials, then, by symmetry, U (R) 6=
−∞ for every U ∈Pp. Proposition 3.4.3 implies that {R} is not super-polar. Hence, if
Ê contains a current with bounded super-potentials, Ê has positive capacity. Proposi-
tion 3.4.3 also implies that E has positive capacity. Now, assume that E has positive
capacity. We show that Ê contains a current with bounded super-potentials. In what
follows, the symbol U denotes a super-potential of mean 0. We have

inf
S∈Cp

sup
R∈Ê

US(R) >M := log cap(E).

The function US(R) is affine in both variables R and S. Hence, for every convex compact
set C of continuous forms in Cp, the minimax theorem [46] implies that

sup
R∈Ê

inf
S∈C

US(R) = inf
S∈C

sup
R∈Ê

US(R) >M.
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Consider an increasing sequence of compact sets {C j} and define

Ej := {R∈ Ê : US(R) >M−1/j for every S ∈C j}.

So, {Ej} is a decreasing sequence of compact sets. Take an element R in the intersection
of Ej . If C j are chosen so that their union is dense in Cp, then UR(S)=US(R)>M for
every S∈Cp. This completes the proof.

Consider the set of the super-potentials U of mean 0 of currents in Cp and define
ck,p :=supS∈Cp

max US . Corollary 3.1.7 implies that this constant is finite.

Corollary 3.4.5. For every current R in Ck−p+1, if UR is the super-potential of
mean 0 of R, then

log cap(R) > inf
Cp

−ck,p+UR.

Proof. Let US be the super-potential of mean 0 of S. By the definition of capacity
and of ck,p, we have

log cap(R) >
[

inf
S∈Cp

US(R)−ck,p

]
.

Corollary 3.2.8 implies the result.

Corollary 3.4.6. For every r>k, there is a constant c>0 such that if R is a form
in Ck−p+1 with coefficients in L r, then

log cap(R) >−ck,p−c‖R‖L r .

Proof. Let s be the positive number such that 1/r+1/s=1. Then, s<k/(k−1). Let
US be the Green quasi-potential of S. This is a negative form with L s norm bounded
uniformly with respect to S. Hence,

UR(S) > 〈US , R〉>−c‖R‖L r

for some constant c>0. We obtain the result from Corollary 3.4.5.

The following result is a consequence of Proposition 3.2.10.

Corollary 3.4.7. There are constants c>0 and λ>0 such that for every bounded
form R in Ck−p+1,

cap(R) > c‖R‖−λ
∞ .
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4. Theory of intersection of currents

In this section, we develop the theory of intersection for positive closed currents of arbi-
trary bidegree. The method can be extended to currents on compact Kähler manifolds
or in some local situation; see also [22]. Here, for simplicity, we only consider currents in
the projective space.

4.1. Some universal super-functions

Let p be an integer with 16p6k. Define a universal function Up on Cp×Ck−p+1 by

Up(S, R) := US(R) = UR(S),

where US and UR are super-potentials of mean 0 of S and R; see Corollary 3.2.8. We
have seen that, when S is fixed, Up is quasi-psh on special varieties of Ck−p+1, and when
R is fixed, it is quasi-psh on special varieties of Cp.

Lemma 4.1.1. The function Up is u.s.c. on Cp×Ck−p+1.

Proof. Let Sn be currents in Cp converging to S and Rn be currents in Ck−p+1

converging to R. Let USn denote the super-potential of mean 0 of Sn. Choose U

continuous with US <U . By Proposition 3.2.2, for n large enough, USn <U and hence
USn(Rn)<U (Rn). We then get

lim sup
n!∞

USn(Rn) 6U (R).

Since U is arbitrary, we deduce that

lim sup
n!∞

USn(Rn) 6US(R).

This proves the lemma.

Lemma 4.1.2. Let S′ and R′ be currents in Cp and Ck−p+1, and let US′ and UR′

be their super-potentials of mean 0. Assume that there are constants a and b such that
US′+a>US and UR′+b>UR. Then, Up(S′, R′)>Up(S, R)−a−b.

Proof. We have

Up(S, R′) = UR′(S) >UR(S)−b = Up(S, R)−b

and
Up(S′, R′) = US′(R′) >US(R′)−a = Up(S, R′)−a.

This implies the result.
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Lemma 4.1.3. Let {Sn}n>0 and {Rn}n>0 be sequences of currents in Cp and Ck−p+1

H-converging to S and R, respectively. Then, Up(Sn, Rn) converge to Up(S, R). More-
over , if Up(S, R) is finite, then Up(Sn, Rn) is finite for every n.

Proof. Let USn
and URn

be the super-potentials of mean 0 of Sn and Rn, respec-
tively. The H-convergence implies the existence of constants an and bn with limit 0, such
that USn +an>US and URn +bn>UR. It follows from Lemma 4.1.1 that

lim sup
n!∞

Up(Sn, Rn) 6Up(S, R).

It is sufficient to prove that

Up(Sn, Rn) >Up(S, R)−an−bn.

This is a consequence of Lemma 4.1.2.

4.2. Intersection of currents

Let pj , 16j6l, be positive integers such that p1+...+pl6k. Let Rj be currents in Cpj

with 16j6l. We want to define the wedge-product R1∧...∧Rl, as a current. In general,
one cannot define this product in a consistent way; for example, when R1 and R2 are
currents of integration on the same projective line of P2. We will define the intersection
of the Rj ’s when they satisfy a quite natural condition. Consider first the case of two
currents, i.e. l=2.

Proposition 4.2.1. The following conditions are equivalent and are symmetric with
respect to R1 and R2:

(1) Up1(R1, R2∧Ω) is finite for at least one smooth form Ω in Ck−p1−p2+1;
(2) Up1(R1, R2∧Ω) is finite for every smooth form Ω in Ck−p1−p2+1;
(3) there are sequences {Rj,n}n>0 in Cpj converging to Rj , and a smooth form Ω

in Ck−p1−p2+1 such that Up1(R1,n, R2,n∧Ω) is bounded.

Proof. It is clear that the second condition implies the third one: we can choose
Rj,n=Rj ; and the third condition implies the first one because Up1 is u.s.c. Assume
the first condition. We show that Up1(R1, R2∧Ω′) is finite for every smooth form Ω′ in
Ck−p1−p2+1. Write Ω′−Ω=ddcU with U smooth. Adding a large positive closed form
to U , we may assume that U is positive. If V is a quasi-potential of R2∧Ω, then the
quasi-potential V +R2∧U of R2∧Ω′ is larger than V . Lemmas 3.2.9 and 4.1.2 imply that
Up1(R1, R2∧Ω′) is finite. Therefore, the three previous conditions are equivalent.
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It remains to prove that the first condition is symmetric. We may assume that
Ω=ωk−p1−p2+1. Consider the case where R1 is smooth. If U2 is a quasi-potential of
mean 0 of R2, then U2∧Ω is a quasi-potential of mean 0 of R2∧Ω. We have

Up1(R1, R2∧Ω) = 〈R1, U2∧Ω〉= 〈U2, R1∧Ω〉= Up2(R2, R1∧Ω).

Suppose now that R1 is arbitrary. Let R1,θ be the smooth forms constructed in §2.1,
starting with the current R1. We have

Up1(R1, R2∧Ω) = lim
θ!0

Up1(R1,θ, R2∧Ω) = lim
θ!0

Up2(R2, R1,θ∧Ω) 6Up2(R2, R1∧Ω),

since Up2 is u.s.c. In the same way, we obtain Up2(R2, R1∧Ω)6Up1(R1, R2∧Ω). Hence,
Up2(R2, R1∧Ω)=Up1(R1, R2∧Ω). This implies the symmetry of the first condition in
the proposition.

Definition 4.2.2. We say that R1 and R2 are wedgeable if they satisfy the conditions
in Proposition 4.2.1.

Note that for R1 fixed, the set of R2 such that R1 and R2 are not wedgeable is a
super-polar set in Cp2 . Indeed, this is the set of R2 such that U (R2)=−∞, where U

is a super-potential of R1∧ωk−p1−p2+1. So, R1 is wedgeable for every R2 if and only if
R1∧ωk−p1−p2+1 has bounded super-potentials.

Proposition 4.2.3. Let Rj and R′
j be currents in Cpj

, j=1, 2. Assume that R1

and R2 are wedgeable. Then, R′
1 and R′

2 are wedgeable in the following cases:
(1) R′

j is more diffuse than Rj for j=1, 2;
(2) there is a constant c>0 such that R′

j 6cRj for j=1, 2.

Proof. The first assertion is a consequence of Lemma 4.1.2. For the second one, it
is enough to show that R1 and R′

2 are wedgeable. Then, in the same way, R′
1 and R′

2 are
wedgeable. Write R2=λR′

2+(1−λ)R′′
2 with 0<λ61 and R′′

2∈Cp2 . From the fact that
Up1 is affine, we obtain that

λUp1(R1, R
′
2∧ωk−p1−p2+1)

= Up1(R1, R2∧ωk−p1−p2+1)−(1−λ)Up1(R1, R
′′
2∧ωk−p1−p2+1) 6=−∞,

since Up1(R1, R2∧ωk−p1−p2+1) 6=−∞ and Up1 is bounded from above. This proves the
property.

Assume that R1 and R2 are wedgeable. We define the wedge-product (or the inter-
section) R1∧R2. This will be a current of bidegree (p1+p2, p1+p2). For every smooth
real form Φ of bidegree (k−p1−p2, k−p1−p2), write ddcΦ=c(Ω+−Ω−), where Ω± are
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smooth forms in Ck−p1−p2+1 and c is a positive constant. First, consider the case where
R1 or R2 is smooth. So, R1∧R2 is defined. Let U1 be a quasi-potential of mean 0 of R1.
Choose U1 smooth if R1 is smooth. We have

〈R1∧R2, Φ〉= 〈ωp1∧R2, Φ〉+〈(R1−ωp1)∧R2, Φ〉

= 〈R2, ω
p1∧Φ〉+〈ddc(U1∧R2), Φ〉

= 〈R2, ω
p1∧Φ〉+〈U1∧R2, ddcΦ〉

= 〈R2, ω
p1∧Φ〉+cUp1(R1, R2∧Ω+)−cUp1(R1, R2∧Ω−).

We deduce that the last expression is independent of the choice of c and Ω±. This
formally justifies the following formula for wedgeable R1 and R2. Define

〈R1∧R2, Φ〉 := 〈R2, ω
p1∧Φ〉+cUp1(R1, R2∧Ω+)−cUp1(R1, R2∧Ω−). (4.1)

The following theorem justifies our definition.

Theorem 4.2.4. Assume that R1 and R2 are wedgeable. Then, the right-hand side
of (4.1) is independent of the choice of c and Ω±, and depends linearly on Φ. More-
over , R1∧R2 defines a positive closed (p1+p2, p1+p2)-current of mass 1 with support in
supp(R1)∩supp(R2) which depends linearly on each Rj and is symmetric with respect to
the variables.

Proof. First, observe that the linear dependence of Φ and of Rj are easily de-
duced from the properties of Up1 . Write ddcΦ=c̃(Ω̃+−Ω̃−) with c̃>0 and Ω̃± smooth in
Ck−p1−p2+1. We have

cΩ+−cΩ− = c̃Ω̃+−c̃Ω̃−.

Since Up1 is affine on each variable, we have

cUp1(R1, R2∧Ω+)−cUp1(R1, R2∧Ω−) = c̃Up1(R1, R2∧Ω̃+)−c̃Up1(R1, R2∧Ω̃−).

So, the right-hand side of (4.1) does not change if we replace c by c̃ and Ω± by Ω̃±.
Let Rj,θ be the currents constructed in §2.1 starting with the currents Rj ; they are

smooth for θ 6=0. Lemma 4.1.3 implies that Up1(R1,θ1 , R2,θ2∧Ω±) converge to

Up1(R1, R2∧Ω±)

when θj!0; see also Remarks 3.2.4. It follows that when θj!0 and (θ1, θ2) 6=(0, 0), the
currents R1,θ1∧R2,θ2 converge to R1∧R2. Hence, R1∧R2 is a positive closed current of
mass 1. Since supp(Rj,θ)!supp(Rj), R1∧R2 has support in supp(R1)∩supp(R2). We
also have that R1,θ1∧R2,θ2 =R2,θ2∧R1,θ1 , hence R1∧R2=R2∧R1.
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Lemma 4.2.5. Let Rj and R′
j be currents in Cpj . Assume that R1 and R2 are

wedgeable. If R′
j is more diffuse than Rj for j=1, 2, then R′

1∧R′
2 is more diffuse than

R1∧R2.

Proof. By Proposition 4.2.3, R′
1 and R2 are wedgeable. Theorem 4.2.4 shows that

R1∧R2, R′
1∧R2, R1∧R′

2 and R′
1∧R′

2 are well defined. We show that R′
1∧R2 is more

diffuse than R1∧R2. In the same way, we will get that R′
1∧R′

2 is more diffuse than
R′

1∧R2, which will complete the proof.
The symbols U and U below denote quasi-potentials and super-potentials of mean 0.

By hypothesis, there is a constant a such that UR′
1
+a>UR1 . Consider a smooth form

R in Ck−p1−p2+1 and choose UR smooth. Since ddcUR=R−ωk−p1−p2+1, we deduce from
(4.1) that

UR′
1∧R2(R) = 〈R′

1∧R2, UR〉= 〈R2, ω
p1∧UR〉+UR′

1
(R2∧R)−UR′

1
(R2∧ωk−p1−p2+1).

The same identity for R1∧R2 and the inequality UR′
1
+a>UR1 imply that

UR′
1∧R2(R)−UR1∧R2(R) >−a−UR′

1
(R2∧ωk−p1−p2+1)+UR1(R2∧ωk−p1−p2+1).

The last expression is finite and independent of R. Hence, using the regularization Rθ of
R for an arbitrary R in Ck−p1−p2+1, we deduce that UR′

1∧R2−UR1∧R2 is bounded below
by a constant. So, R′

1∧R2 is more diffuse than R1∧R2.

The following continuity result shows that the wedge-product is the right extension
to currents of the wedge-product of smooth forms.

Proposition 4.2.6. Let R1 and R2 be wedgeable currents as above and let Rj,n

be currents in Cpj H-converging to Rj , j=1, 2. Then R1,n and R2,n are wedgeable and
R1,n∧R2,n H-converge to R1∧R2.

Proof. Let Uj,n and Uj denote the super-potentials of mean 0 of Rj,n and Rj . Let
aj,n be constants converging to 0 such that Uj,n+aj,n>Uj . Define

εn := U1,n(R2∧ωk−p1−p2+1)−U1(R2∧ωk−p1−p2+1).

We have εn>−a1,n. Since U1(R2∧ωk−p1−p2+1) is finite, Proposition 3.2.2 implies that
lim supn!∞ εn60. So, εn!0. Define

K := {R1,1, R1,2, ... }∪{R1}

and
δn := sup

S∈K
|U2,n(S∧ωk−p1−p2+1)−U2(S∧ωk−p1−p2+1)|.
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We first show that δn!0. As U2,n−U2>−a2,n, it is enough to prove that

lim sup
n!∞

δ′n 6 0,

where
δ′n := sup

S∈K
(U2,n(S∧ωk−p1−p2+1)−U2(S∧ωk−p1−p2+1)).

Because R1,n!R1, K is compact. Since U1,m!U1 pointwise, we have

U2(R1,m∧ωk−p1−p2+1) = U1,m(R2∧ωk−p1−p2+1)

!U1(R2∧ωk−p1−p2+1) = U2(R1∧ωk−p1−p2+1).

So U2, restricted to K, is continuous. Proposition 3.2.2 applied to U2|K +ε, implies that
lim supn!∞ δ′n60. Therefore, δn!0.

Proposition 4.2.3 implies that R1,n and R2,n are wedgeable, and R1,n and R2 are
wedgeable. Let Un, U ′

n and U denote the super-potentials of mean 0 of R1,n∧R2,n,
R1,n∧R2 and R1∧R2. We obtain as in Lemma 4.2.5 for smooth R that Un(R) and
U ′

n(R) converge to U (R). Moreover,

U ′
n(R)−U (R) >−|a1,n|−|εn|

and
Un(R)−U ′

n(R) >−|a2,n|−δn.

Hence,
Un(R) >U (R)−|a1,n|−|a2,n|−|εn|−δn

for smooth R. Using the approximation of R by Rθ, we deduce this inequality for
arbitrary R. The super-potentials Un+|a1,n|+|a2,n|+|εn|+δn are larger than U and
converge to U . Hence, the sequence R1,n∧R2,n H-converges to R1∧R2.

Lemma 4.2.7. Let R1 and R2 be currents in Cpj . Then, for τ∈Aut(Pk) outside
some pluripolar set , R1 and τ∗(R2) are wedgeable. Moreover , if R1 and R2 are wedge-
able, then R1∧τ∗(R2) converge to R1∧R2 when τ!id in the fine topology on Aut(Pk),
i.e. the coarsest topology for which quasi-psh functions are continuous.

Proof. Let UR1 be a super-potential of R1. Recall that UR1 is an affine function
which is finite on smooth forms R in Ck−p1+1. On the other hand, using an average of
τ∗(R2)∧ωk−p1−p2+1 we can obtain a smooth form R in Ck−p1+1. Therefore, the function
τ 7!UR1(τ∗(R2)∧ωk−p1−p2+1) is not identically −∞. So, it is a quasi-psh function on
Aut(Pk) and is finite outside a pluripolar set. Hence, R1 and τ∗(R2) are wedgeable for τ

outside this pluripolar set.
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Assume now that R1 and R2 are wedgeable. Let Φ be a real smooth form of bidegree
(k−p1−p2, k−p1−p2). By (4.1), 〈R1∧τ∗(R2), Φ〉 can be written as a difference of quasi-
psh functions on Aut(Pk). Hence, in the fine topology on Aut(Pk), 〈R1∧τ∗(R2), Φ〉
converge to R1∧R2 when τ!id. The lemma follows.

In order to define the wedge-product of several currents, we need the following result.

Lemma 4.2.8. Assume that R1 and R2 are wedgeable, and that R1∧R2 and R3

are wedgeable. Then, R2 and R3 are wedgeable, and R1 and R2∧R3 are wedgeable.
Moreover , we have

(R1∧R2)∧R3 = R1∧(R2∧R3).

Proof. We use the symbols U and U for quasi-potentials and super-potentials of
mean 0. Since ωp1 is more diffuse than R1, by Lemma 4.2.5, ωp1∧R2 is more diffuse
than R1∧R2. Proposition 4.2.3 implies that ωp1∧R2 and R3 are wedgeable. Hence,
UR3(ωk−p2−p3+1∧R2) is finite. It follows that R2 and R3 are wedgeable.

We show that R1 and R2∧R3 are wedgeable. By Proposition 4.2.6 and Remark 3.2.4,
R2,θ∧R3,θ H-converge to R2∧R3. Using Lemma 4.1.3, for p=p1+p2+p3, we obtain

UR1(R2∧R3∧ωk−p+1)

= lim
θ!0

UR1(R2,θ∧R3,θ∧ωk−p+1)

= lim
θ!0

〈UR1 , R2,θ∧R3,θ∧ωk−p+1〉

= lim
θ!0

〈R3,θ, UR1∧R2,θ∧ωk−p+1〉

= lim
θ!0

UR3,θ
(R1∧R2,θ∧ωk−p+1)+〈ωp3 , UR1∧R2,θ∧ωk−p+1〉−UR3(R2∧ωk−p2−p3+1)

= UR3(R1∧R2∧ωk−p+1)+UR1(R2∧ωk−p1−p2+1)−UR3(R2∧ωk−p2−p3+1).

The last sum is finite. Hence, by Proposition 4.2.1, R1 and R2∧R3 are wedgeable.
We now prove the identity in the lemma. Proposition 4.2.6 and Remarks 3.2.4

imply that R1,θ∧(R2,θ∧R3,θ) converge to R1∧(R2∧R3) and (R1,θ∧R2,θ)∧R3,θ converge
to (R1∧R2)∧R3. For θ 6=0, since Rj,θ are smooth, we have

(R1,θ∧R2,θ)∧R3,θ = R1,θ∧(R2,θ∧R3,θ).

Letting θ!0 gives the result.

Definition 4.2.9. We say that R1, ..., Rl are wedgeable if R1∧...∧Rm and Rm+1 are
wedgeable for m=1, ..., l−1.

Lemma 4.2.8 implies that this property and the wedge-product R1∧...∧Rl are sym-
metric with respect to Rj . The wedge-product is a positive closed current of mass 1.
Applying inductively Proposition 4.2.6 gives the following result.
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Theorem 4.2.10. Let {Rj,n}n>0 be sequences of currents in Cpj
H-converging to

Rj , j=1, ..., l. Assume that R1, ..., Rl are wedgeable. Then, R1,n, ..., Rl,n are wedgeable
and R1,n∧...∧Rl,n converge to R1∧...∧Rl in the Hartogs sense.

Definition 4.2.11. Let S and R be wedgeable currents in Cp and Ck−p respectively.
Let a be a point in Pk. We let νR(S, a) denote the mass of S∧R at a and we refer to it
as the Lelong number of S at a relative to R.

This notion is related to the directional Lelong numbers of S developed in [12] and
[13]. Consider a classical example.

Example 4.2.12. Let S be a current in C1 and u be a quasi-potential of S. We
have S=ω+ddcu. If R is the current of integration on a projective line D which is
not contained in {z :u(z)=−∞}, then S and [D] are wedgeable and ν[D](S, a) exists for
every a. It is equal to the mass of S∧[D]=ddc(u[D])+ω∧[D] at a, i.e. to the mass of
ddc(u[D]) at a.

We will see in Proposition 4.3.4 below that if R is locally bounded in a neighbourhood
of a hypersurface, then νR(S, a) exists for every S. For the classical case, when R is locally
bounded outside a; see [13].

4.3. Intersection with currents with regular potentials

In this section, we will give sufficient conditions for currents to be wedgeable.

Proposition 4.3.1. Let Rj be currents in Cpj with 16j6l. Assume that Rj have
bounded super-potentials for 16j6l−1. Then, R1, ..., Rl are wedgeable. If moreover Rl

has bounded super-potentials, then R1∧...∧Rl has bounded super-potentials.

Proof. Consider R′
j :=ωpj . Their super-potentials of mean 0 vanish identically. It is

clear that R′
1, ..., R

′
l−1, Rl are wedgeable. Since Rj have bounded super-potentials, they

are more diffuse than R′
j . Proposition 4.2.3 implies that R1, ..., Rl are wedgeable.

Assume that the super-potentials of Rl are bounded. Then, Rl are more diffuse than
R′

l. Lemma 4.2.5 implies that R1∧...∧Rl is more diffuse than R′
1∧...∧R′

l. It follows that
R1∧...∧Rl has bounded super-potentials.

Proposition 4.3.2. Let Rj be currents in Cpj , 16j6l. Assume that Rj have con-
tinuous super-potentials for 16j6l−1. Then, R1∧...∧Rl depends continuously on Rl.
If moreover Rl has continuous super-potentials, then R1∧...∧Rl has continuous super-
potentials.
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Proof. We only have to consider the case where l=2. Since R1 has continuous super-
potentials, it follows from (4.1) that R1∧R2 depends continuously on R2. Assume that R2

also has continuous super-potentials. Let UR1∧R2 and URj denote the super-potentials
of mean 0 of R1∧R2 and Rj , respectively. Applying (4.1) to a smooth quasi-potential
UR of mean 0 of a smooth form R in Ck−p1−p2+1 gives

UR1∧R2(R) = 〈R1∧R2, UR〉= UR2(ωp1∧R)+UR1(R2∧R)−UR1(R2∧ωk−p1−p2+1).

Since URj
are continuous and R2∧R depends continuously on R, the last expression can

be extended continuously to R in Ck−p1−p2+1. Hence, R1∧R2 has continuous super-
potentials.

Definition 4.3.3. A compact subset K of Pk is (p+1)-pseudoconvex if there is a
current in Ck−p with compact support in Pk\K; see also [32].

Observe that one can approximate the previous current by smooth elements of Ck−p

with compact support in Pk\K. So, there is a smooth positive closed (k−p, k−p)-form
Θ with compact support in Pk\K. If the 2(k−p)-dimensional Hausdorff measure of K

vanishes, then K is (p+1)-pseudoconvex. Indeed, generic projective planes of dimension p

do not intersect K. In particular, analytic sets of pure codimension p are p-pseudoconvex.
To explain the terminology, observe that we may assume that Θ has mass 1 and

there is a smooth (k−p−1, k−p−1)-form Φ such that ddcΦ=−Θ+ωk−p. So, ddcΦ is
strictly positive on K. Adding a large positive closed form to Φ allows one to assume
that Φ is positive on Pk; compare with Definition 5.2.1 for X=Pk.

Proposition 4.3.4. Let Rj be currents in Cpj
, j=1, 2. Assume that Rj are locally

bounded forms on open sets Wj⊂Pk such that Pk\(W1∪W2) is (p1+p2)-pseudoconvex.
Then, R1 and R2 are wedgeable.

Proof. Let Θ be a smooth form in Ck−p1−p2+1 with compact support in W1∪W2.
Fix open sets W ′

j bWj such that supp(Θ)⊂W ′
1∪W ′

2. Reducing Wj if necessary, we may
assume that Rj are bounded on Wj . Proposition 4.2.1 implies that it suffices to show
that

Up1(R1, R2∧Θ) >−A(1+‖R1‖∞,W1 +‖R2‖∞,W2),

where A>0 is independent of Rj . This estimate is uniform with respect to Rj , we can
then use a regularization and assume that Rj are smooth.

Let Uj denote the Green quasi-potentials of Rj and let mj denote their means.
Lemma 2.3.5 implies that

‖Uj‖C 1(W ′
j) 6 c(1+‖Rj‖∞,Wj ) and |mj |6 c
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for c>0 independent of Rj . Let χj be positive smooth functions with compact support
in W ′

j such that χ1+χ2=1 on supp(Θ). We have

Up1(R1, R2∧Θ) = 〈U1, R2∧Θ〉−m1 = 〈χ2U1, R2∧Θ〉+〈χ1U1, R2∧Θ〉−m1.

Since χ1U1 is bounded, we only have to estimate the first integral. By Stokes formula,
it is equal to the sum of 〈χ2U1, ω

p2∧Θ〉, which is bounded, and of the integral

〈χ2U1, ddcU2∧Θ〉= 〈χ2ddcU1, U2∧Θ〉+〈dχ2∧dcU1, U2∧Θ〉

−〈dcχ2∧dU1, U2∧Θ〉+〈U1∧ddcχ2, U2∧Θ〉

= 〈χ2R1, U2∧Θ〉−〈χ2ω
p1 , U2∧Θ〉−〈dχ1∧dcU1, U2∧Θ〉

+〈dcχ1∧dU1, U2∧Θ〉−〈U1∧ddcχ1, U2∧Θ〉.

We used that dχ2=−dχ1 and ddcχ2=−ddcχ1 on supp(Θ). It is clear that the last sum is
of order at most equal to 1+‖R1‖∞,W1 +‖R2‖∞,W2 . Indeed, we have ‖Uj‖6c and each
integral is over a domain where we can use the estimates on ‖Uj‖C 1(W ′

j).

Remark 4.3.5. It is enough to assume that Rj are in L s
loc(Wj) with s>2k.

We deduce from Proposition 4.3.4 and Lemma 2.3.5 the following results.

Corollary 4.3.6. Let Rj be currents in Cpj , j=1, ..., l. Assume, for j=2, ..., l,
that the intersection of the supports of R1, ..., Rj is (p1+...+pj)-pseudoconvex. Then,
R1, ..., Rl are wedgeable.

Corollary 4.3.7. Let Vj be analytic subsets of pure codimension pj in Pk, 16j6l.
Assume that their intersection is of pure codimension p1+...+pl. Let In denote the
components of V1∩...∩Vl and mn their multiplicities. Then, the currents of integration
on Vj are wedgeable and we have

[V1]∧...∧[Vl] =
∑

n

mn[In].

Proof. It is clear that V1∩...∩Vj is of pure codimension p1+...+pj . Hence, it is
(p1+...+pj)-pseudoconvex. By Corollary 4.3.6, V1, ..., Vl are wedgeable and [V1]∧...∧[Vl]
has support in V1∩...∩Vl, which is of pure codimension p1+...+pl. Then [V1]∧...∧[Vl]
is a combination of [In]. For the identity in the corollary, by induction, it is enough to
prove it for l=2. Since

∑
n mn[In] depends continuously on V1 and V2, Lemma 4.2.7

implies that it is enough to prove the corollary for V1 and τ(V2), where τ is a generic
automorphism close enough to the identity. So, we may assume that mn=1 for all n.
Hence, for a generic point a in V1∩V2, a belongs to the regular parts of V1 and V2, and
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V1 and V2 intersect transversally at a. It is enough to prove that [V1]∧[V2]=[V1∩V2]
in a neighbourhood of a. In this neighbourhood, the θ-regularization [V2]θ of [V2] is
an average of currents of integration on manifolds τ(V2), where τ is an automorphism
close to the identity. Observe that τ(V2) is close to V2 and intersects V1 transversally
on a manifold close to V1∩V2. Hence, [V1]∧[V2]θ is an average of [V1∩τ(V2)]. When
θ tends to 0, this mean converges to [V1∩V2]. On the other hand, we have seen in
Proposition 4.2.6 that [V1]∧[V2]θ converge to [V1]∧[V2]. Therefore, [V1]∧[V2]=[V1∩V2].
The corollary follows.

4.4. Intersection with (1, 1)-currents

Consider now the case where p2=...=pl=1. For 26j6l, there is a quasi-psh function uj

on Pk such that
ddcuj = Rj−ω.

We have the following lemma.

Lemma 4.4.1. The currents R1, ..., Rl are wedgeable if and only if , for all 26j6l,
uj is integrable with respect to the trace measure of R1∧...∧Rj−1. In particular , the last
condition is symmetric with respect to R2, ..., Rl.

Proof. It is enough to consider the case l=2. We may assume that u2 is of mean 0.
Let u2,θ be the quasi-potential of mean 0 of R2,θ. Since R2,θ H-converge to R2, there are
constants aθ converging to 0 such that u2,θ+aθ>u2, and u2,θ converge pointwise to u2.
If UR1 is the super-potential of mean 0 of R1, then

UR1(R2∧ωk−p1) = lim
θ!0

UR1(R2,θ∧ωk−p1) = lim
θ!0

〈R1, u2,θω
k−p1〉= 〈R1, u2ω

k−p1〉.

Therefore, UR1(R2∧ωk−p1) is finite if and only if u2 is integrable with respect to the
trace measure R1∧ωk−p1 of R1. This implies the lemma.

If R2 has a quasi-potential integrable with respect to R1, it is classical to define the
wedge-product R1∧R2 by

R1∧R2 := ddc(u2R1)+ω∧R1.

One defines R1∧...∧Rl by induction.

Lemma 4.4.2. The previous definition coincides with the definition given in §4.2.

Proof. Proposition 4.2.6 implies that R1∧R2,θ converge to R1∧R2 when θ!0. Since
R2,θ is smooth, we have

R1∧R2,θ = R1∧(ddcu2,θ+ω) = ddc(u2,θR1)+ω∧R1.

It is clear that the last expression converge to ddc(u2R1)+ω∧R1.
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5. Complex dynamics in higher dimension

Super-potentials allow us to construct and study invariant currents in complex dynamics.
We will give here some applications of this new notion.

5.1. Pull-back of currents by meromorphic maps

The results in this section hold for meromorphic correspondences, in particular for the
inverse of a dominant meromorphic map. For simplicity, we only consider meromorphic
maps on Pk. Recall that a meromorphic map f : Pk!Pk is holomorphic outside an an-
alytic subset I of codimension >2 in Pk. Let Γ denote the closure of the graph of the
restriction of f to Pk\I. This is an irreducible analytic set of dimension k in Pk×Pk.

Let π1 and π2 denote the canonical projections of Pk×Pk on the factors. The
indeterminacy locus I of f is the set of points z∈Pk such that dim π−1

1 (z)∩Γ>1. We
assume that f is dominant, that is, π2(Γ)=Pk. The second indeterminacy set of f is the
set I ′ of points z∈Pk such that dim π−1

2 (z)∩Γ>1. Its codimension is also at least equal
to 2. If A is a subset of Pk, define

f(A) := π2(π−1
1 (A)∩Γ) and f−1(A) := π1(π−1

2 (A)∩Γ).

Define formally for a current S on Pk, not necessarily positive or closed, the pull-back
f∗(S) by

f∗(S) := (π1)∗(π∗2(S)∧[Γ]), (5.1)

where [Γ] is the current of integration of Γ. This makes sense if the wedge-product
π∗2(S)∧[Γ] is well defined, in particular, when S is smooth. Note that when S is smooth
f∗(S) is an L 1 form. Consider now the case of positive closed currents. We need some
preliminary results.

Lemma 5.1.1. Let S be a current in Cp. Assume that the restriction of S to a
neighbourhood of I ′ is a smooth form. Then, formula (5.1) defines a positive closed
(p, p)-current. Moreover , the mass λp of f∗(S) does not depend on S.

Proof. Since π2|Γ is a finite map outside π−1
2 (I ′)∩Γ, the current π∗2(S)∧[Γ] is well

defined there, and depends continuously on S; see [23]. So, if S is smooth in a neighbour-
hood of I ′, π∗2(S)∧[Γ] is well defined in a neighbourhood of π−1

2 (I ′)∩Γ, hence, f∗(S) is
well defined and is positive. Let U be the Green quasi-potential of S. This is a nega-
tive form such that S−ωp=ddcU . By [23], π∗2(U)∧[Γ] is well defined outside π−1

2 (I ′).
Lemma 2.3.5 implies that U is continuous in a neighbourhood of I ′. Hence, as for S, we
obtain that f∗(U) is well defined. We have f∗(S)−f∗(ωp)=ddcf∗(U). It follows that
f∗(S) and f∗(ωp) are cohomologous. Therefore, they have the same mass.
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The operator f∗ is formally defined by

f∗(R) := (π2)∗(π∗1(R)∧[Γ]). (5.2)

Lemma 5.1.2. Let R be a current in Ck−p+1 which is smooth in a neighbourhood
of I. Then, the formula (5.2) defines a positive closed (k−p+1, k−p+1)-current. More-
over , the mass of f∗(R) does not depend on R and is equal to λp−1.

Proof. We obtain the first part as in Lemma 5.1.1. Since f∗(ωk−p+1) and f∗(ωp−1)
have L 1 coefficients, we also have

‖f∗(R)‖= ‖f∗(ωk−p+1)‖=
∫

f∗(ωk−p+1)∧ωp−1 =
∫

ωk−p+1∧f∗(ωp−1) = λp−1,

which proves the last assertion in the lemma.

In order to define f∗(S), we need to define π∗2(S)∧[Γ]. For this purpose, we can
introduce the notion of super-potential in Pk×Pk and study the intersection of currents
there. We avoid this here. We call λp the intermediate degree of order p of f . Let,
for simplicity, L:=λ−1

p f∗ and Λ:=λ−1
p−1f∗. With this normalization, for S∈Cp and R∈

Ck−p+1, the currents L(S) and Λ(R) have mass 1 when they are well defined.

Lemma 5.1.3. Let S be a smooth form in Cp and US be a super-potential of S. If
UL(ωp) is a super-potential of L(ωp), then λ−1

p λp−1US �Λ+UL(ωp) is equal to a super-
potential of L(S) on the currents R∈Ck−p+1 which are smooth on a neighbourhood of I.

Proof. We may assume that US and UL(ωp) are of mean 0. Let UL(S) be the super-
potential of mean 0 of L(S). Let US be a smooth quasi-potential of mean 0 of S and
UR be a quasi-potential of mean 0 of R which is smooth in a neighbourhood of I. Since
L(S) and L(ωp) are smooth outside I, the following computation holds

UL(S)(R) = 〈L(S), UR〉

= λ−1
p 〈S, f∗(UR)〉

= λ−1
p 〈S−ωp, f∗(UR)〉+λ−1

p 〈ωp, f∗(UR)〉

= λ−1
p 〈ddcUS , f∗(UR)〉+λ−1

p 〈f∗(ωp), UR〉

= λ−1
p 〈US , f∗(ddcUR)〉+UL(ωp)(R)

= λ−1
p 〈US , f∗(R)〉−λ−1

p 〈US , f∗(ωk−p+1)〉+UL(ωp)(R)

= λ−1
p λp−1US(Λ(R))−λ−1

p 〈US , f∗(ωk−p+1)〉+UL(ωp)(R).

This implies the result, since the second term in the last line is independent of R.
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Definition 5.1.4. We say that a current S in Cp is f∗-admissible if there is a current
R0 in Ck−p+1 which is smooth on a neighbourhood of I, such that the super-potentials
of S are finite at Λ(R0).

Lemma 5.1.5. Let S be an f∗-admissible current in Cp. Then, the super-potentials
of S are finite at Λ(R) for every smooth R in Ck−p+1. In particular , if S′∈Cp is such
that S′6cS for some positive constant c, or if S′ is more diffuse than S, then S′ is also
f∗-admissible.

Proof. Since R admits a smooth quasi-potential, we can find a positive current U

such that ddcU =R−R0 and U is smooth in a neighbourhood of I. We have ddcΛ(U)=
Λ(R)−Λ(R0) and, by Lemma 3.2.9,

US(Λ(R)) >US(Λ(R0))−‖Λ(U)‖.

This implies the first assertion. When S′6cS, as in Proposition 3.3.4, we obtain

US′(Λ(R0)) >−∞.

This also holds when S′ is more diffuse than S. Hence, S′ is f∗-admissible.

Lemma 5.1.6. Let S be an f∗-admissible current in Cp. Let Sn be smooth forms
in Cp H-converging to S. Then, f∗(Sn) H-converge to a positive closed (p, p)-current of
mass λp which does not depend on the choice of Sn.

Proof. Let USn
and US be super-potentials of mean 0 of Sn and S. Let cn be

constants converging to 0 such that USn +cn>US . Recall that USn converge pointwise
to US . If R is smooth in a neighbourhood of I, we have

λ−1
p λp−1USn(Λ(R))+UL(ωp)(R)!λ−1

p λp−1US(Λ(R))+UL(ωp)(R).

Lemma 5.1.5 implies that the last sum is not identically −∞.
Lemmas 5.1.3 and 3.2.5 imply that L(Sn) converge to a positive closed current S′

of bidegree (p, p). Lemma 5.1.1 implies that the mass of S′ is 1. Moreover,

λ−1
p λp−1USn

�Λ+UL(ωp) (resp. λ−1
p λp−1US �Λ+UL(ωp))

is equal on smooth forms R to some super-potential of L(Sn) (resp. of S′). Denote by
UL(Sn) and US′ these super-potentials. We have UL(Sn)+λ−1

p λp−1cn>US′ on smooth
forms R. Corollary 3.1.7 implies that this inequality holds for every R. Therefore,
L(Sn)!S′ in the Hartogs sense.

Finally, observe that if S′n are smooth forms in Cp H-converging to S, then S1, S′1,
S2, S′2, ... H-converge also to S. It follows that L(S1), L(S′1), L(S2), L(S′2), ... converge.
We deduce that the limit S′ does not depend on the choice of Sn. We can also obtain
the result using the fact that US′(R) does not depend on the choice of Sn.
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Definition 5.1.7. Let S and Sn be as in Lemma 5.1.6. The limit of f∗(Sn) is denoted
by f∗(S) and is called the pull-back of S under f . We say that S is invariant under f∗

or f∗-invariant if S is f∗-admissible and f∗(S)=λpS.

The following result extends Lemmas 5.1.3 and 5.1.6 when S and Sn are not neces-
sarily smooth.

Proposition 5.1.8. Let S be an f∗-admissible current in Cp. Let US and UL(ωp)

be super-potentials of S and L(ωp). Let Sn be currents in Cp H-converging to S. Then,
Sn are f∗-admissible and f∗(Sn) H-converge towards f∗(S). Moreover ,

λ−1
p λp−1US �Λ+UL(ωp)

is equal to a super-potential of L(S) for R∈Ck−p+1, smooth in a neighbourhood of I.

Proof. If USn are super-potentials of mean 0 of Sn, there are constants cn converging
to 0 such that USn +cn>US . The last assertion in the proposition was already obtained
in the proof of Lemma 5.1.6. Let UL(S) denote the super-potential of L(S) which is equal
to λ−1

p λp−1US �Λ+UL(ωp) for smooth R in Ck−p+1. Let UL(Sn) denote the analogous
super-potentials of L(Sn). Since USn!US pointwise, UL(Sn)!UL(S) on smooth forms
in Ck−p+1. As in Lemma 5.1.6, we obtain UL(Sn)+λ−1

p λp−1cn>UL(S), and this implies
that L(Sn) H-converge towards L(S).

In the same way, we have the following.

Definition 5.1.9. We say that a current R in Ck−p+1 is f∗-admissible if the super-
potentials of R are finite at L(S0) for at least one current S0 in Cp which is smooth in a
neighbourhood of I ′ (or equivalently, for every S0 smooth in Cp).

If R′∈Ck−p+1 is such that R′6cR for some positive constant c, or R′ is more diffuse
than R, then R′ is also f∗-admissible. We easily get the following lemma.

Lemma 5.1.10. Let R be an f∗-admissible current in Ck−p+1. Let Rn be smooth
forms in Ck−p+1 H-converging to R. Then, Rn are f∗-admissible and f∗(Rn) H-converge
to a positive closed (k−p+1, k−p+1)-current of mass λp−1 which does not depend on
the choice of Rn.

Definition 5.1.11. Let R and Rn be as in Lemma 5.1.10. The limit of f∗(Rn) is
denoted by f∗(R) and is called the push-forward of R under f . We say that R is invariant
under f∗ or f∗-invariant if R is f∗-admissible and f∗(R)=λp−1R.
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Proposition 5.1.12. Let R be an f∗-admissible current in Ck−p+1. Let UR and
UΛ(ωk−p+1) be super-potentials of R and Λ(ωk−p+1). Let Rn be f∗-admissible currents
in Ck−p+1 H-converging to R. Then, f∗(Rn) H-converge to f∗(R). Moreover ,

λpλ
−1
p−1UR�L+UΛ(ωk−p+1)

is equal to a super-potential of Λ(R) on S∈Cp, smooth in a neighbourhood of I ′.

Note that if an analytic subset H of pure dimension in Pk, of a given degree, is
generic in the Zariski sense, then [H] is f∗- and f∗-admissible. One can check that f∗[H]
and f∗[H] depend continuously on H.

5.2. Pull-back by maps with small singularities

In this section we will give sufficient conditions, easy to check, in order to define the pull-
back and push-forward operators. We need some preliminary results. In what follows,
X is a complex manifold of dimension k and ωX is a Hermitian form on X.

Definition 5.2.1. A compact subset K of X is weakly p-pseudoconvex if there is a
positive smooth (k−p, k−p)-form Φ on X such that ddcΦ is strictly positive on K.

Note that, using a cut-off function, we may assume that Φ has compact support
in X. It follows from the discussion after Definition 4.3.3 that p-pseudoconvex sets in Pk

are weakly p-pseudoconvex.

Lemma 5.2.2. If the (2k−2p+1)-dimensional Hausdorff measure of K is zero, then
K is weakly p-pseudoconvex.

Proof. Consider a point a in K. We construct a positive smooth (k−p, k−p)-form
Φa such that ddcΦa is positive on K and strictly positive at a. Since K is compact, there
is a finite sum Φ of such forms satisfying Definition 5.2.1. Consider local coordinates
z=(z1, ..., zk) such that z=0 at a. Define z′ :=(z1, ..., zk−p) and z′′ :=(zk−p+1, ..., zk). The
hypothesis on the measure of K allows us to choose z so that K does not intersect the set
{z :|z′|61 and 1−ε6|z′′|61}, where ε>0 is a constant. Let Θ be a positive (k−p, k−p)-
form with compact support in the unit ball {z′ :|z′|<1} of Ck−p, strictly positive at 0. Let
ϕ be a positive function with compact support in the unit ball of Cp such that ϕ=|z′′|2

for |z′′|61−ε. Let π denote the projection z 7!z′ and define Ψa :=ϕ(z′′)π∗(Θ). It is
clear that Ψa is positive with compact support in X and ddcΨa>0 on K. Nevertheless,
ddcΨa is not strictly positive at 0, but it does not vanish at 0. Observe that if τ is a
linear automorphism of Ck close enough to the identity, then τ∗(Ψa) satisfies the same
properties as Ψa does. Taking a finite sum of τ∗(Ψa) gives a form Φa which is strictly
positive at 0.
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The following result is a version of Oka’s inequality; see [32].

Proposition 5.2.3. Let K be a weakly p-pseudoconvex compact subset of X. Let
T be a positive (p, p)-current on X, not necessarily closed. Then, for every negative
(p−1, p−1)-current U on X with ddcU>−T , we have

‖U‖X 6 c(1+‖U‖X\K),

where c>0 is a constant independent of U .

Proof. Since ‖U‖X =‖U‖X\K +‖U‖K , we only have to bound the mass of U on K.
Let Φ be as in Definition 5.2.1 with compact support. Without loss of generality, we may
assume that ddcΦ>ωk−p+1

X on K. We have, for some positive constant c′,

‖U‖K =−
∫

K

U∧ωk−p+1
X 6−

∫
K

U∧ddcΦ =
∫

X\K
U∧ddcΦ−

∫
X

U∧ddcΦ

6 c′‖U‖X\K−
∫

X

ddcU∧Φ 6 c′‖U‖X\K +
∫

X

T∧Φ.

This implies the result, since T is fixed.

Let Σ̃′ denote the analytic subset of the points x in Γ such that π2 restricted to Γ
is not locally finite at x. Define Σ′ :=π1(Σ̃′). We have Σ̃′⊂π−1

2 (I ′)∩Γ and Σ′⊂f−1(I ′).
The following proposition gives a sufficient condition in order to define the pull-back
of a (p, p)-current, see also Lemma 5.2.7 below. The result can be applied to a generic
meromorphic map in Pk; see Proposition 5.3.6 below. Note that the hypothesis is satisfied
for p=1, and in this case the result is due to Méo [40].

Proposition 5.2.4. Assume that dim Σ′6k−p. Then, every positive closed (p, p)-
current S is f∗-admissible. Moreover , the pull-back operator S 7!f∗(S) is continuous
with respect to the weak topology on currents.

Proof. Let Sn be smooth forms in Cp converging to S. Let USn denote the super-
potentials of mean 0 of Sn. It is sufficient to prove that, for R smooth in Ck−p+1,
USn(Λ(R)) converge to a finite number. Propositions 5.1.8 and 3.2.2 will imply that S

is f∗-admissible. The convergence implies also that the limit does not depend on the
choice of Sn (see the last argument in Lemma 5.1.6) and that f∗ is continuous.

Let USn denote the Green quasi-potentials of Sn which are smooth negative forms
such that ddcUSn >−ωp. These forms converge in L 1 to the Green quasi-potential US

of S. Hence, the means cSn of USn converge to the mean cS of US . Since USn and R are
smooth, we have

USn(Λ(R)) = 〈USn , Λ(R)〉−cSn = λ−1
p−1〈f∗(USn), R〉−cSn .
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So, it is enough to prove that f∗(USn
) converge in the sense of currents.

The restriction of π2 to Γ\Σ̃′ is a finite map. Under this hypothesis, it was proved
in [23] that π∗2(USn)∧[Γ] converge in Pk×Pk outside Σ̃′. It follows that f∗(USn) converge
outside Σ′. Hence, the mass of f∗(USn) outside a small neighbourhood V of Σ′ is bounded
uniformly with respect to n. By Lemma 5.2.2, Σ′ is weakly p-pseudoconvex in Pk. Hence,
since V is small, 
V is also p-pseudoconvex. Using the fact that ddcf∗(USn)>−f∗(ωp),
Proposition 5.2.3 gives

‖f∗(USn)‖6 c(1+‖f∗(USn)‖Pk\V )

with c>0 independent of Sn. Therefore, the mass of f∗(USn
) is bounded uniformly with

respect to n. We can extract convergent subsequences from f∗(USn). In order to prove
the convergence of f∗(USn) in Pk, it remains to check that the limit values U of f∗(USn)
have no mass on Σ′.

Let W be a small open set in Pk. Write f∗(ωp)=ddcΦ with Φ negative on W .
So, Φ and U ′ :=U +Φ are negative currents with ddc positive. Since the currents U

and Φ are of bidimension (k−p+1, k−p+1) and dim Σ′6k−p, it follows from a result
of Alessandrini–Bassanelli [2, Theorem 5.10] that Φ and U ′ have no mass on Σ′. This
implies the result.

Remark 5.2.5. Assume that dim Σ′6k−p. The previous proof gives a definition of
f∗(US) which depends continuously on US . The definition can be extended to negative
currents U such that ddcU is bounded below by a negative closed current of bounded
mass. We still have that f∗(U) depends continuously on U .

Proposition 5.2.6. Under the hypothesis of Proposition 5.2.4, if R is a current in
Ck−p+1 with bounded (resp. continuous) super-potentials, then R is f∗-admissible and
Λ(R) is a current in Ck−p+1 with bounded (resp. continuous) super-potentials.

Proof. Assume that the super-potentials of R are bounded. It is clear that R is
f∗-admissible. Proposition 5.1.12 implies that Λ(R) admits a super-potential equal to
λpλ

−1
p−1UR�L+UΛ(ωk−p+1) on smooth S∈Cp. The first term is bounded. By Proposi-

tion 5.2.4, it can be extended to a continuous function on Cp if R has continuous super-
potentials. So, it is sufficient to prove that the super-potential UΛ(ωk−p+1) of mean 0 of
Λ(ωk−p+1) is continuous. Let US be the Green quasi-potential of S and cS be its mean.
Recall that US−cSωp−1 is a quasi-potential of mean 0 of S and cS depends continuously
on S. For smooth S, we have

UΛ(ωk−p+1)(S) = 〈US−cSωp−1, Λ(ωk−p+1)〉= λ−1
p−1〈f∗(US)−cSf∗(ωp−1), ωk−p+1〉.

By Remark 5.2.5, the left-hand side can be extended continuously to S in Cp. So,
UΛ(ωk−p+1) is continuous.



super-potentials of currents, intersection theory and dynamics 59

If g: Pk!Pk is a dominant meromorphic map, the composition g�f is well defined
on a Zariski dense open set. We extend it as a meromorphic map by compactifying the
graph. The iterate of order n of f is the map fn :=f �...�f (n times). The inverse of fn

is denoted by f−n. It should be distinguished from f−1
�...�f−1. Define In, I ′n and Σ′

n

as above for fn instead of f . The following lemma will be useful in our dynamical study.

Lemma 5.2.7. The following conditions are equivalent :
(1) dim Σ′6k−p;
(2) dim f−1(A)6k−p for every analytic subset A of Pk with dim A6k−p;
(3) dim Σ′

n6k−p for every n>1.

Proof. It is easy to check that (1) implies (2) and (3) implies (1). Suppose now that
(2) holds. We prove that (1) is satisfied. If not, we can find an irreductible analytic
subset A of I ′, of minimal dimension, such that dim π1(π−1

2 (A)∩Σ̃′)>k−p. The second
condition in the lemma implies that dim A>k−p. Let Ã be an irreducible component
of π−1

2 (A)∩Σ̃′ such that A′ :=π1(Ã) has dimension >k−p. By definition of Σ̃′, we have
dim Ã>dim A+1>k−p+2.

Choose a dense Zariski open set Ω of Ã such that π1: Ω!A′ and π2: Ω!A locally
are submersions. Denote these maps by τ1 and τ2. If H is a hypersurface of A then
H̃ :=τ−1

2 (H) is a hypersurface of Ω. It has dimension >k−p+1. The minimality of dim A

implies that dim τ1(H̃)6k−p<dim H̃. Hence, the fibers of τ1 are of positive dimension.
Moreover, τ1(H̃) has positive codimension in A′. Therefore, since H̃ is a hypersurface
in Ã, it should be a union of components of the fibers of τ1. This holds for every H.
Hence, the fibers of τ2, which can be obtained as intersections of such H̃, are unions of
components of the fibers of τ1. The intersection of a fiber of τ1 and a fiber of τ2 contains
at most one point. We deduce that τ1 is locally finite, which is a contradiction.

Now, assume that (1) and (2) hold. It remains to check that dim Σ′
n6k−p for n>2.

Using (2) inductively, we get that f−1
�...�f−1(Σ′) has dimension 6k−p. Observe that

Σ′
n is the union of the components of dimension >1 in the fibers f−n(x). So, Σ′

n is
contained in the union of f−1

�...�f−1(Σ′). This gives the result.

5.3. Green super-functions for algebraically stable maps

Consider a dominant meromorphic map f on Pk of algebraic degree d>2 and the asso-
ciated sets I, I ′, In, I ′n, Σ′ and Σ′

n as in §5.1 and §5.2. Some results in this section can
be easily extended to the case of correspondences, in particular to f−1 instead of f . Let
λp denote the intermediate degree of order p of f and λp(fn) the intermediate degree of
order p of fn. Note that λ1(f)=d. We have the following elementary lemma; see [18]
and [20] for a more general context.
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Lemma 5.3.1. The sequence of intermediate degrees λp(fn) is sub-multiplicative,
i.e. λp(fm+n)6λp(fm)λp(fn). We also have λp+q(fn)6λp(fn)λq(fn) and λp(fn)6dpn.

Proof. Observe that (fm+n)∗(ωp) has no mass on analytic sets. Let Sj be smooth
positive closed forms of mass λp(fn) converging locally uniformly to (fn)∗(ωp) on a
Zariski open set. Then, the currents (fm)∗(Sj) are of mass λp(fm)λp(fn) and converge
to (fm+n)∗(ωp) on a Zariski open set. If S is a limit of (fm)∗(Sj) in Pk, it is of mass
λp(fm)λp(fn) and it satisfies S>(fm+n)∗(ωp). Hence, ‖S‖>‖(fm+n)∗(ωp)‖. The first
inequality in the lemma follows.

In the same way, we approximate (fn)∗(ωp) and (fn)∗(ωq) locally uniformly on a
suitable Zariski open set by smooth forms Sj and S′j . If S is a limit current of Sj∧S′j
in Pk, it satisfies S>(fn)∗(ωp+q). This implies that λp+q(fn)6λp(fn)λq(fn). For p=1,
the first assertion in the lemma implies that λ1(fp)6dp. Applying the second inequality
inductively for q=1 gives λp(fn)6dpn.

The previous lemma implies that the limit

dp := lim
n!∞

λp(fn)1/n = inf
n

λp(fn)1/n

exists. It is called the dynamical degree of order p of f . We have dp6dp for every p. The
last dynamical degree dk is also called the topological degree of f . It is equal to the number
of points in a generic fiber of f , and we have λk(fn)=dn

k . In general, λp(fn) is the degree
of f−n(H), where H is a generic projective plane of codimension p. So, λp(fn) is an
integer. A result by Gromov [36, Theorem 1.6] implies that p 7!log λp(fn) is concave in
p. It follows that p 7!log dp is also concave in p. If f is holomorphic, we have dp=λp=dp.
If f is not holomorphic, it is easy to prove that dk<dk. Indeed, if a is the intersection
of generic hyperplanes H1, ...,Hk, then f−1(a)⊂f−1(H1)∩...∩f−1(Hk)\I. By Bézout’s
theorem, the last set has cardinal 6dk−1 since all the hypersurfaces f−1(Hj) contain I.

Definition 5.3.2. We say that f is algebraically p-stable if λp(fn)=λn
p for every n>1.

For such a map we have dp=λp. For p=1, the algebraic 1-stability coincides with
the notion introduced by Fornæss and the second author [44], i.e. no hypersurface is sent
by fn to I; see also [41] and Lemma 5.3.4 below.

Lemma 5.3.3. Assume that dim Σ′6k−p. Then, f is algebraically p-stable if and
only if (f∗)n=(fn)∗ on Cp.

Proof. Recall that, by Proposition 5.2.4 and Lemma 5.2.7, (fn)∗ is well defined and
is continuous on Cp. If (f∗)n=(fn)∗ on Cp, it is clear that

λp(fn) = ‖(fn)∗(ωp)‖= ‖(f∗)n(ωp)‖= λn
p .
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Hence, f is algebraically p-stable. Conversely, by continuity, it is enough to prove the
identity (f∗)n=(fn)∗ on smooth forms S in Cp. Observe that (f∗)n(S)=(fn)∗(S) on
a Zariski dense open set V such that V, f(V ), ..., fn−1(V ) do not intersect I. As we
observed after definition (5.1), since S is smooth, (fn)∗(S) has no mass on analytic sets.
So, (f∗)n(S)>(fn)∗(S). When f is algebraically p-stable, (f∗)n(S) and (fn)∗(S) have
mass λn

p and λp(fn), which are equal. It follows that (f∗)n(S)=(fn)∗(S).

Lemma 5.3.4. Assume that dim Σ′6k−p. For every analytic subset A0 of Pk of
dimension k−p, define by induction An :=f(An−1\I), and assume that An is not con-
tained in I for every n>0. Then, f is algebraically l-stable for l6p.

Proof. It is enough to show that (f∗)n(ωl)=(fn)∗(ωl). We have seen that the iden-
tity holds outside A:=I∪f−1(I)∪...∪(f−1)n(I) and that (f∗)n(ωl)>(fn)∗(ωl). The hy-
pothesis implies that A is of dimension <k−p. Hence, (f∗)n(ωl) has no mass on A

because (f∗)n(ωl) is of bidimension (k−l, k−l). This completes the proof.

Proposition 5.3.5. If dim Σ′<k−p, then f is algebraically l-stable for l6p. In
particular , if f is finite, i.e. I ′=∅, then f is algebraically p-stable for every p.

Proof. When dim Σ′<k−p, Proposition 5.2.6, applied to l+1 instead of p, implies
that (f∗)n(ωk−l) is well defined and has no mass on analytic sets. We deduce, as in
Lemma 5.3.4, that (f∗)n(ωk−l)=(fn)∗(ωk−l) and that f is algebraically l-stable.

Let f be a finite map. We have f−n=f−1
�...�f−1, n times, therefore,

In = I∪f−1(I)∪...∪f−n+1(I).

So, the dimension of In is independent of n. It is not difficult to prove that dp=dp

for p<k−dim I. Indeed, for such p, we have f∗(ωp)=f∗(ω)∧...∧f∗(ω), p times. The
following proposition implies that generic maps in Md(Pk)\Hd(Pk) are algebraically
p-stable.

Proposition 5.3.6. The family of finite meromorphic maps of algebraic degree d>2
on Pk, whose dynamical degrees ds satisfy d1<...<dk, contains a Zariski dense open set
of Md(Pk)\Hd(Pk).

Proof. Let for simplicity M :=Md(Pk)\Hd(Pk) and recall that this is an irreducible
hypersurface of Md(Pk) [34]. We can easily check, using the coefficients of f , that the
set M ′ of maps f in M which are finite and of (maximal) topological degree dk−1 is a
Zariski open set in M . For such a map, we have dk−16dk−1<dk, and since p 7!log dp is
concave, we obtain d1<...<dk. It remains to check that M ′ is not empty.
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Consider the map defined on homogeneous coordinates by

f [z0 : ... : zk] := [zd−1
0 z1 : zd−1

0 z2−zd
1 : ... : zd−1

0 zk−zd
k−1 : zd−1

0 z1−zd
k ].

The indeterminacy set is the common zero set of the components of f . So, I contains
only the point [1:0:...:0]. The map f is not holomorphic, hence dk6dk−1. On the other
hand, if t is a root of order dk−1 of the unity, [1:t:td :...:td

k−1
] is sent to I by f . Hence,

dk=dk−1. We show that f is finite, i.e. I ′ is empty. If not, there is (a0, ..., ak) 6=0 in
Ck+1 such that the equations

zd−1
0 z1 = a0, zd−1

0 z2−zd
1 = a1, ..., zd−1

0 z1−zd
k = ak

define an algebraic set of positive dimension. Consider a sequence of solutions z(n)=
(z(n)

0 , ..., z
(n)
k ) such that |z(n)| tend to infinity and that z

(n)
j /|z(n)| converge to some

values xj . We have |x|=1 and

xd−1
0 x1 = 0, xd−1

0 x2−xd
1 = 0, ..., xd−1

0 x1−xd
k = 0.

Hence, |x0|=1 and x1=...=xk=0. Therefore, we may assume that z
(n)
0 tends to infinity

and is strictly large than the other z
(n)
j . Extracting a subsequence allows one to assume

that for some index m>1, z
(n)
m is the largest coordinate between z

(n)
1 , ..., z

(n)
k . The

equation zd−1
0 zm−zd

m−1=am implies that z
(n)
m !0. Hence, z

(n)
j !0 for every j>1. On

the other hand, we deduce from the considered equations that zd
k =a0−ak. So, ak=a0

and z
(n)
k =0. Using the given equations and the fact that z

(n)
j !0, we obtain inductively

that z
(n)
j =0 for j>1 and then aj =0 for every j>0. This is a contradiction.

Theorem 5.3.7. Let f : Pk!Pk be an algebraically p-stable meromorphic map of
dynamical degrees ds and let Σ′ be as above. Assume that dim Σ′6k−p and dp−1<dp.
Let Sn be currents in Cp and let USn be super-potentials of Sn such that

‖USn‖∞ = o(d−n
p−1d

n
p ).

Then, d−n
p (fn)∗(Sn) H-converge to an f∗-invariant current T in Cp which does not

depend on Sn.

We call T the Green (p, p)-current associated with f . Set, for simplicity, L:=d−1
p f∗

and Λ:=d−1
p−1f∗. Proposition 5.3.5 implies that f is algebraically (p−1)-stable. Hence,

λp−1=dp−1<dp. We have seen that L: Cp!Cp is continuous and Ln=d−n
p (fn)∗ on Cp.

It follows that the convex set of f∗-invariant currents S in Cp is not empty. Indeed, it
contains all the limit values of the Cesàro means

1
N

N−1∑
j=0

Lj(ωp).
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Let C b
k−p+1 denote the set of currents R in Ck−p+1 with bounded super-potentials. By

Proposition 5.2.6, the operator Λ: C b
k−p+1!C b

k−p+1 is well defined. Consider a current
S in Cp, a super-potential US of S and a negative super-potential UL(ωp) of L(ωp).

Lemma 5.3.8. The current L(S) admits a super-potential which is equal to

dp−1d
−1
p US �Λ+UL(ωp)

on C b
k−p+1. If S0 is an f∗-invariant current in Cp, then it admits a super-potential US0

satisfying US0 =dp−1d
−1
p US0 �Λ+UL(ωp) on C b

k−p+1.

Proof. We prove the first assertion. By Proposition 5.1.8, we may assume that
S is smooth. Moreover, there is a super-potential UL(S) of L(S) which is equal to
dp−1d

−1
p US �Λ+UL(ωp) on smooth forms in Ck−p+1. Consider a current R in C b

k−p+1

and smooth forms Rn in Ck−p+1 H-converging to R. We have UL(S)(Rn)!UL(S)(R) and
UL(ωp)(Rn)!UL(ωp)(R). By Proposition 5.1.12, Λ(Rn)!Λ(R). Since US is continuous,
we deduce that US(Λ(Rn))!US(Λ(R)). Therefore, UL(S)=dp−1d

−1
p US �Λ+UL(ωp) at R.

For the second assertion, if U is a super-potential of S0, since L(S0)=S0, the first
assertion implies that U =dp−1d

−1
p U �Λ+UL(ωp)+c on C b

k−p+1, where c is a constant.
The super-potential US0 :=U −cdp(dp−dp−1)−1 satisfies the lemma. Here we use the
property that dp 6=dp−1.

Proof of Theorem 5.3.7. Replacing USn by USn +‖USn‖∞ allows one to assume that
USn are positive. We apply inductively Lemma 5.3.8 for S=Lj(Sn). We obtain that
Ln(Sn) admits a super-potential ULn(Sn) satisfying

ULn(Sn) = dn
p−1d

−n
p USn �Λ

n+
n−1∑
j=0

dj
p−1d

−j
p UL(ωp)�Λj

on C b
k−p+1. By hypothesis, the first term converges to 0. Since UL(ωp) is negative, the

second term decreases to

U :=
∞∑

j=0

dj
p−1d

−j
p UL(ωp)�Λj .

Hence, ULn(Sn) converge pointwise in C b
k−p+1 to U . We show that U is not identi-

cally −∞. Let S0 be an f∗-invariant current in Cp and US0 be a super-potential as in
Lemma 5.3.8. We have

US0 = dp−1d
−1
p US0 �Λ+UL(ωp)

on C b
k−p+1. Iterating this identity gives

US0 = dn
p−1d

−n
p US0 �Λ

n+
n−1∑
j=0

dj
p−1d

−j
p UL(ωp)�Λj .



64 t.-c. dinh and n. sibony

Since US0 is bounded from above and since dp−1<dp, letting n!∞ gives U >US0 . So,
U is not identically −∞.

We deduce from Propositions 3.1.9 and 3.2.6 that Ln(Sn) converge to a current
T which admits a super-potential equal to U on C b

k−p+1. The fact that U does not
depend on Sn implies that T is also independent of Sn. Because USn are positive, the
convergence is in the Hartogs sense. We have

L(T ) = L
(

lim
n!∞

Ln(Sn)
)

= lim
n!∞

Ln+1(Sn) = T.

Hence, T is f∗-invariant.

Theorem 5.3.9. Let f be as in Theorem 5.3.7. Then, the Green (p, p)-current T of
f is the most diffuse current in Cp which is f∗-invariant. In particular , T is extremal
in the convex set of f∗-invariant currents in Cp.

Proof. We have seen in the proof of Theorem 5.3.7 that T admits a super-potential
UT which is equal to U on C b

k−p+1. It follows that

UT = dp−1d
−1
p UT �Λ+UL(ωp)

on C b
k−p+1. It is clear that UT is the unique super-potential of T satisfying this identity.

Let S0 and US0 be as above. We have seen that UT >US0 on C b
k−p+1. By Corollary 3.1.7,

this inequality holds on Ck−p+1. Hence, T is the most diffuse current in Cp which is f∗-
invariant.

We now prove that T is extremal among f∗-invariant currents in Cp. Assume that
T = 1

2 (T1+T2) with Tj in Cp invariant under f∗. By Lemma 5.3.8, the Tj admit super-
potentials UTj such that

UTj
= dp−1d

−1
p UTj �Λ+UL(ωp)

on C b
k−p+1. This and the uniqueness of UT imply that UT = 1

2 (UT1 +UT2). On the other
hand, we have UT >UTj . Hence, UT =UTj and Tj =T . This completes the proof.

Theorem 5.3.10. Let f : Pk!Pk be a dominant meromorphic map of dynamical
degrees ds and Σ′ be defined as above. Assume that dim Σ′6k−p and that dp<dp−1.
Let Rn be currents in Ck−p+1 and URn be super-potentials of Rn such that

‖URn‖∞ = o((dp+ε)−ndn
p−1)

for some constant ε>0. Then, d−n
p−1(fn)∗(Rn) H-converge to an f∗-invariant current T ′

in Ck−p+1 which does not depend on Rn and has continuous super-potentials.
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Proof. Proposition 5.3.5 implies that f is algebraically (p−1)-stable. It follows that
λp−1=dp−1. By Proposition 5.2.6, the operator Λ: C b

k−p+1!C b
k−p+1 is well defined. By

Proposition 5.2.4, L: Cp!Cp is well defined and continuous, but we do not necessarily
have Ln=d−n

p (fn)∗. Replacing f by an iterate fN , allows one to assume that λp<dp−1

and ‖URn‖∞=o(λ−n
p dn

p−1). We may also assume that URn are positive. Let UΛ(ωk−p+1)

be a negative super-potential of Λ(ωk−p+1). By Proposition 5.2.6, UΛ(ωk−p+1) is contin-
uous. Proposition 5.1.12 implies that Λn(Rn) admits a super-potential which equals

λn
pd−n

p−1URn �L
n+

n−1∑
j=0

λj
pd

−j
p−1UΛ(ωk−p+1)�L

j

on smooth forms in Cp. Letting n!∞, the first term tends to 0, the second term
decreases to a continuous function on Cp, since UΛ(ωk−p+1) and L are continuous and
λp<dp−1. This function does not depend on Rn. We deduce that Λn(Rn) converge to a
current T ′ which is independent of Rn. The convergence is in the Hartogs sense because
URn are positive. Moreover, T ′ admits a super-potential UT ′ such that

UT ′ :=
∞∑

j=0

λj
pd

−j
p−1UΛ(ωk−p+1)�L

j

on smooth forms in Cp. We have seen that the right-hand side defines a continuous
function on Cp. Hence, UT ′ is continuous and the last identity holds on Cp. It follows
from the convergence of Λn(Rn) that T ′ is f∗-invariant.

Theorem 5.3.11. Let f and T ′ be as in Theorem 5.3.10. Then, T ′ is the only f∗-
invariant current in Ck−p+1 which has bounded super-potentials. Moreover , it is extremal
in the convex set of f∗-invariant currents in Ck−p+1.

Proof. Let R be a current in Ck−p+1 with bounded super-potentials. Theorem 5.3.10
implies that Λn(R)!T ′. So, if R is f∗-invariant, then R=T ′. This implies the first
assertion. We deduce from this and Proposition 3.3.4 the extremality of T ′.

5.4. Equidistribution problem for endomorphisms

Consider a holomorphic map f : Pk!Pk of algebraic degree d>2. Recall that f∗ acts
continuously on positive closed currents of any bidegree [23], [40]; see also §5.1 and
§5.2. It is well known that d−n(fn)∗(ω) converge to a positive closed (1, 1)-current T

with Hölder continuous quasi-potentials. One deduces from the intersection theory of
currents that d−pn(fn)∗(ωp) converge to T p; see [29] and [44] for the first stages of the
theory. The current T p is the Green current of order p and its super-potentials are the
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Green super-functions of order p of f . In the following result, we give a new construction
and new properties of T p.

Theorem 5.4.1. Let f : Pk!Pk be a holomorphic map of algebraic degree d>2.
Then, the Green super-potentials of f are Hölder continuous. Moreover , T p is extremal
in the convex set of f∗-invariant currents S in Cp. If Sn are currents in Cp of super-
potentials USn such that ‖USn‖∞=o(dn), then d−pn(fn)∗(Sn) H-converge to T p.

We will see that the proof also gives that (f,R) 7!UT p(R) is locally Hölder continuous
on Hd(Pk)×Ck−p+1. The following lemma is a special case of [19, Proposition 2.4]. For
the reader’s convenience, we here give the proof.

Lemma 5.4.2. Let K be a metric space with finite diameter and Λ: K!K be a
Lipschitz map: ‖Λ(a)−Λ(b)‖6A‖a−b‖ with A>0. Let U be an α-Hölder continuous
function on K. Then,

∑∞
n=0 d−nU �Λn converges pointwise to a function which is β-

Hölder continuous on K for every β such that β<α and β6log d/log A.

Proof. Here, ‖a−b‖ denotes the distance between two points a and b in K. Since K

has finite diameter (it is enough to assume that U is bounded), it is sufficient to consider
‖a−b‖�1. By hypothesis, there is a constant A′>0 such that |U (a)−U (b)|6A′‖a−b‖α.
Define A′′ :=‖U ‖∞. Since K has finite diameter, A′′ is finite. If N is an integer, we have∣∣∣∣ ∞∑

n=0

d−nU �Λn(a)−
∞∑

n=0

d−nU �Λn(b)
∣∣∣∣

6
N∑

n=0

d−n|U �Λn(a)−U �Λn(b)|+
∞∑

n=N+1

d−n|U �Λn(a)−U �Λn(b)|

6A′
N∑

n=0

d−n‖Λn(a)−Λn(b)‖α+2A′′
∞∑

n=N+1

d−n

. ‖a−b‖α
N∑

n=0

d−nAnα+d−N .

If Aα6d, the last sum is of order at most equal to N‖a−b‖α+d−N . For a given β,
0<β<α, choose N'−β log ‖a−b‖/log d. So, the last expression is .‖a−b‖β . In this
case, the function is β-Hölder continuous for every 0<β<α. When Aα>d, the sum is
.d−NANα‖a−b‖α+d−N . If N'− log ‖a−b‖/log A, the last expression is .‖a−b‖β with
β :=log d/log A. Therefore, the function is β-Hölder continuous.

Define L:=d−pf∗ and Λ:=d−p+1f∗. Recall that L: Cp!Cp and Λ: Ck−p+1!Ck−p+1

are well defined and continuous.
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Lemma 5.4.3. The operator Λ is Lipschitz with respect to the distance distα on
Ck−p+1 for α>0.

Proof. If Φ is a C α test (p−1, p−1)-form such that ‖Φ‖C α 61, it is clear that
‖f∗(Φ)‖C α 6cα for a constant cα>0 independent of Φ. If R and R′ are currents in
Ck−p+1, we have

|〈Λ(R)−Λ(R′), Φ〉|= |〈R−R′, d−p+1f∗(Φ)〉|6 cα distα(R,R′).

The lemma follows. Observe that the estimates are locally uniform with respect to
f∈Hd(Pk).

Proof of Theorem 5.4.1. Theorems 5.3.7 and 5.3.9 imply that Ln(Sn) H-converge to
a current Tp which does not depend on Sn and is extremal among f∗-invariant currents
in Cp. For Sn=ωp and USn =0, the computation in those theorems shows that Tp admits
a super-potential UTp satisfying

UTp =
∞∑

j=0

d−jUL(ωp)�Λj

on smooth forms in Ck−p+1. Since L(ωp) is smooth, UL(ωp) is Lipschitz. By Lemmas 5.4.2
and 5.4.3, the latter sum defines a Hölder continuous function on Ck−p+1. It follows that
the last identity holds everywhere on Ck−p+1. So, Tp has Hölder continuous super-
potentials.

Let T denote the first Green current of f . So, T is the limit of d−n(fn)∗(ω) in the
Hartogs sense. By Theorem 4.2.10, d−pn(fn)∗(ωp) converge to T p. Hence, Tp=T p.

Here is one of our main applications of super-potentials.

Theorem 5.4.4. There is a Zariski dense open set H ∗
d (Pk) in Hd(Pk) such that , if

f is in H ∗
d (Pk), then d−pn(fn)∗(S)!T p uniformly with respect to S∈Cp. In particular ,

for f in H ∗
d (Pk), T p is the unique current in Cp which is f∗-invariant.

The open set H ∗
d (Pk) is given by the following lemma.

Lemma 5.4.5. There is a Zariski dense open set H ∗
d (Pk) in Hd(Pk) and an integer

N>1 such that , if f is in H ∗
d (Pk) and if δ denotes the maximal multiplicity of fN at

a point in Pk, then (20k2δ)8k<dN .

Proof. Fix an N large enough. Observe that the set H ∗
d (Pk) of f satisfying the

previous inequality is a Zariski open set in Hd(Pk). We only have to construct such a
map f in order to obtain the density of H ∗

d (Pk). Choose a rational map h: P1!P1 of
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degree d whose critical points are simple and have disjoint infinite orbits. Observe that the
multiplicity of hN at every point is at most equal to 2. We construct the map f using an
idea of Ueda. Let σk denote the group of permutations of {1, ..., k}. It acts in a canonical
way on P1×...×P1, k times. Using the symmetric functions on (x1, ..., xk)∈P1×...×P1,
one shows that P1×...×P1 divided by σk is isomorphic to Pk. Let π: P1×...×P1!Pk

denote the canonical map. If f̂ is the endomorphism of P1×...×P1, k times, defined by
f̂(x1, ..., xk):=(h(x1), ..., h(xk)), then there is a holomorphic map f : Pk!Pk of algebraic
degree d such that f �π=π�f̂ . We also have fN

�π=π�f̂N . Consider a point x in Pk and
a point x̂ in π−1(x). The multiplicity of f̂N at x̂ is at most equal to 2k. It follows that
the multiplicity of fN at x is at most equal to 2kk!, since π has degree k!. Therefore, f

satisfies the desired inequality if N is large enough.

Replacing f by fN , one may assume that f satisfies the lemma for N =1. Let δ be
the maximal multiplicity of f at a point in Pk. We introduce some notation. We call
dynamical super-potential of S the function VS defined by

VS := US−UT p−cS , where cS := US(T k−p+1)−UT p(T k−p+1),

and US and UT p are the super-potentials of mean 0 of S and T p. We also call dynamical
Green quasi-potential of S the form

VS := US−UT p−(mS−mT p +cS)ωp−1,

where US and UT p are the Green quasi-potentials of S and T p, and mS and mT p their
means.

Lemma 5.4.6. We have VS(T k−p+1)=0, VS(R)=〈VS , R〉 for smooth R in Ck−p+1,
and VL(S)=d−1VS �Λ on Ck−p+1. Moreover , US−VS is bounded by a constant indepen-
dent of S.

Proof. It is clear that VS(T k−p+1)=0. Since T k−p+1 has bounded super-potentials,
cS is bounded by a constant independent of S. Hence, as UT p is bounded, US−VS is
bounded by a constant independent of S. For smooth R, we have

〈VS , R〉= (〈US , R〉−mS)−(〈UT p , R〉−mT p)−cS = US(R)−UT p(R)−cS = VS(R).

It remains to prove that VL(S)=d−1VS �Λ. Since Λ(T k−p+1)=T k−p+1, we have VL(S)=
d−1VS �Λ=0 at T k−p+1. Hence, we only have to show that VL(S)−d−1VS �Λ is constant.
By Proposition 5.1.8, we have

UL(S) = d−1US �Λ+UL(ωp)+const
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and, since L(T p)=T p, this implies that

UT p = d−1UT p �Λ+UL(ωp)+const.

It follows that

VL(S) = d−1US �Λ−d−1UT p �Λ+const.

So, VL(S)−d−1VS �Λ is constant.

Lemma 5.4.7. Let Wε be the ε-neighbourhood of the set P of critical values of f

and W c
ε be the complement of Wε with 0<ε�1. There is a constant c>0 independent

of ε such that , for smooth R in Ck−p+1 and for 0<ε′�ε, we have

‖Λ(R)ε′−Λ(R)‖∞,W c
ε

6 c‖R‖C 1ε−5kε′,

where Λ(R)ε′ is the ε′-regularization of Λ(R); see Remark 2.1.7 for the terminology.

Proof. Let Bε be the ball of radius ε centered at a given point a of W c
ε . Since Bε

does not intersect P , f admits dk inverse branches on Bε. More precisely, there are dk

injective holomorphic maps gj : Bε!Pk such that f �gj =id on Bε. Observe that, since f

is finite, when the diameter of a ball B tends to 0, the connected components of f−1(B)
tend to single points. So, gj(Bε) have small size. Using Cauchy’s integral, it is easy to
check that all the derivatives of order n of gj on Bε/2 are .ε−n. On Bε, we have

Λ(R) = d−p+1
dk∑

j=1

g∗j (R).

For fixed local real coordinates (x1, ..., x2k), R is a combination with smooth coefficients
of dxj1∧...∧dxj2k−2p+2 . Hence, the estimate on the derivatives of gj implies that

‖g∗j (R)‖C 1(Bε/2) . ‖R‖C 1ε−2k+2p−3 . ‖R‖C 1ε−5k.

It follows that

‖Λ(R)‖C 1(W c
ε/2)

. ‖R‖C 1ε−5k.

Let τ be an automorphism of Pk close enough to the identity. Lemma 2.1.8 implies that

‖τ∗(Λ(R))−Λ(R)‖∞,W c
ε

. ‖R‖C 1ε−5k dist(τ, id).

We then deduce the desired estimate from the definition of Λ(R)ε′ .
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Lemma 5.4.8. The quasi-potentials of f∗(ω) are δ−1-Hölder continuous.

Proof. Let B be a small ball in Pk. The inverse image f−1(B) of B is a union of
small open sets. Hence, there is a smooth psh function u on f−1(B) such that ω=ddcu

there. Define the function v on B by

v(z) :=
∑

w∈f−1(z)

u(w),

where the points in f−1(z) are repeated according to their multiplicity. It is clear that v

is continuous and ddcv=f∗(ω). We only have to show that v is δ−1-Hölder continuous.
Recall that the multiplicity of f at every point is 6δ. By  Lojasiewicz’s inequality [24,
Lemma 4.3], we can write, for z and z′ in B,

f−1(z) = {w1, ..., wdk} and f−1(z′) = {w′
1, ..., w

′
dk},

so that distFS(wj , w
′
j).distFS(z, z′)δ−1

. Hence,

|v(z)−v(z′)|6 dk‖u‖C 1 max distFS(wj , w
′
j) . distFS(z, z′)δ−1

.

This implies the lemma.

Lemma 5.4.9. Let P denote the set of critical values of f as above. If R is smooth,
then VS(Λ(R))=〈VS , Λ(R)〉Pk\P .

Proof. Observe that Λ(R) is smooth outside P . We will show that

US(Λ(R)) = 〈US , Λ(R)〉Pk\P−mS .

This and the same identity for T p imply the result. Since R6cωk−p+1 for a constant
c>0, we have

Λ(R) 6 cd1−pf∗(ωk−p+1) 6 cd1−p[f∗(ω)]k−p+1.

Lemma 5.4.8 and Proposition 2.3.6 imply that, when θ!0, 〈USθ
, Λ(R)〉Pk\P converge to

〈US , Λ(R)〉Pk\P . So, it is enough to consider the case where S is smooth. In this case,
US is smooth. Since Λ(R) has no mass on P , we have

〈US , Λ(R)〉Pk\P−mS = 〈US , Λ(R)〉−mS = US(Λ(R)).

This completes the proof.
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Proposition 5.4.10. For every smooth form R in Ck−p+1, d−4n/5VS(Λn(R)) con-
verge to 0 uniformly with respect to S. In particular , we have |log cap(Λn(R))|=o(d4n/5).

Fix an integer n large enough and define ε:=d−n. In what follows, the symbols .

and & mean inequalities up to multiplicative constants which are independent of n and j.
Observe that we may assume S to be smooth. Define εj :=ε(20k2δ)6kj

for 06j6n. The
main point here is that εj/εj−1 has to be small. Define also by induction R0 :=R and
Rj :=Λ(Rj−1)εj , the εj-regularization of Λ(Rj−1); see Remark 2.1.7 for the terminology.
Let Vj be the Green dynamical quasi-potentials of Lj(S). They are forms with bounded
mass.

Lemma 5.4.11. We have d−j |VS(Rj)|.(−log ε)d−j/4.

Proof. By Proposition 2.1.6, we have

‖Rj‖∞ . ε−2k2−4k
j . ε−4k2

j .

Hence, Proposition 3.2.10 applied to K=Pk implies that

d−j |VS(Rj)|. d−j(−log εj) = d−j(−log ε)(20k2δ)6kj .

Lemma 5.4.5 implies the result. Recall that we suppose N =1.

Lemma 5.4.12. We have 〈Vn−j , Λ(Rj−1)−Rj〉Pk\P &−εj.

Proof. An analogous inequality for ±UT p instead of Vn−j is easily deduced from the
Hölder continuity of the Green super-functions, since dist1(Λ(Rj−1), Rj).εj . Observe
also that V ′

n−j :=Vn−j +UT p−cωp is negative for some universal constant c>0. Since
Λ(Rj−1) and Rj have the same mass, we also have

〈V ′
n−j , Λ(Rj−1)−Rj〉Pk\P = 〈Vn−j +UT p , Λ(Rj−1)−Rj〉Pk\P .

Proposition 2.1.6 implies that

‖Rj−1‖C 1 . ε−2k2−4k−1
j−1 . ε−5k2

j−1 .

Let Wj denote the ε
(10k)−1

j -neighbourhood of P and W c
j its complement. We obtain from

Lemma 5.4.7 applied to R:=Rj−1 that

‖Λ(Rj−1)−Rj‖∞,W c
j

. ‖Rj−1‖C 1 [ε(10k)−1

j ]−5kεj . ε−5k2

j−1 ε
1/2
j . εj .

As V ′
n−j has bounded mass, we deduce that

|〈V ′
n−j , Λ(Rj−1)−Rj〉W c

j
|. εj .
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It remains to prove that

〈V ′
n−j , Λ(Rj−1)−Rj〉Wj\P >−εj .

Since V ′
n−j is negative and Rj is positive, it is enough to bound the integral

〈V ′
n−j , Λ(Rj−1)〉Wj\P .

By Proposition 2.1.6, we have

Rj−1 . ‖Rj−1‖∞ωk−p+1 . ε−4k2

j−1 ωk−p+1.

It follows that
Λ(Rj−1) . ε−4k2

j−1 f∗(ωk−p+1) . ε−4k2

j−1 [f∗(ω)]k−p+1.

Lemma 5.4.8 and Proposition 2.3.6 then imply that

|〈V ′
n−j , Λ(Rj−1)〉Wj\P |. ε−4k2

j−1 ε
(10k)−1(20k2δ)−kδ−k

j . ε
−(20k2δ)2k

j−1 ε
(20k2δ)−3k

j . εj .

This completes the proof.

End of the proof of Proposition 5.4.10. Since VS is bounded from above by a con-
stant independent of S, we only have to bound VS(Λn(R)) from below. By Lemmas 5.4.6
and 5.4.9, since R0=R and the Rj are smooth, we have

d−nVS(Λn(R)) = d−1VLn−1(S)(Λ(R0))

= d−1〈Vn−1, Λ(R0)−R1〉Pk\P +d−1〈Vn−1, R1〉

= d−1〈Vn−1, Λ(R0)−R1〉Pk\P +d−1VLn−1(S)(R1)

= d−1〈Vn−1, Λ(R0)−R1〉Pk\P +d−2VLn−2(S)(Λ(R1)).

By induction, we obtain

d−nVS(Λn(R)) = d−1〈Vn−1, Λ(R0)−R1〉Pk\P

+...+d−n〈V0, Λ(Rn−1)−Rn〉Pk\P +d−nVS(Rn).

It follows from Lemmas 5.4.11 and 5.4.12 that

d−nVS(Λn(R)) &−d−1ε−...−d−nεn−d−n/4(− log ε) &−ε−d−n/4(− log ε).

Since ε=d−n, we get the result.
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End of the proof of Theorem 5.4.4. Consider a current S in Cp and a smooth form
R in Ck−p+1. We want to prove that Ln(S) converge to T p uniformly with respect
to S. By Propositions 3.2.6 and 3.1.9, it is enough to show that VLn(S)(R) converge to 0
uniformly with respect to S. By Lemma 5.4.6, we have that

VLn(S)(R) = d−nVS(Λn(R)).

Proposition 5.4.10 implies the result.

Proposition 5.4.13. Assume that f is in H ∗
d (Pk). For any α>0, there are con-

stants c>0 and λ>1 such that if S is in Cp and Φ is a test (k−p, k−p)-form of class
C α, then

|〈d−pn(fn)∗(S)−T p, Φ〉|6 cλ−n‖Φ‖C α .

In particular , if ϕ is a C α function such that 〈T k, ϕ〉=0, then

‖d−kn(fn)∗(ϕ)‖∞ 6 cλ−n‖ϕ‖C α .

Proof. We prove the first assertion. Using the theory of interpolation as in Lem-
ma 2.1.2, we only have to prove the case α=3. Assume that Φ has a bounded C 3-norm.
Multiplying Φ by a constant allows one to assume that ddcΦ=R+−R−, where R± are C 1

forms in Ck−p+1 with bounded C 1-norm. A straighforward computation as above gives

〈d−pn(fn)∗(S)−T p, Φ〉= d−nVS(Λn(R+))−d−nVS(Λn(R−)).

The estimates we obtained above give

d−nVS(Λn(R±)) &−nd−n/4.

On the other hand, since VS is bounded from above uniformly with respect to S, we have

d−nVS(Λn(R±)) . d−n.

So, it is enough to take a λ smaller than d1/4.
For the second assertion, if δa is the Dirac mass at a, then

〈d−kn(fn)∗(δa), ϕ〉= 〈δa, d−kn(fn)∗(ϕ)〉= d−kn(fn)∗(ϕ)(a).

Since 〈T k, ϕ〉=0, we deduce from the first assertion that

|d−kn(fn)∗(ϕ)(a)|6 cλ−n‖ϕ‖C α .

This completes the proof.

Note that, for α62, we can take λ to be any constant smaller than dα/2 if we replace
H ∗

d (Pk) by a suitable Zariski open set depending on λ. In dimension 1, Drasin–Okuyama
proved in [25] that the second assertion holds for every f if a is a point on the Julia set,
i.e. on the support of the equilibrium measure.
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5.5. Equidistribution problem for automorphisms

In this section, we consider the class of regular polynomial automorphisms introduced
by the second author in [44]. Let f be a polynomial automorphism of Ck. We extend f

to a birational map on Pk that we still denote by f . Let I+ and I− be the indeterminacy
sets of f and f−1, respectively. With the notation of §5.1, we have I=I+ and I ′=I−.
They are analytic subsets of codimension >2 in Pk. The map f is said to be regular if
I+∩I−=∅. We summarize here some properties of f , which are deduced from the above
assumption [44].

The indeterminacy sets I± are irreducible and there is an integer p such that

dim I+ = k−p−1 and dim I− = p−1.

They are contained in the hyperplane at infinity L∞. We also have f(L∞\I+)=f(I−)=I−

and f−1(L∞\I−)=f−1(I+)=I+. If d± denote the algebraic degrees of f±, then dp
+=dk−p

− .
Denote by K+ (resp. K−) the set of points z in Ck such that the forward orbit {fn(z)}n>0

(resp. the backward orbit {f−n(z)}n>0) is bounded in Ck. They are closed subsets in Ck

and 	K±=K±∪I±. Moreover, I− is attracting for f and Pk\	K+ is the attracting basin; I+

is attracting for f−1 and Pk\	K− is the attracting basin.
The positive closed (1, 1)-currents d−n

± (f±n)∗(ω) converge to the Green (1, 1)-cur-
rents T± associated with f±1. These currents have Hölder continuous quasi-potentials
outside I± and satisfy f∗(T+)=d+T+ and f∗(T−)=d−T−. The self-intersections T p

+ and
T k−p
− are positive closed currents of mass 1 with support in the boundaries of 	K+ and
	K−, respectively. The probability measure µ:=T p

+∧T k−p
− is supported in the boundary

of K:=K+∩K−. The current T s
+, 16s6p, is the Green current of order s of f and its

super-potentials are called Green super-potentials of order s of f .
Let Ck−s+1(W ) denote the set of currents in Ck−s+1 with compact support in an

open set W . We assume that W is a neighbourhood of I− such that �W∩I+=∅. Since
dim I−=p−1, Ck−s+1(W ) is not empty for s6p. If U is a function on Ck−s+1(W ), define

‖U ‖∞,W := sup
R∈Ck−s+1(W )

|U (R)|.

In the following result, we give a new construction of the currents T s
+ and T s

−. Note that
we cannot apply the results of §5.3 here, since Σ′=L∞. Indeed, we apply f∗ only to
currents without mass on L∞.

Theorem 5.5.1. Let f and W be as above. Then, the Green super-potentials of
order s of f , 16s6p, are Hölder continuous on Ck−s+1(W ). Let Sn be currents in Cs

and USn be super-potentials of Sn such that ‖USn‖∞,W =o(dn
+) for an open set W which

contains 	K−. Then, d−sn
+ (fn)∗(Sn)!T s

+.
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It is shown in [44] that the current f∗(ωs) is of mass ds
+ for 16s6p; see also §5.1. It

follows that f∗(ωk−s) is of mass ds
+. Define Ls :=d−s

+ f∗ and Λs :=d−s+1
+ f∗. Assume that

the super-potentials of S are finite on Ck−s+1(W ). Then, S is f∗-admissible, because
Λs(R) belongs to Ck−s+1(W ) when supp(R) is close enough to I−. By Lemma 5.1.6
and Proposition 5.1.8, the current f∗(S) is well defined and is of mass ds

+. Consider a
super-potential ULs(ωs) of Ls(ωs). Since Ls(ωs) is smooth on W , it is easy to check that
ULs(ωs) is Lipschitz on Ck−s+1(W ). We first prove the following result.

Proposition 5.5.2. Let Sn be currents in Cs and USn
be super-potentials of Sn

with ‖USn‖∞,W =o(dn
+). If S is a limit value of d−sn

+ (fn)∗(Sn), then S admits a super-
potential which is equal on Ck−s+1(Pk\	K+) to

∑∞
n=0 d−n

+ ULs(ωs)�Λn
s . Moreover , this

equality holds on Ck−s+1(Pk\I+) when W contains 	K−.

Proof. Reducing W allows one to assume that f(W )bW . If W contains 	K−, we can
keep this property. Fix an open set W0 relatively compact in Pk\	K+ which contains I−.
If W contains 	K−, we can take W0 relatively compact in Pk\I+. Observe that f−m(W )
contains W0 for m large enough. So, replacing Sn by d−sm

+ (fm)∗(Sn+m) and W by some
open set of f−m(W ) allows one to assume that W0bW .

By Proposition 5.1.8, there is a super-potential of Ls(Sn) which is equal to

d−1
+ USn

�Λs+ULs(ωs)

on Ck−s+1(W ). We apply again this proposition to Ls(Sn). There is a super-potential
of L2

s(Sn) which is equal to

d−2
+ USn

�Λ2
s+ULs(ωs)+d−1

+ ULs(ωs)�Λs

on Ck−s+1(W ). By induction, Ln
s (Sn) admits a super-potential ULn

s (Sn) equal to

d−n
+ USn �Λ

n
s +ULs(ωs)+d−1

+ ULs(ωs)�Λs+...+d−n+1
+ ULs(ωs)�Λn−1

s

on Ck−s+1(W ). By hypothesis, the first term tends to 0. Hence, ULn
s (Sn) converge to∑∞

n=0 d−n
+ ULs(ωs)�Λn

s on Ck−s+1(W ). This sum converges since ULs(ωs) is Lipschitz on
Ck−s+1(W ).

By Proposition 3.2.6, it remains to show that ULn
s (Sn) are bounded from above

uniformly with respect to n. For this purpose, it is enough to show that the means
ULn

s (Sn)(ωk−s+1) of ULn
s (Sn) are bounded from above uniformly with respect to n. If R0

is a smooth form in Ck−s+1(W0), then we have

ULn
s (Sn)(R0) = d−n

+ USn(Λn
s (R0))+ULs(ωs)(R0)+...+d−n+1

+ ULs(ωs)(Λn−1
s (R0)).

This sum is bounded from above. On the other hand, R0 admits a positive quasi-
potential, since it is smooth. Lemma 3.2.9 implies the result.
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End of the proof of Theorem 5.5.1. Since W contains 	K−, by Proposition 5.5.2, any
cluster point of Ln

s (Sn) has a super-potential which is equal to
∑∞

n=0 d−n
+ ULs(ωs)�Λn

s

on Ck−s+1(Pk\I+). Proposition 3.1.9 implies that there is only one cluster point for
the sequence Ln

s (Sn), hence Ln
s (Sn) converge to a current Ts. This current does not

depend on Sn, since it admits a super-potential independent of Sn. For Sn=ωs, we
obtain that Ts is the Green current of order s of f . It admits a super-potential UTs equal
to

∑∞
n=0 d−n

+ ULs(ωs)�Λn
s on Ck−s+1(Pk\I+). Lemma 5.4.2 implies that this function is

Hölder continuous on Ck−s+1(W ).
Let T+ :=T1. We next want to prove that Ts=T s

+. For this purpose, it is sufficient to
show that Ts and Tl are wedgeable and Ts∧Tl=Ts+l when s+l6p. Since s+l6p, there is
a smooth form Ω∈Ck−s−l+1 with compact support in Pk\I+. Hence, Ω∧Tl has compact
support in Pk\I+ and the super-potentials of Ts are finite at Ω∧Tl. It follows that Ts

and Tl are wedgeable.
The computation in Proposition 5.5.2 implies that Ln

s (ωs) admits a super-potential
ULn

s (ωs) which is equal to
∑n−1

j=0 d−j
+ ULs(ωs)�Λj

s on Ck−s+1(Pk\I+). Fix a real smooth
test form Φ of bidegree (k−s−l, k−s−l) with compact support in Pk\I+. As in Proposi-
tion 3.1.9, write ddcΦ=c(Ω+−Ω−) with c>0 and Ω± in Ck−s−l+1(Pk\I+). The sequence
Ω±∧Ln

l (ωl) converges to Ω±∧Tl. Since these currents have supports in a fixed com-
pact subset of Pk\I+, the values of ULn

s (ωs) at Ω±∧Ln
l (ωl) converge to the value of UTs

at Ω±∧Tl. The formula (4.1) implies that Ln
s (ωs)∧Ln

l (ωl) converge to Ts∧Tl. On the
other hand, Ln

s+l(ω
s+l) and Ln

s (ωs)∧Ln
l (ωl) are smooth forms which are equal outside

I+. They have no mass on I+ because dim I+<k−s−l. Hence, these currents are equal.
Therefore, letting n!∞ gives Ts+l=Ts∧Tl, and in particular Ts=T s

+.

Theorem 5.5.3. The Green current T s
+ is the most diffuse f∗-invariant current in

Cs. In particular , it is extremal in the convex set of f∗-invariant currents in Cs.

Proof. It follows from the convergence in Theorem 5.5.1 that T s
+ is f∗-invariant. Let

T be an f∗-invariant current in Cs and UT be a super-potential of T . Proposition 5.1.8
implies that Ls(T ) admits a super-potential U which is equal to d−1

+ UT �Λs+ULs(ωs)

on smooth R in Ck−s+1. Since Ls(T )=T , there is a constant c such that U =UT +c.
Subtracting an appropriate constant from UT gives another super-potential that we still
denote by UT , such that

UT = d−1
+ UT �Λs+ULs(ωs)

on R in Ck−s+1 which is smooth in a neighbourhood of I+. The condition on R is
invariant under Λs. So, iterating the above identity gives

UT = d−n
+ UT �Λn

s +
n−1∑
j=0

d−j
+ ULs(ωs)�Λj

s.
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Since UT is bounded from above, letting n!∞, we obtain

UT 6
∞∑

j=0

d−j
+ ULs(ωs)�Λj

s = UT s
+
.

This identity holds on smooth forms R in Ck−s+1. Hence, T s
+ is more diffuse than T .

We now prove that T s
+ is extremal among f∗-invariant currents. Assume that T s

+=
1
2 (T +T ′) with T and T ′ in Cs invariant by f∗. Let UT be as above. Let UT ′ be the
analogous super-potential of T ′. It is the unique super-potential which satisfies

UT ′ = d−1
+ UT ′ �Λs+ULs(ωs)

on smooth forms in Ck−s+1. Observe that 1
2 (UT +UT ′) is a super-potential of T s

+ satis-
fying the same property. It follows that

1
2 (UT +UT ′) = UT s

+
.

We deduce from the inequalities UT 6UT s
+

and UT ′6UT s
+

that UT and UT ′ are equal to
UT s

+
. Hence, T =T ′=T s

+. This implies the result.

In the case of bidegree (p, p), we have the following stronger result which is another
main application of the super-potentials. It was proved by Fornæss and the second author
in the case of dimension 2, [30].

Theorem 5.5.4. The current T p
+ is the unique positive closed current of bidegree

(p, p) of mass 1 supported in 	K+. The current T k−p
− is the unique positive closed current

of bidegree (k−p, k−p) of mass 1 supported in 	K−.

In what follows, we only consider currents S in Cp with support in 	K+. By Propo-
sition 3.2.10, their super-potentials of mean 0 are bounded on Ck−p+1(W ) uniformly
with respect to S when W bPk\	K+. In particular, they are bounded at the current
R∞ :=(deg I−)−1[I−]. We call dynamical super-potential of S the function VS defined by

VS := US−UT p
+
−cS , where cS := US(R∞)−UT p

+
(R∞),

and US and UT p
+

are the super-potentials of mean 0 of S and T p
+ . We also call the

dynamical Green quasi-potential of S the form

VS := US−UT p
+
−(mS−mT p

+
+cS)ωp−1,

where US and UT p
+

are the Green quasi-potentials of S and T p
+ , and mS and mT p

+
are

their means. Denote, for simplicity, L:=Lp and Λ:=Λp.
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Lemma 5.5.5. Let W bPk\I+ be an open set. Then, VS(R∞)=0, VS(R)=〈VS , R〉
for smooth R in Ck−p+1(W ) and VL(S)=d−1

+ VS �Λ on Ck−p+1(W ). Moreover , US−VS

is bounded on Ck−p+1(W ) by a constant independent of S.

Proof. It is clear that VS(R∞)=0. Recall that mS , mT p
+

and cS are bounded. Since
UT p

+
is continuous on Ck−p+1(W ), US−VS is bounded on Ck−p+1(W ) by a constant

independent of S. We also have, for smooth R in Ck−p+1(W ),

〈VS , R〉= (〈US , R〉−mS)−(〈UT p
+
, R〉−mT p

+
)−cS = US(R)−UT p

+
(R)−cS = VS(R).

It remains to prove that VL(S)=d−1
+ VS �Λ on Ck−p+1(W ). Observe that, since I−

is irreducible, Λ(R∞)=R∞. We deduce that VL(S)=d−1
+ VS �Λ=0 at R∞. Hence, we

only have to show that VL(S)−d−1
+ VS �Λ is constant. By Proposition 5.1.8 (see also

Proposition 5.5.2), we have

UL(S) = d−1
+ US �Λ+UL(ωp)+const,

and since L(T p
+)=T p

+ , this implies that

UT p
+

= d−1
+ UT p

+
�Λ+UL(ωp)+const.

It follows that
VL(S) = d−1

+ US �Λ−d−1
+ UT p

+
�Λ+const.

It is clear that VL(S)−d−1
+ VS �Λ is constant.

Proof of Theorem 5.5.4. Consider a current S in Cp(Pk) with support in 	K+. Define
Sn :=dpn

+ (fn)∗(S) on Ck. These currents are positive closed with support in 	K+. Since
	K+=K+∪I+, Sn are defined on Pk\I+. As dim I+<k−p, Sn can be extended to positive
closed currents on Pk without mass on I+ [37]. We also denote this extension by Sn.
Since fn is an automorphism in Ck, we have (fn)∗(Sn)=dpn

+ S on Ck. The equality holds
in Pk because the currents have supports in 	K+ and hence, have no mass at infinity. So,
necessarily, Sn have mass 1. Let VSn and VS denote the dynamical super-potentials of
Sn and S, respectively. We want to prove that S=T p

+ . According to Proposition 3.1.9,
it is enough to show that VS =0 on Ck−p+1(W ) for any W disjoint from I+.

We have Ln(Sn)=S, hence Lemma 5.5.5 implies that VS =d−n
+ VSn

�Λn. Since VSn

is bounded from above on Ck−p+1(W ) by a constant independent of n, the last identity
implies that VS 60 on Ck−p+1(W ). If VS 6=0 on Ck−p+1(W ), there is a smooth form
R in Ck−p+1(W ) such that VS(R)<0. It follows that VSn(Λn(R)).−dn

+. Let W ′′ be
a neighbourhood of 	K+, disjoint from I−, such that f−1(W ′′)⊂W ′′. Hence, ‖Df−1‖
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is bounded on W ′′ by some constant M . It follows that ‖Λn(R)‖∞,W ′′.M3kn. The
inequality VSn(Λn(R)).−dn

+ contradicts Proposition 3.2.10, which gives

|VSn
(Λn(R))|. 1+log M3kn.

So, VS =0 on Ck−p+1(W ) and this completes the proof.

The following result holds for currents of integration on generic varieties of dimension
k−p in Pk.

Corollary 5.5.6. Let S be a current in Cp such that supp(S)∩I−=∅. Then,
d−pn

+ (fn)∗(S) converge to T p
+.

Proof. Let W be a neighbourhood of I− such that f(W )bW and W∩supp(S)=∅.
Hence, f−n(W )⊂f−n−1(W ) and d−pn

+ (fn)∗(S) has support in Pk\f−n(W ). It follows
that the limit values of d−pn

+ (fn)∗(S) are supported in the complement of
⋃

n>0 f−n(W ),
which is contained in 	K+. By Theorem 5.5.4, the only limit value is T p

+ . Following the
proof of that theorem, it is not difficult to obtain here a speed of convergence.

Remark 5.5.7. In [48], de Thélin proved that the measure µ is hyperbolic. It admits
k−p strictly negative and p strictly positive Lyapounov exponents. Pesin’s theory implies
that if a point a is generic with respect to µ, then it admits a stable manifold of dimension
k−p and an unstable manifold of dimension p. If p=k−1 and if τ : C!	K+ is an entire
curve, using the Ahlfors construction [1], we obtain positive closed (k−1, k−1)-currents
with support in τ(C). Indeed, Ahlfors inequality implies the existence of rn!∞ such
that the currents of integration on τ(∆rn), properly normalized, converge to a positive
closed current of mass 1. Theorem 5.5.4 implies that this current is equal to T k−1

+ . Hence
τ(C) contains the support of T k−1

+ . This result holds for generic stable manifolds of µ.

Remark 5.5.8. For 16s6p, if S is a current in Cs with super-potentials bounded on
Ck−s+1(W ) for some small neighbourhood W of I−, then we can prove in the same way
that d−sn

+ (fn)∗(S) converge to T s
+. The proof follows the same lines as in Theorem 5.5.4.

We should choose W ′′ large enough, in particular we have W ′′∪W =Pk. In order to
apply Proposition 3.2.10, we write R as a combination of a current in Ck−p+1(W ) and a
smooth form with bounded C 0-norm.
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Supér., 41 (2008), 307–336.

[25] Drasin, D. & Okuyama, Y., Equidistribution and Nevanlinna theory. Bull. Lond. Math.
Soc., 39 (2007), 603–613.
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Math., 172 (2008), 89–116.
[49] Triebel, H., Interpolation Theory , Function Spaces, Differential Operators. North-Holland

Mathematical Library, 18. North-Holland, Amsterdam, 1978.
[50] Vigny, G., Dynamics semi-conjugated to a subshift for some polynomial mappings in C2.

Publ. Mat., 51 (2007), 201–222.



82 t.-c. dinh and n. sibony

Tien-Cuong Dinh
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