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Abstract

We study a financial market with incompleteness arising from two sources: stochastic
volatility and portfolio constraints. The latter are given in terms of bounds imposed on
the borrowing and short-selling of a ‘hedger’ in this market, and can be described by a
closed convex set K. We find explicit characterizations of the minimal price needed to
super-replicate European-type contingent claims in this framework. The results depend
on whether the volatility is bounded away from zero and/or infinity, and also, on if
we have linear dynamics for the stock price process, and whether the volatility process
depends on the stock price. We use a previously known representation of the minimal
price as a supremum of the prices in the corresponding shadow markets, and we derive
a PDE characterization of that representation.
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1. Introduction

We consider a Markovian model of a financial market in which the stock price is a solution
of a (possibly nonlinear) stochastic differential equation (SDE), with the volatility coefficient
driven by another diffusion process. There are two Brownian motions driving the correspond-
ing SDEs, therefore the market is incomplete. This is a standard way of modeling volatility
risk which is not hedgable by investing in the underlying only, and it was used by Hull
and White (1987) and Wiggins (1987), amongst others. We are primarily interested in the
minimal super-replication cost in this model of a European type option with payoff g(s)—
namely the cost of the least expensive dominating strategy for the option. Additionally, we
also analyse what happens if we impose convex constraints on the portfolio weights of the
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hedging wealth process. The latter problem is solved in Broadie et al. (1998), in the Black—
Scholes constant volatility framework. They show that the minimal cost for super-replication
of g under constraints is given by pricing another option g(s) > g(s) without the constraints,
with ¢ appropriately defined, to make the super-replicating portfolio satisfy the constraints.
We extend their results to the case of stochastic volatility.

In Section 2 we introduce the model and the constraints. In Section 3 we define the shadow
prices corresponding to the incompleteness of the market, and we re-derive a result of Cvitani¢
and Karatzas (1993), Jouini and Kallal (1995) and El Karoui and Quenez (1995), which gives
a lower bound on the minimal super-replication cost as a supremum of Black—Scholes prices
over all the associated shadow markets.

In Section 4 we state the main technical result (which is proved in the Appendix), i.e. the
cost (price) function is a viscosity supersolution to the Bellman equation associated with the
control problem (the use of the viscosity supersolutions approach turns out to be very powerful
and elegant in our problem). Next, using those results, in Section 5 we show that when the
volatility can reach (in the limit) both zero and infinity, or if it can reach infinity and the payoff
g is convex, the minimal super-replication cost (without constraints) is the cost of the minimal
buy-and-hold strategy—namely, equal to the concave envelope of g. If there are constraints,
such that one is allowed to put all the money in the stock, then it is the concave envelope of g
that is equal to the minimal cost. In Section 6 we consider the case of bounded volatility, and re-
derive the so-called Barenblatt PDE, suggested as the PDE for obtaining the super-replicating
price under stochastic volatility in Avellaneda et al. (1995). Our analysis shows that this gives
rise not only to a super-replicating strategy, but also to the least expensive one. Moreover, in
the case of linear dynamics, we extend the result to the case with portfolio constraints, simply
by substituting ¢ instead of g for the terminal condition. Similar results are shown to be valid
in the mixed case (unbounded volatility bounded away from zero) in Section 7. Finally, in
Section 8 we provide some examples.

Let us also mention that while finishing this paper we learned that, in the case of unbounded
volatility and no constraints, Frey and Sin (1999) obtained results similar to ours; however, they
use completely different methods and deal with less general payoffs, but more general price
processes. Related work also includes El Karoui et al. (1998), and Bergman et al. (1996).

2. The model

We consider a financial market which consists of one bank account, with constant price
process B(t) = 1 for all ¢ € [0, T'], and one risky asset with price process evolving according
to the following stochastic differential equation:

% =pu(t, S@), Y(t))dt +o1(t, S(t), Y (1)) dW1(t) 4+ o2(2, S(2), Y (1)) dWa (), (2.1)
dY (@) =n@, S@), Y (@) de + y(, S@), Y (1)) dWr(1). 2.2)

Here W = (W), W>) is a standard Brownian motion in R? defined on a complete probability
space (2, ¥, P). We shall denote by {F (¢)} the P-augmentation of the filtration generated
by W. The assumption that the interest rate of the bank account is zero could, as usual, be
easily dispensed with, by discounting. Throughout this paper, we make the usual standing
assumptions on the coefficients of the last SDE in order to ensure the existence of a unique
strong solution {(S;, Y;), 0 < t < T}, given the initial condition, that all coefficients are
continuous in (7, s, y) and satisfy for all # € [0, 7] and (s, y), (s', y') € R} x R,
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3" (01t s, 3) = s'o3(0. 5 ) + Iy (o5, y) = y (005’3

i=1,2
+lspt, s, y) = ', s', Y01+ n(t, 5, 9) =0, s', YD < Cs — sl + 1y = ¥'D,
(2.3)
for some positive constant C. We also assume
V(t,s,y) €0, T] x Ri xR, o1, s,y)>0andy(t,s,y) > 0. 24

Moreover, for simplicity, we assume that for any y € R, there is a positive probability that the
process Y will reach y before time 7.

Remark 2.1. Because our goal is mostly to illustrate the extreme behavior of the minimal
super-replicating price that can happen in stochastic volatility models, we do not always aim
at the most general assumptions possible. We could assume Lipschitz conditions in logs
on the coefficients in (2.1) and (2.2), for example, and the results would remain the same.
Moreover, we do not deal with markets with more than one risky asset. It does not seem
likely that one could get results as explicit as we get for the case of one stock only (although
Broadie et al. (1998) get explicit results for the multi-dimensional case, when volatility is
constant). Nevertheless, the viscosity supersolution characterization of the minimal super-
replication price would remain the same. (A related viscosity characterization is obtained in
Buckdahn and Hu (1998) in a different context.)

Consider an economic agent, endowed with an initial capital x, who invests at each time
t € [0, T] a proportion m(¢) of his wealth in the risky asset and the remaining wealth in the
bank account. Here m = {m(¢), 0 <t < T} is an {F (¢)} progressively measurable process
with fOT n(t)2(012+022)(t, S(t), Y (¢)) dt < oo, almost surely. Then the wealth process X**™ (¢)
satisfies the linear stochastic differential equation (for t < T'),

dX7 (1) = n(t)Xx’”(t)%, 2.5)

X*7(0) = x. (2.6)

Let K = [l,u], —o0 <1 <0 < u < oo be an arbitrary closed convex set in R containing
0. We say that a portfolio 7 is K-admissible if

n(t)e K, 0<t<T 2.7

holds P-a.s. The set of K-admissible portfolios will be denoted by Ak .

Remark 2.2. The set K specifies the constraints on borrowing and short-selling that our agent
must adhere to. He/she cannot borrow more than u times the amount he/she owns and cannot
sell short more than —/ times his/her current wealth. Notice also that since the wealth process
{X*7(t),0 <t < T}is acontinuous process, it is clear from (2.5) that, given an initial wealth
x > 0, we have X*7 (t) > 0 for all ¢ € [0, T], almost surely. Therefore, in this model where
the portfolio is defined as proportions of the wealth process, the no-bankruptcy condition is
automatically satisfied.
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In this paper, we consider European contingent claims defined by a terminal payoff g(S(7)),
where g is a non-zero and non-negative function. Given such a contingent claim, we then
consider the infimum U (0) of initial capitals x, which induce a wealth process X*” through
some admissible portfolio 7 € Ak such that X*™ hedges g(S(T)), i.e.

U@) =inf{x >0 : 3 € Ak, X" (T) > g(S(T)) P-as.}. 2.8)

It should be pointed out that we could also allow consumption (withdrawal of funds) in the
above definitions, and the results would not change.

The main result of this paper is an explicit solution to the problem of calculating U (0), as
in Broadie et al. (1998), who deal with the Black—Scholes model with constraints.

3. Shadow prices

We introduce in this section the shadow state-price densities relevant to our incomplete
market, following Cvitani¢ and Karatzas (1993) or Karatzas and Kou (1996). We denote by
A* the set of all adapted, R-valued processes A. An appropriately defined subset of A* will
correspond to the shadow prices associated with the incompleteness of the market due to the
stochastic volatility. We also introduce the shadow prices relevant to the incompleteness of the
market induced by the constraints: consider the support function of the convex set — K,

8(z) = sup {—xz}=uz" —Iz7, 3.D

xell,u]
and the associated effective domain

K={zeR :8(z) < o0}
={zeR :z>0ifu =occandz < 0if [ = —o0)}. (3.2)

Notice that § > 0 on K since 0 € [/, u]. Then, let D* be the set of all {F (¢)} adapted processes
v={v({),0 <t <T}suchthatv(¢) € K forall0 <t < T P-as. Given A € A*and v € D*,
we introduce the shadow state-price density process M*-¥ by

dM*V(@0) _ (p—=Moa/y) +v
M*v ()
MV (0) =1, (3.4)

) dwW () — & dWsr () 3.3)
o] 14

provided that the stochastic integrals can be defined. This happens to be too large a class of
shadow state-price densities, and we will find it convenient to reduce it by considering subsets
A and D of A* and D* (respectively), consisting only of almost surely bounded processes.
The following standing assumption is a natural generalization of the standard assumption that
the risk-neutral shadow state-price density is a martingale:

Assumption 3.1. The coefficient functions ., o1, 02, 11, y defining the dynamics of (S, Y) are

such that ,
Tl /A —A
/ (_> N (%)z du < o0, as..
0 14 o1

and M* are martingales, for all (A, v) € A x D.



Stochastic volatility models 527

For example, the latter will be satisfied if the Novikov condition (see Karatzas and Shreve
(1991)) is satisfied for all MV, with A and v bounded almost surely.

Therefore, given any A € A and v € D, we can define a probability measure Q"
equivalent to P, by dQ*V = M*V(T)dP. Then, by Girsanov’s theorem,

t —
Wit = wi + [ RO ) g (3.5)
0 o1
t
Wyl () = Wz(t)+/ g(u)du, (3.6)
0

is a Q*" standard Brownian motion in R? and the dynamics of the process (S, Y) are driven
by the SDE

5@ _ d S@t), Y (1)) dwHY S@t), Y(t)) dw’ 3.7
S0 =—v()dt +o1(2, S@), Y (@) dW" (1) + 022, S@), Y () AW, (1) 3.7
dY (1) = [n(t, S@), Y (1)) — A(0)]dr + y (1, S(1), Y (1)) dW3" (). (3.8)

Therefore, under Qk’” measure, the ‘discounted’ wealth process
X(t) := X (1) e Jo b0 du,
corresponding to a strategy 7 satisfies (suppressing the dependence on ¢ in coefficients)
dX(1) = X(O)[— (v 4 8(v)) dt + wo1 AW, (1) + o AW, (1)) (3.9)

Recalling the definition of §, we see that the discounted wealth process is a (non-negative)
Q’V-supermartingale. In particular, for a super-replicating process X we obtain

T
X(©0) = E¢"[X(T)] = EQx‘v[g(S(T))eXP ( —f 3(v(u))du>]-
0
A consequence of this is the next proposition.

T
Proposition 3.1. U(0) >  sup EQM[g(S(T))eXp<— / 8(v(u))du>].
(A V)EAXD 0

Remark 3.1. A more general result of this kind, with equality, was obtained in Cvitani¢ and
Karatzas (1993) and Karatzas and Kou (1996), in a (possibly) non-Markovian framework, but
with somewhat stronger boundedness assumptions on the volatility coefficients. We will prove
indirectly that the equality holds here also (under some assumptions), by characterizing the
right-hand side in Proposition 3.1 quite explicitly, and showing that one can super-replicate
g(S(T)) starting with the right-hand side as the initial investment.

From now on we also impose the following standing assumption.

Assumption 3.2. The payoff function g(-) is lower semicontinuous.
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4. Necessary conditions from the Bellman equation

As explained in the previous section, the super-replication cost at time ¢ has a lower bound
V (¢, S;, Y;) given by the following control problem:

A T
Vi, s,y)= sup E [g(S(T))eXp ( —/ S(V(M))du> | (S@), Y (1)) = (s, y)].
t

(A,V)EAXD
“.1)

In what follows, we assume that function V (¢, s, y) is finite. We have the following property
of the function V (we use the definition of Crandall, Ishii and Lions (1992) for viscosity
supersolutions).

Proposition 4.1. The value function V(t, s, y) is a lower semicontinuous viscosity supersolu-
tion to the Bellman equation,

inf [Lv+ §v + vsvg + vy +8(v)v] =0, 4.2)
(L, v)ERxK
where
Lv=—v; — %s202vm with 0% = 012 + 022, “4.3)
Gv = —nvy — %vayy — SO2Y Usy. (4.4)
Moreover,
V(T—,s,y) > g(s). 4.5

Proof. See Appendix A.

Notice that we only establish that V is a supersolution to the Bellman equation. Our control
problem is singular (due to the non-compactness of the set of controls), and it is well known
that there are many examples where the Bellman equation then fails to hold. In general,
that is also going to be the case in this paper. We could have used the normalized Bellman
equation as in Krylov (1980), which involves stronger conditions on the model in order to
define generalized derivatives of the value function V. The main advantage of the viscosity
approach is that it requires weaker conditions on the regularity of the value function V. In fact,
we will show that the characterization of the function V as a lower semicontinuous viscosity
supersolution of the Bellman equation is sufficient for our analysis.

We now derive some implications from Proposition 4.1 which will be sufficient to deduce
the super-replication cost U (0). Fix some (¢, s, y) € [0, T) x ]Ri x R. Then by the viscosity
supersolution definition, for any function ¢ € C 2([0, T) x R*+ X R) such that

0=(V—9)t,s,y) = i vV —9), 4.6
( o), s, y) [O’T)rgigixR( ®) (4.6)

we have
(Lo + G + vsps + Ay +8(W)@)(t,s,y) >0, forall (A, v) e R x K. 4.7)

By sending A to 00 it becomes clear that we must have

¢y(t.5,y) =0 4.8)

for any test function ¢ satisfying (4.6). We now need the following result.
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Lemmad4.1. LetV : Ax B — R, A CR" B CR, be alower semicontinuous supersolution
to the equation
Hx,y,Vy,Vyy) =0, x€A, yeB, 4.9

where H : Ax BxR? = Risa continuous function. Assume also that V (-, -) > —C for some
constant C > 0. Then, for any fixed xo € A, the function V (xq, -) is a lower semicontinuous
supersolution to the equation

H(xo,y,Vy,Vyy) =0, yeB. (4.10)
Proof. Let ¢ : B — R be a C? test function such that, for some yg € B, we have

0 = V(x0,y0) — (o) < Vixo,y) —#(y), VyeB. (4.11)

Since it is sufficient to check the viscosity property on the strict minima of V (xg, -) — ¢ (-), all
we have to do is prove that

H (x0, Y0, ¢y (y0), ¢yy(y0)) = 0. (4.12)

We define
v (x,y) =) —nlx —x0l>, x€A, yeB,
foralln € N, and
D (x,y) := V(x,y) — ™ (x, y).

Let / be a compact neighborhood of (xo, yo) in A x B. Being lower semicontinous, D)
attains its minimum on I, say at a point (x,, y,). There then exists a pair (x*, y*) € I and a
(relabeled) subsequence such that

(Xn, yn) = (x*, ¥ e L.

Now, since V is bounded from below and ¢ is continuous, we see that if x* # xg, then

D™ (x,, yp) — 00, as n — oo. This is a contradiction, since, for example, D™ (x,, y,) <
D™ (xo, yo) = V (x0, y0) — ¢(y0). We conclude that

x* = xo.

On the other hand, since V (xq, yo) — ¢ (y0) = D™ (xq, yo) = D™ (x,,, y,), we also have
V(x0. ¥0) = ¢ (y0) = liminf D™ (xy, yu)
> V(xo, y") — ¢y,
by lower semicontinuity. Consequently, (4.11) implies that
¥ = yo.

Now, for large enough 71, (x,,, y,) is a point of local minimum of D™ on I because it converges
to (xo, yo) (it is a classical local minimum if (xg, yp) is in the interior of A x Bj; otherwise, we
can always extend our functions appropriately so that (xg, yp) becomes an interior point, and
so that the local minimality is preserved). Thus, by the viscosity property of V (x, y), we have

H(xp, yn, w}(]n)(xn’ Yn)s w)(;) (xn, yn)) = 0.
Sending n — oo we get (4.12), and we have completed the proof.

From this we get the following result.
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Lemma 4.2. The function V does not depend on y.

Proof. From (4.8) we conclude that V (¢, s, y) is a lower semicontinuous viscosity super-
solution to the equation vy, = 0. By Lemma 4.1, we also have that the function V (z, s, ) is a
viscosity supersolution of the same equation, for any fixed (¢, s). We then fix a pair (¢, s) and
omit ¢, s in the following. Fix also yp, y» and consider yp < y; < y» and a test function ¢
such that

V-9)(y)=0= min (V—9¢)(y).

YO=SY=y2

Since the viscosity property remains the same if we consider local minima rather than global
minima, we conclude that

oy(y1) =0.

Think of y as a time variable, and the function V as a viscosity supersolution to the parabolic
PDE

vy =0, yely,yl vi2)=V(i).

Since the constant function v = V (y2) is also a solution, we have, by the maximum principle
(see Crandall ef al. (1992), Theorems 3.3 and 8.2; notice also that we reverse the direction of
the time variable in this proof):

Vi) =V, Yy=y=»
Since yo, y» are arbitrary, V is non-increasing. To prove the opposite inequality, define
W) =V +y—-y. Y=y

Fix some y| € (o, y2) and consider a C! test function v such that

(W —=v)(y») = min (W —9)(y).
YO=Y=y2
Then, defining the C' test function ¢ by

e =vO2+yo—¥) Yo=<y=y,

we see that
V—-—9)y2+yo—y1)= min (V—¢)(y)
YO=Yy=»2

by an obvious change of variable. Therefore, we must have
Vy(2 4+ yo — y1) = —¢y(y1) =0.
It follows that W is a supersolution to the parabolic PDE
vy =0, yely,yl v =V(io).

By the above argument this means that W(y) > W(y2), or V(y) > V(yp) for y € [yo, y2].
Since yg, y2 are arbitrary, V is non-decreasing, hence constant (in y).
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Accordingly, in the following, we omit the argument y in the function V. It then follows
from (4.7) that, in a viscosity sense,

LV +vsVy +8w)V = 0forallv e K. (4.13)
Writing condition (4.13) for v = 0 € K, we get
LV(t,s) >0, (t,5)€[0,T) x R%. (4.14)

Next, suppose that there exists some vy € K and (tg,50) € [0, T) x R*Jr such that [vgs Vy +
8(vo)V1(t9, so) < 0. Then by the cone property of K, the left-hand side of (4.13) can be sent
to —oo, which is a contradiction. Therefore, we must have, in a viscosity sense,

(wsVi +8(w)V)(t,s) >0, forallv e K and (t,s) €[0,T) x Ri. 4.15)

Combining (4.14) and (4.15), we get the following proposition.

Proposition 4.2. The function V does not depend on y and is a viscosity supersolution to the
equation
min {£v, inf (vsvg + 8(v)v)} =0. (4.16)
vek

In the following sections, we use this proposition in order to characterize explicitly the
solution U (0) to the hedging problem under different assumptions on the volatility function.

5. Unbounded volatility

In this section we provide an explicit solution to the hedging problem under the following
conditions.

Assumption 5.1. supo(t,s,y) =00 forall(t,s) € [0,T) x R%.
yeR

Assumption 5.2. in&a(t, 5,y) =0 forall (t,s) € [0,T) x R.
ye

Then we have the following preliminary result on the function V.

Lemma 5.1. (i) Under Assumption 5.1, the function V is concave in s for any fixedt € [0, T').
(ii) Under Assumption 5.2, the function V is non-increasing in t for any fixed s € RY.

Proof. From equation (4.14), we know that V is a viscosity supersolution to
—v,(t,5) = 307 (1,5, )5 vss(1,5) =0, (1,5,y) € [0, T) x R} x R.

(i) By considering a maximizing sequence of o (¢, s, y) for any fixed (¢, s) € [0, T) x R* , we
see that the function V (-, -) is a lower semicontinuous viscosity supersolution of the equation
—vgs = 0. By Lemma 4.1, the function V (¢, -) is a supersolution to the same equation, for
any fixed . We fix ¢ and suppress the dependence on ¢ in the following discussion. Since V is
non-negative, it can easily be checked that V is also a viscosity supersolution of the equation
ev —vgg = O forall € > 0. Let [a, b] be any closed interval in Ri and consider the differential
equation
(ev —vg5)(s) =0, wv(a) = V(a)and v(b) = V(b).
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Then, since V (-) is a lower semicontinuous viscosity supersolution of the last equation, by the
maximum principle (see Crandall et al. (1992), Theorems 3.3 and 8.2), we see that

- V(@) [eVE=9) — 1]+ V(b)[eVEs—a _ 1]

\%4
(5) T ,

for all ¢ > 0, since the function on the right-hand side is a solution to the same equation.
Sending ¢ to zero in the last inequality gives

s
+ V(a),
a

V(s) = [V(b) — V(a)]

b—
b—
for all s € [a, b]. Applying the last inequality to s = Aa + (1 — A)b for some X € [0, 1] gives

V(a4 (1 —1)b) > AV(a) + (1 — )V (b),

foralla, b € RY.

(ii) By considering a minimizing sequence of o (¢, s, y) for any fixed (¢, s) € [0, T) x R* , we
see that the function V (-, -) is a lower semicontinuous viscosity supersolution of the equation
—v; = 0. The result follows as in part (i) by an application of Lemma 4.1 and the maximum
principle.

Now, let # be the set of all functions mapping R* into R U {oco}. As in Broadie et al.
(1998), we introduce the operator H defined on # by

H(h)(s) = h(s) = sup h(se ") e ™, s eR%. (5.1)
vek

Then we have the following result on function V.

Lemma 5.2. Foranyt € [0, T), the function V (¢, -) is invariant under H, that is
V(t, )=V, tel0,T).

Proof. From equation (4.16), we have that for all v € K, V(t,-) is a lower semicontinuous
viscosity supersolution of

vsug(t, s) +5(v)v(t,s) =0, wv(t,sg) = V(t,s0).

Since § is non-negative, it follows from the maximum principle in the viscosity sense (see
Crandall et al. (1992)) that

s —38(v)/v .
Vi(t,s) > Vi, s0) <—> , VEK,
S0

since the right-hand side solves the same PDE. By taking so = s e™", we see that

Vit,s) >V, se V)e ™ ek,

whicb proves that V (¢, -) > V(t, -) for all ¢t € [0, T). The reverse inequality is trivial since
0OeK.
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Next, we consider the following optimal stopping problem
g(s) = sup E[g(Z°(1))], seRy, (5.2)
el
where T is the set of all non-negative stopping times and dZ%(t) = Z*(¢t) dW(¢), Z°(0) = s.
We provide the following characterizations of the functions g and g.

Lemma 5.3. g is the smallest function invariant under H such that g > g.

Proof. (i) From the definition of the operator H, it is clear that ¢ > g, since 0 € K, and
H(@) =3
(i1) Let & be any function invariant under H such that 7 > g. Then we have

h(s) = sup h(se™") e 30 > sup g(s e V)e W = g(s)
vek vek

which ends the proof.

Lemma 5.4. g is the smallest concave function such that g > g and H(g) = g.

Proof. (i) From the definition of g in (5.2), g is a superharmonic function, hence concave.
(ii) It is also clear that g > g. ~
(iii) We now prove that H(g) = g. Since Z* e (1) = e VZ5(r), we have forall v € K

gse™) e = sup E[Z(Z* (r)e™") e L.
el
This implies that
H(§)(s) = sup sup E[§(Z°(r)e™")e "], (5.3)
vek T€T
By taking v = 0 in the right-hand side of (5.3), we obviously have H(g) > g. By applying
Jensen’s inequality to the right-hand side of (5.3), we obtain

H(g)(s) <sup E |:sup 8(Z% (1) e_”)e_5(”):|

el vek
= sup E [H(§)(Z°(1))]. (5.4)

TeT
Since H(g) = g, (5.4) implies that H(g) < g and finally H(g) = &.
(iv) Let i be a concave function such that # > g and H(h) = h. By Lemma 5.3, h > g, and
S0

E[h(Z*(1))] = E[g(Z°(1))],

for all s > 0 and all stopping times t € 7. By Jensen’s inequality and since Z* is a martingale,
we have, foralln € N,

h(s) > E[g(Z*(1))]

for all stopping times T < n. This implies that

h(s) = sup E[§(Z° ()],

<n

and finally by sending »n to infinity, that & > g.
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Lemma 5.5. Forall s € R%, we have
g(s)=inf{c >0 :FA € R, sA/c € K, and V7 € R, c + A(z —5) > £(2)}.
Proof. Let us define the function f by
f(s)=inf{c>0 :3A R, sA/ce€ K, and Vz e R}, c + A(z —5) = §(2)}.

Since it is defined as the infimum of affine functions, f is a concave function. It is also clear
that f > g > g. Let us prove that f = f or equivalently that f < f since the reverse
inequality is always true. By definition of f, we have forallv € K

f(s e ™) e %™ =inflce®™ > 0 :3A € R, se "AJc e K,
andVz € R}, c + A(z —se™") > 8(2)}
=inf{c’ >0 :3A e R, sA'/c' e K,
andVz e RY '+ A'(z/ —s) = §(Z e ") e W}

Taking the supremum of this last relation over v € K, we obtain

f(s) <inf{c >0 :JA € R,sA/c € K,Vz e R, c+ A(z —s) > sup g(ze ") e 0Wy.

vek

Since H(g) = g, the last inequality means that f < f and so f = f. Let h be a concave
function such that # > g and h = h for all s > 0. By Lemma 5.3, » > g. Since & is concave,
we have, for all s, z € R*,

h(s) +h_(s)(z — s) = h(z) = §(2),

where h’_ is the left derivative of the concave function h. Since g is a non-zero and non-
negative function, so is /#; moreover, since / is concave, it is in fact positive on Rj. Let us now
prove that A = h’_(s) satisfies sA/h(s) € K. Since & < h, we have h(s) > h(se")e %W
and therefore

logh(s) —logh(se™) > —8(v), s>0andv € K.

Since K is a cone and § is positively homogeneous, this implies that for any s > 0 and v €
KNRY,
logh(s) —logh(se ") - —&8(v)

= , €>0,
s(1 —e—¢v) s(1 —e—¢v)

and by sending ¢ to zero, we get

sh’_(s)
h(s)

v +8() =0, ve KNR,.

By a similar argument (using the change of variable s’ = se™"), one shows that the last
inequality also holds for v € K N R_. Then, by Theorem 13.1 of Rockafellar (1970), this
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proves that sA/h(s) € K. Therefore, it follows by the definition of f that & > f. By
Lemma 5.4, we conclude that [ = g.

From the last lemma, the amount g(S5(0)) is the infimum of initial capitals of buy-and-hold
strategies which dominate the contingent claim defined by the payoff function g. It is easily
checked that the infimum is attained and that the associated portfolio can be taken as

g (8(0) S(r)
§(5(0) + g (S(0) [S() — SO

(t) =

where the denominator of the right-hand side term of the last equation is equal to X8(SO)-7 (r),
the wealth at time ¢ associated with the strategy 7 and the initial capital g(S(0)). Notice
that, since g is concave and dominates the non-zero and non-negative function g, we have
X8GO)-7 (1) > 0 and

7(@)>0, 0<r<T. 5.5

Furthermore, as in the proof of Lemma 5.5, we see that the portfolio strategy 7 is K -admissible
at time zero, i.e. 7(0) € K.

Remark 5.1. In the particular case g’ (S(0)) = 0, it is clear that 7 = 0 and therefore the
portfolio strategy 77 is K -admissible.

In the general case, we have the following result.

Lemma 5.6. Suppose 7w(0) # 0. Then the portfolio strategy 7w is K-admissible if and only if
u>1.

Proof. From (5.5), we have (1) > 0 > [ for all t € [0, T]. Therefore, the portfolio strategy
7 is K-admissible if and only if

Az

——— <u, foralz>0,

c+ A(z—ys)

where s = S(0), ¢ = g(S(0)) and A = g’ (S(0)) > 0. Since A is assumed to be non-zero,
this can be written equivalently as

(1 —u) < %(c — As), forallz > 0. (5.6)

Now, by the concavity of g, we have ¢ + A(z — s) > g(z) > 0 for all z > 0. By sending z to
zero, we see that the right-hand side of (5.6) is non-negative. Therefore (5.6) holds if and only
ifu>1.

Remark 5.2. The restriction # > 1 means that any admissible portfolio strategy 7 is such that
the corresponding wealth proportion invested in the non-risky asset satisfies 1| — () > 1 —u
with 1 — u < 0. In other words, we can keep all the money in the stock, if we want to.

Remark 5.3. Inthe case u > 1, we have shown that g(s) is the minimal initial capital required
in order to perform a K-admissible buy-and-hold strategy which allows us to dominate the
contingent claim defined by the payoff function g. The last assertion always holds (without
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assuming u > 1) whenever g’ (S(0)) = 0 (see Remark 5.1). Therefore, by the definition of U
(see Section 2), since g > g, it follows that

U(0) < g(5(0)), (5.7)

whenever u > 1 or g’ (5(0)) = 0.

We now state the main result of this section which holds for lower semicontinuous, non-
negative and non-zero payoff functions g, and under the assumptions of Sections 2 and 3.

Theorem 5.1. Let Assumptions 5.1 and 5.2 hold and suppose that
either g (S(0)=0 or u>1. 5.8)

Then we have
U(0) = g(S(0)).

Proof. From Lemma 5.1(i), the function s +— V (¢, s) is concave for all 0 < ¢t < T.
Moreover, from (4.5) and Lemma 5.1(ii), we have

Vi(t,s)=g(s), (t,5)€[0,T)xRY.

Furthermore, from Lemma 5.2, V (¢, -) is invariant under H forallt € [0, T). From Lemma 5.4,
this implies that V (¢, s) > g(s) for all (¢,s) € [0, T) x Ri. Therefore, from Proposition 3.1,
we have

U(0) > g(5(0)).

The required result follows from (5.7).
The conditions of Theorem 5.1 can be weakened for convex payoff functions g.

Theorem 5.2. Suppose g is convex and let Assumption 5.1 and the restriction (5.8) hold. Then
we have

U(0) = g(S5(0)).

Proof. The inequality U (0) < g(S(0)) follows from (5.7). To see that the reverse inequality
holds, notice that by considering the controls (A, v) = 0, (4.1) implies that

Vit s) = EQ'[g(S(T)) | (S(). Y (1)) = (5. )]
> g(s), (t.5) €[0,T) x RY,

where we have used Jensen’s inequality and the martingale property of {S(¢), 0 < ¢t < T}
under QO'O. Now, from Lemma 5.2, V(t, -) is invariant under H for all ¢t € [0, T) and, by
Lemma 5.1(i), V is concave. Therefore, the required inequality follows from Lemma 5.4 and
Proposition 3.1.

Remark 5.4. From the proof of Theorems 5.1 and 5.2, it is clear that without the restriction
(5.8), we still have

U(0) = g(S(0)).

Remark 5.5. It is now clear that the HIB equation (4.2) for V is not necessarily satisfied as
an equality. In particular, this is the case if the concave envelope g(-) is strictly concave.



Stochastic volatility models 537

6. Bounded volatility
Assume first that there are no constraints.

Assumption 6.1. (Bounded volatility..)

inf o(¢,s,y) =0(t,s)and supo(z,s,y) =6(t,s), foral(t,s)e[0,T)xR",
yeR yeR

where o and & satisfy the same assumptions as o.

This is the framework of Avellaneda et al. (1995), and we first want to show that we can recover
their result that the minimal super-replication price in this market satisfies U (0) < V (0, $(0)),
where V (¢, s) is a solution to the Barenblatt PDE

—vy + 3570 (Vss) T — 3576 (vgs) T =0, (6.1)
v(T,s) = g(s), (6.2)

assuming that a unique classical solution exists. (In Appendix B, we provide sufficient condi-
tions on the coefficients o, 6 and the terminal payoff function g, which ensure the existence
of a unique solution to the Barenblatt PDE (6.1).

In fact, we shall prove here that U(0) = ‘7(0, S(0)). Let V be the solution to (6.1)—(6.2).
We first show that V > V, hence U 0) > 17(0, S$(0)). We already know that V does not
depend on y. Moreover, from (4.14) we conclude that V is a lower semicontinuous viscosity
supersolution of (6.1), with V(T —, s) > g(s) for all s > 0. Therefore, the maximum principle
ensures that V > V.

The opposite inequality ‘7(0, S(0)) > U(0) is quite straightforward. It is sufficient to prove
that one can super-replicate g(S(7)) if one starts with the initial capital ‘7(0, S$(0)) at time O.
From (6.1), it is easily seen that —LV <0. By 1t6’s rule we then get

g(S(T)) = V(T, S(T))

T
< V(. S(O))+/ Vi(t, S@)SMlor AW (1) + o2 W5 (1)]. (6.3)
0

However, the right-hand side is the value at T' of a wealth process starting with V(0, $(0)) at
time 0, holding Vi (¢, S(¢)) shares of stock at time ¢, and it super-replicates g(S(7T)).

Remark 6.1. The proof of V > V given above remains the same when we assume that V is
only a viscosity solution to the Barenblatt PDE.

We now extend the previous result to the case of constraints, given linear dynamics for S.
Assumption 6.2. Functions n(t, s, y), y(t,s,y) and oi(t,s,y), i = 1,2, do not depend on s.

The following result holds for lower semicontinuous, non-negative and non-zero payoff
functions g and under the assumptions of Sections 2 and 3.

Theorem 6.1. Given Assumptions 6.1 and 6.2, and in the presence of constraints described by
the set K = [l, u), the minimal super-replicating cost is given by U (0) = V (0, S(0)), where
V is the unique classical solution (if one exists) to the Barenblatt PDE (6.1), with the terminal
condition ~

V(T,s) = g(s), (6.4)
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where g = H(g) is defined in (5.1). The corresponding super-replicating portfolio is given by

EOVAGNO))

0= T so)

(6.5)

Moreover, if there are no constraints (K = R), the same is valid without using Assumption 6.2.

Proof. We have already proved the last statement in the theorem. For the rest, we will
use representation (4.1) for V (¢, s). We follow the probabilistic argument of Broadie et al.
(1998). Write, for a fixed v, S°(u) = S(u) exp(ftu v(s)ds) fort < u < T and notice that
the distribution of {S0 (u),t < u < T} under Q*" does not depend on v. Then, by Jensen’s
inequality and the convexity of §, and using the fact that for v(-) € D we have ftT v(s)ds €
K , almost surely, we get fort < T,

T
Vit,s,y)< sup E2 [g<S°(T)exp<—/ v(s)ds))
(A, v)eAXD t

T
x exp(—&(/ v(s)ds)) [(S°, V)(@t) = (s,y):|
t

< sup EQ7[R(SUT)) | (50, Y)(0) = (s, )]
(A V)EAXD

2.0 .
= sup EC7[(SU(T)) | (%, V(1) = (5, )], (6.6)
AEA
We also want to prove the reverse inequality. Let {v;} be a maximizing sequence such that
g(se™") e300 g(s), and choose the constant controls py(u) = vi/(T — 1) to get (for
t<T)
Vi, 5, = sup EC " [g(s(T)e ™) e | (5%, 1)(1) = (5, )], 6.7)
AEA
By standard estimates on diffusion processes, one concludes that S°(r) converges in L to
SO(T), as t — T, therefore also almost surely along a subsequence. From this, by Fatou’s
lemma and lower semicontinuity of g, we get

lilrgipf Vi(t,s,y) > g(se ) e 000, (6.8)

Taking the limit as k — oo we get
V(T—,s,y) = &(s). (6.9)

Therefore, in order to super-replicate g(S(T)), we have to super-replicate at least g(S(T)),
which implies that we can replace g with g in (4.1). But then, repeating the arguments of (6.6)
with g replaced by g, and using the fact that H(g) = g we see that, fort < T,

Av r
V(t,s,y)= sup E" [é(S(T))eXP<—/ 5(U(S))dS>|(S, Y)() = (s,y)} (6.10)
t

(A, V)EAXD

= sup E2[3(S°(T)) | (82, V) (1) = (s, ). 6.11)
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In other words the supremum over the processes v € D is obtained at v(-) = 0. But now
we are back to the case without constraints, with payoff g, and it follows that V satisfies the
Barenblatt PDE (6.1) with the terminal condition (6.4). In particular, V = V is a classical
solution to the HIB equation (4.16), hence (vsVs 4+ 8(v)V)(¢,s) > 0, for all v € K, (t,s) €
[0,T) x R%. By Theorem 13.1 in Rockafellar (1970), this implies that the portfolio (6.5)
satisfies the constraints. Consequently, V (0, S(0)) > U (0), hence V (0, S(0)) = U(0).

7. Mixed case

In this section we get similar results for the mixed case, in which Assumption 5.1 on the
volatility holds, but its infimum is not necessarily zero.

Assumption 7.1.

in{ga(l, s,y)=al(t,s) forall(t,s)e[0,T) xR,
ye

and o satisfies the same assumptions as o.

The following result holds for lower semicontinuous, non-negative and non-zero payoff
functions g, under the assumptions of Sections 2 and 3.

Theorem 7.1. Under Assumptions 5.1, 6.2 and 7.1, and in the presence of constraints de-
scribed by set K = [l, u], the minimal super-replicating cost for the contingent claim g(S(T))
is given by U(0) = V (0, S(0)) where V is the classical solution (if one exists) to the PDE

v+ 35°0 V5 =0, (7.1)
(T, s) = &(s). (7.2)

The corresponding super-replicating portfolio is given by

_ S)Vi(t, S@)

() =
Vi, S@)

(7.3)

If there are no constraints (K = R), then the same is valid even if Assumption 6.2 is not
satisfied.

Proof. We only sketch the proof, since it is similar to those above. Again, we first assume
that there are no constraints. By Lemma 5.1 we know that the function V' is concave. It also
has to satisfy V(T —, -) > g(-), therefore V(T —, -) > g(-). Moreover, from (4.14) we see that
V is a viscosity supersolution to

—v, + 35%a?vg = 0. (7.4)
By the maximum principle we then get V > ‘7, hence U(0) > \7(0, S$(0)). The reverse

inequality is easy to show using Itd’s rule on V. The case with constraints is then proved as in
the previous section.
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8. Examples

8.1. European put options

European put options are defined by the terminal payoff function
gs)=w—9", seRy,

for some « > 0. Using the characterization of g given in Lemma 5.5, and recalling that K
contains 0, we see that g(s) = « and therefore g’(s) = 0. It follows that restriction (5.8) is
satisfied. By Theorem 5.2 we have that, under Assumption 5.1, the super-replication cost of
the European put option is given by

U0) =«,
and the corresponding super-replicating portfolio is 7 (¢) = 0 for all ¢ € [0, T].

8.2. European call options

European call options are characterized by the terminal payoff function
ge) =G -k, s eRj.

We could get the super-replication cost directly, but we choose to use the put-call parity s —k =
(s — k)T — (k — 5)T, to transform the problem to the case of European put options. Assume
first that there are no constraints, i.e. [ = —oo and u = 400 (> 1). Then from Proposition 3.1,

U©0) > sup EC[(S(T) — 1) F]
AEA

= sup 2" [(c — S(T)F + (S(T) — )]
AEA

= 5(0) — & + sup EC""[(x — S(T)) "],
AEA

since the process {S(¢), 0 < ¢t < T} is a martingale under 0*0 for any A € A. Therefore,
applying the results of the previous section concerning European put options, we see that
under Assumption 5.1, the super-replication cost of the European call option in the absence of
portfolio constraints satisfies U (0) > S(0). The reverse inequality is trivial (see also (5.7)).
Therefore

U(0) = S(0).

Now, in the presence of constraints, this is obviously also the cost if # > 1, since one can still
buy one share of the stock. If u < 1, g = § = 00, and it is impossible to super-replicate the
call (see Remark 5.4).

Remark 8.1. The above examples are extreme, in the sense that the super-replicating strategies
are expensive and not very interesting from a practical point of view. The example below is less
extreme because the volatility process is bounded. For more examples as well as numerical
calculations see Broadie et al. (1998) and Avellaneda et al. (1995).



Stochastic volatility models 541

TaBLE 1: Numerical results for a range of initial stock prices and times to expiration.

Time to Current Stock Price
expiration Option price/hedge option
1 1.5 2
At expiration 0.25 2 0.5625 2 1 0.045295
36 days toexp.  0.251002 2 0.564754  1.999912  0.96833  0.071558
72 days toexp.  0.252008 2 0.566999  1.998106 0.94631 0.081278
108 days to exp.  0.253017 2 0.569167 1.992396  0.92982  0.088424
145 days toexp.  0.254031  1.999998  0.57119 1.982839 0.91669  0.093909
Today 0.255049  1.999986  0.573029 1.970085 0.90572  0.099039
2.5 3
At expiration 0.64 -2.0064  0.44444  -2.00445

36 daystoexp. 0.64774 -2.0053 0.44982 -2.0045
72 days toexp.  0.6553 -1.9896  0.45525 -2.00452
108 days toexp.  0.66216  -1.954  0.46075 -2.00409
145 days toexp.  0.66812  -1.9063  0.46629 -2.0019
Today 0.67231 -1.8543 0.47181 -1.99652

35 4

At expiration 0.32653 -2.0033 0.25 -2.0025
36 daystoexp. 0.33048 -2.0033 0.253019 -2.0025
72 days toexp.  0.33447 -2.0033  0.256075 -2.0026
108 days toexp.  0.33851 -2.0034 0.259168 -2.0026
145 days toexp.  0.3426  -2.0034  0.262299 -2.0026

Today 0.34674 -2.0032 0.265467 -2.0026

8.3. A butterfly spread option

We consider here an example in which the volatility is bounded between o2 (z, s) = 0.1 and
52(t, s) = 0.2. To make things more interesting, we look at a payoff that is neither convex nor
concave, given by

gs) = —-DY ifs <2; gls) =3 -5t ifs>2. (8.1)

Suppose that the constraints are given by the interval K = [—2, 2]. We will calculate the price
using Theorem 6.1. It is easy to see that

8(s) =s%/4 ifs <2 8(s) =4/s% ifs>2.

Numerical results are given in Table 1, for a range of initial stock prices and times to
expiration. The values of the portfolio are called the ‘hedge ratio’. There is a rounding error,
that sometimes gives the portfolio values slightly outside of the set K. For comparison, Table
2 gives the Black—Scholes price of g(S(7)) without constraints, and with volatility assumed
to be constant and equal to 0> = 0.15.

Appendix A. The proof of Proposition 4.1

We now show that V is a supersolution, in the viscosity sense, of the Bellman equation in
Proposition 4.1. This proof is standard and is essentially based on the dynamic programming
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TaBLE 2: Black—Scholes price for a range of initial stock prices and times to expiration.
Time to Current Stock Price
expiration Option price/hedge option
1 1.5 2
At expiration 0 0 0.5 3 1 0
36 daystoexp. 0.019943 2541271 0.501443 2991367 0.96156 -0.02834
72 days toexp.  0.028204 18.05664 0.502041 2987805 0.94563 -0.03922
108 days to exp.  0.034543  14.82784  0.502499 2.985078 0.93341 -0.05226
145 days toexp.  0.039887  12.87293  0.502886 2.982783 0.92311 -0.05831
Today 0.044595  11.53521 0.503227 2.980764 0.91404 -0.06305
2.5 3 35
At expiration 0.5 -5 0 0 0 0
36 daystoexp. 0.49856 -5.0145 0.0185 -799749 0 0
72 daystoexp.  0.49796 -5.0205 0.02616 -56.269 0 o0
108 days to exp.  0.4975 -5.0251  0.03204 -45.6697 0 O
145 days toexp.  0.49711  -5.029 0.037 -39.4488 0 O
Today 0.49677 -5.0325 0.04137 -352151 O O

principle. We refer to Crandall et al. (1992) or Fleming and Soner (1993) for definitions and
standard estimates of the theory of viscosity solutions.

Lemma A.1 (Dynamic Programming Principle.) We have, forall0 <t <u < T,

V(t,s,y) > sup EQA’”[W,SI,S,y(u),Yt,s,y(u»exp(— / ué(u(r))dr)},
t

(A,V)EAXD
where {(Si5,y(u), Yi5y()),t < u < T} is the process (S, Y) satisfying (2.1-2.2) with the
initial condition (S(t), Y (t)) = (s, y).

Proof. See Cvitani¢ and Karatzas (1993), Proposition 6.2 (notice that, although the authors
assume bounded coefficients for the diffusion driving (S, Y), their proof of the dynamic pro-
gramming principle does not require such assumptions).

We first show that V is lower semicontinuous. Let (", x", y") be a sequence such
that (¢",s",y") — (t,s,y). By standard estimates of diffusion processes (using the
Lipschitz property of the parameters and the Gronwall inequality), we get that S;n ¢» y» (T') and
Yin gn yn (T) converge in L? to St.5,y(T) and Y; s y(T), respectively. So, there exists a (re-
labeled) subsequence (¢, s”, y") so that the above convergences are almost surely conver-
gences. We have then, for a fixed (A, v) € A x D, by Fatou’s lemma, and since g is lower

semicontinuous,

T
limninf v, s", y" = limninf EMY [g(stn’sn’yn (T)) exp ( - / S(v(r)) dr)]
t

n
T

> E}"”[lim inf g (S gn yn (T)) exp ( — / 8(v(r)) dr):| (A.1)
n t

T
> E“[g(S,,s,y(T))exp ( — f 5<v(r>)dr)},
t

and after taking the supremum over (X, v), we have completed this step of the proof.
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Next, fix (¢, s,y) €[0,T) x Rj x R and consider a test function ¢ € C%([0, T] x ]R’jr x R)
such that

0= (V- t,s,y) = min V — ).
( @), s, y) [O‘T]XRixR( ®)

By substituting ¢ for V (and ¢ 4 h for u) in the inequality of the previous lemma, we get

t+h
0> sup E?" [q)(t +h, S5y +h), Yyt +h))exp ( - / (v(u)) du)
(A V)EAXD t

—o(,s, y)]

and by It6’s lemma, and standard estimates on the state process (S, Y) under the controlled
probability measure Q¥ we see that

1 W t+h
li{ln igf {ZEQ'\ [/ Vo, Sps.y ), Y,,s,y(u))du“ >0, forall(A,v) €A x D,
- t

where g%V is the differential operator appearing inside the infimum of (4.2). Therefore, we
obtain

inf gk’”go(t, s,y) > 0.
(A,U)ERXIZ

Finally, the boundary condition is obtained as follows. Considering v = 0 as control in (4.1)

and taking limits as ¢ approaches T, we see that

liminf V(¢, s, y) > g(s), seR*,
mir (t,5,y) > g(s) T

by Fatou’s Lemma.

Appendix B

In this appendix, we provide conditions on the coefficients o, o and the payoff function g
which guarantee the existence of a unique solution V to the Barenblatt PDE (6.1). Consider
the auxiliary optimal control problem

V(t,s) = sup E[g(S*(T)) | $%(t) = s1,

aeC

where C is the set of all {¥ ()}-adapted processes valued in [0, 1] and S is the controlled
process defined by the stochastic differential equation

ds* () .
Sigy = 0810 ) AW,

with
o(t,s,a) =1 —a)o(t,s)+aa(t,s).
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The Bellman equation associated with this optimal control problem is given by

1
v (t,s) + = sup {s°6%(t, s, a)vss(t, 5)} = 0,

0<ax<l

vyhich is exactly the Barenblatt PDE (6.1). Furthermore, at the terminal date 7', we have
V(T,s) = g(s).

Since the control set is bounded we can apply standard regularity results for the HIB
equation (6.1). We denote by C}’j (R) the space of real-valued functions i defined on R such
that ¢ and its derivatives of order less than or equal to k are continuous and bounded. The
space Clg’m([O, T] x R) is defined similarly. The following assumptions are made.

(A1) There exists some ¢ > 0 such thato (¢, s) > ¢ for all (¢, s) € [0, T] x Ri.

(A2) Let 6(t, x,a) = 6(r,e*,a). Then, for fixed a € [0,1], & € C12([0, T], R) and the
functions &, 6;, 6, and 6, are bounded in [0, T] x R x [0, 1].

(A3) The function g : x —> g(e*) lies in Cg (R).

Then, under Assumptions (A1), (A2) and (A3), the value function V is the uni(%ue solution

of (6.1)—(6.2) in the class of functions v such that (¢, x) —> v(t, e*) lies in C;’ ([0, T],R)

(see Theorems 4.2 and 4.4 in Fleming and Soner (1993)).
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