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Abstract: The comprehensive production of detailed bathymetric maps is important for disaster
prevention, resource exploration, safe navigation, marine salvage, and monitoring of marine or-
ganisms. However, owing to observation difficulties, the amount of data on the world’s seabed
topography is scarce. Therefore, it is essential to develop methods that effectively use the limited
data. In this study, based on dictionary learning and sparse coding, we modified the super-resolution
technique and applied it to seafloor topographical maps. Improving on the conventional method,
before dictionary learning, we performed pre-processing to separate the teacher image into a low-
frequency component that has a general structure and a high-frequency component that captures the
detailed topographical features. We learn the topographical features by training the dictionary. As a
result, the root-mean-square error (RMSE) was reduced by 30% compared with bicubic interpolation
and accuracy was improved, especially in the rugged part of the terrain. The proposed method,
which learns a dictionary to capture topographical features and reconstructs them using a dictionary,
produces super-resolution with high interpretability.

Keywords: bathymetric map; super-resolution; dictionary learning; sparse modelling; image processing

1. Introduction

Ocean bathymetric maps provide basic information in various scientific and engi-
neering fields, including geomorphology, physical oceanography, disaster prevention, and
resource exploration. Despite its importance, more than three-quarters of the total ocean
floor on Earth remains unmapped using detailed measurement methods such as acoustic
surveys with a 15 arc-second (~250 m) interval grid, which is the reference resolution of
the GEBCO_2021 Grid [1]. Because it is recognised as a global issue, several international
and domestic projects, such as the “Nippon Foundation-GEBCO SEABED2030 Project
(SEABED2030)” [2] and “DeSET Project” [3], is currently underway. Creating topographical
maps with as high resolution as possible from available datasets and finding characteristic
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topographical patterns from them solves various problems. The technology to gener-
ate high-resolution (HR) from low-resolution (LR) seafloor topographical maps can be a
supplementary means when comprehensive and detailed acoustic surveys using ships
are difficult.

Super-resolution is a general term for image processing, such as upscaling and/or
improving the image details. The simplest and straightforward method for upscaling an
image uses geometrical interpolation, such as bilinear and bicubic methods. Conversely, this
approach only uses information about the continuity of pixel value, which is a mainstream
approach in the image-processing field, and uses useful information on the details of
images by presumably learning the correspondence between LR and HR image pairs
(example, [4–8]). The approach includes sparse-coding methods (example, [4,6,9–12]),
that use the property of images in which small patches from images can be represented
by the sum of a small number of image bases and deep-learning methods that enable
complex feature extraction contained in data by combining multiple layers and numerous
feature-extraction filters (example, [13–15]).

Recently, deep-leaning-type methods have been applied to the super-resolution of
bathymetric maps (example, [16–18]), and they have attracted considerable attention owing
to their high prediction accuracy, which exceeds that of conventional interpolation methods
(example, [19]). However, they have several drawbacks in terms of applications to scientific
problems [20]. (1) They require numerous datasets which are appropriate for a specific
target problem, and (2) they are highly black-boxed and have low interpretability which is
not suitable for obtaining scientific knowledge. Therefore, it is expected to develop a high-
resolution method with interpretability that allows the results to be simply understood and
leads to the derivation of scientific knowledge.

In this study, we focus on the potential of sparse coding super-resolution (ScSR) based
on dictionary learning. This method is highly interpretable because it is a simple linear
method for super-resolution which extracts a small number of important features. Therefore,
the application of ScSR to seabed topographical maps is expected to simultaneously provide
highly interpretable topographical-feature extraction and super-resolution. The objective
of this study is to establish a super-resolution method for ocean bathymetric images using
sparse modelling and verify its usefulness for increasing the resolution of rough bathymetry
and extracting features of seafloor topography.

We describe the method, which is mainly based on Yang’s and Elad’s methods [6,9];
however, it is generally extended for use in natural science data. Subsequently, the method
is applied to a multibeam echo sounder (MBES) from the Mid-Okinawa Trough. The results
are compared with the bicubic method as a standard method and improvements in the
accuracy and extraction of topographical features are discussed. This is a preliminary
report on the incubation stag; the future direction of research is discussed.

2. Method

In this section, the core algorithm for the super-resolution of seabed topography
is explained. The proposed algorithm, which is mainly based on [9], consists of three
parts—dictionary learning, sparse coding, and reconstruction (Figures 1 and 2).
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depth. In order to extract topographical features from bathymetric maps, high-frequency 
components were extracted from original images by separating low-frequency compo-
nents. The low-frequency component 𝑿𝑿�blur was obtained by applying a Gaussian filter to 
𝑿𝑿�0, which is the original HR image for dictionary learning. The subtraction of 𝑿𝑿�blur from 
𝑿𝑿�0 yields the high-frequency component 𝑿𝑿�′ using the following equation. 

𝑿𝑿�′ = 𝑿𝑿�0 − 𝑿𝑿�blur. (1) 

This is the target of sparse-coding super-resolution (ScSR) estimation. Furthermore, 
𝒀𝒀� is the high-frequency component of the LR grid data 𝒀𝒀�0, which is the original LR image 
used for dictionary learning. 
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2.1. Dictionary Learning

This subsection describes the data pre-processing procedures and the algorithms for
dictionary learning. Important features in bathymetry often involve abrupt changes in
depth. In order to extract topographical features from bathymetric maps, high-frequency
components were extracted from original images by separating low-frequency components.
The low-frequency component X̃blur was obtained by applying a Gaussian filter to X̃0,
which is the original HR image for dictionary learning. The subtraction of X̃blur from X̃0

yields the high-frequency component X̃
′

using the following equation.

X̃
′
= X̃0 − X̃blur. (1)

This is the target of sparse-coding super-resolution (ScSR) estimation. Furthermore, Ỹ
is the high-frequency component of the LR grid data Ỹ0, which is the original LR image
used for dictionary learning.

Ỹ = Ỹ0 −HỸ0, (2)
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where H is the Gaussian filter used as a blurring operator. The Gaussian filter is an
averaging filter weighted according to the spatial Gaussian distribution.

Edge components of Ỹ is extracted and divided into N patches. See Appendix A for
details on edge component extraction of Ỹ and its dimensionality reduction. The length of
patches of each edge component is compressed to nlow.

The LR dictionary DL is learned by applying the K-SVD algorithm [21] on the edge
component patches of Ỹ. For the obtained patch set with nlow patch length, the K-SVD
algorithm is used to solve the following optimisation problem to learn an LR dictionary
DL ∈ Rnlow×Natom , where Natom is the number of atoms in the dictionary.

DL = argmin
D,α
‖P−Dα‖2

2 subject to ∀i, ‖αi‖0 ≤ k0, (3)

where P ∈ Rnlow×N is a matrix with each patch as a column element, α ∈ RNatom×N is a
matrix with sparse code αi as a column element corresponding to the i-th patch, and k0
is the maximum number of non-zero elements. The learning process began by fixing the
initial dictionary D and finding α using orthogonal matching pursuit (OMP). Then, α is
fixed and dictionary D is updated using the K-SVD algorithm. The initial dictionary D was
randomly sampled from the standard normal distribution, and the column was normalised.

To learn the HR dictionary DH from X′, we focus on the edge component of X′ and
generate the difference data X̃ between X̃

′
and the low-frequency component Ũ

(
= QỸ

)
,

X̃ = X̃
′ − Ũ, (4)

where Q is an up-sampling operator. In this study, we adopted bicubic interpolation as the
up-sampling method. Bicubic interpolation smoothly interpolates luminance values by
fitting them with a cubic function using four pixels around the target coordinates.

The HR dictionary DH is created using HR learning data X̃ and the sparse representa-
tion matrix α obtained by learning the LR dictionary DL,

DH = X̃α
(

αTα
)+

, (5)

where
(
αTα

)+ is the Moore-Penrose pseudo-inverse [22,23] of αTα.

2.2. Sparse-Coding and Reconstruction

The obtained LR image Y0 is separated into a low-frequency component Yblur, and a
high-frequency component Y.

Yblur = HY0, (6)

Y = Y0 − Yblur. (7)

We extracted the edge component of the high-frequency component Y by applying a
differential filter in the same manner as in the dictionary learning process, and patch length
of edge components of Y is compressed to nL by PCA (see Appendix A).

Using the learned DL for matrix PL ∈ RnL×N with the obtained patches as the edge
components of Y, we obtained matrix α̂ ∈ RNatom×N with the corresponding sparse code α̂i
as column elements. To solve this, we compute the following optimisation problem in the
OMP [24]:

α̂ = argmin
α
‖PL −DLα‖2

2 subject to ∀i, ‖αi‖0 ≤ k0. (8)

To reconstruct an HR image, we used α̂ obtained in the sparse coding process and the
HR dictionary DH. We obtained matrix P̂H with a group of HR patches as column elements
from the product of the obtained sparse representation matrix α̂ and LR dictionary DL,

P̂H = DHα̂. (9)
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The HR patch data X̂p is reconstructed by adding U(= QY) to a matrix which is
generated by stitching the set of patches P̂H (Figure 2).

X̂p = FP̂H + U, (10)

where F is an operator that superposes the adjacent patches and takes the average value
of the overlap region. Subsequently, the patch data X̂p is refined to X∗ by back projection,
as proposed by [6]. Back-projection algorithm constrains the difference between the input
LR image Y and a reconstructed LR image DLα̂, which is not taken into account during the
process of reconstructing an HR image. The refined image X∗ is obtained by computing

X∗ = argmin
X
‖SHX− Y‖2

2, (11)

where S is a down-sampling operator.
Finally, the Yblur, which was initially removed as a low-frequency component, is

up-sampled by cubic interpolation and combined to form the final reconstructed grid
data X̂,

X̂ = X∗ + Ŷblur. (12)

The algorithm structure of sparse coding and reconstruction is written below (Al-
gorithm 1). We used Python for data pre-processing, dictionary learning, sparse coding,
reconstruction, and visualisation of figures, and GMT for visualisation of the original
bathymetric maps.

Algorithm 1. Reconstruction algorithm for sparse coding super-resolution (ScSR).

0: Learn HR and LR dictionaries, DH and DL
1: Input: dictionaries, DH and DL, edge components of an LR image Y
2: Split an LR image Y0 into high- and low-frequency components, Y and Yblur.
3: Extract LR patches PL from the edge components of Y.
4: α̂← SparseCoding(DL, PL)
5: Generate the HR patch: P̂H ← DHα̂ .
6: Up-sample the high-frequency component of the LR image, U← QY
7: Superpose the adjacent patches and add U: X̂p ← FP̂H + U.
8: Find X∗ which satisfies the constraint: X∗ = argmin

X
‖SHX− Y‖2

2.

9: Up-sample the low-frequency component of the LR image: Ŷblur ← QYblur .
10: Take a summation of reconstructed component X∗ and up-sampled component Ŷblur: X̂← X∗ + Ŷblur .
11: Output: SR image X̂.

3. Data and Implementation

To verify the effectiveness of super-resolution by dictionary learning, we used bathymetry
data from the Mid-Okinawa Trough (Figure 3), where the Iheya–Minor Ridge, small sea
knolls, and faults associated with the Okinawa Trough have been identified [25–27]. Pairs
of HR and LR grid data that require increased resolution of the area are used as training
datasets. The target resolution data was a mesh grid of 50-m intervals drawn by calculation
of the grid data from point clouds of water depths in the Mid-Okinawa Trough obtained by
multiple types of MBES [28].
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Figure 3. Map of the area used in this study. (a) The Japanese Islands (top left) and the sea around
Okinawa; (b) Topographical map in the red box in (a). The area is equally divided into eight squares.
The ridge in the area 0_2 is the Iheya–Minor Ridge.

The bathymetry data were normalised to the required extent before processing. The
depth range of the input data was altitudes of−3000–0 m in this study. This was normalised
to a range of 0–1 for training purposes. The original data X̃0 has a 50-m bathymetric grid,
which is a target resolution in this study. During the dictionary learning process, LR images
were required to obtain an LR dictionary. The following process is applied to X̃0 to obtain
LR grid data Ỹ0 for super-resolution,

Ỹ0 = SHX̃0, (13)

where S is a down-sampling operator, that is, the data to be super-resolved in this study
is an LR image obtained by down-sampling 50-m grid data to 100-m grid data. The
obtained pairs of HR and LR images were divided into eight 25.6 km squares (Figure 3),
and dictionary learning was performed in each area. Using these eight pairs of dictionaries,
we performed super-resolution with ScSR in the other seven areas.

As mentioned above, the selected area of the Mid-Okinawa Trough was divided
into eight sections (Figure 3); eight dictionaries were created by dictionary learning using
the K-SVD method in each area and the accuracy of each dictionary was validated in
the remaining seven areas. In this study, dictionary learning was conducted with the
following hyper-parameters: the number of bases was 256, the maximum number of non-
zero elements was 2, the patch size was 16 × 16, and the image was reconstructed with
stride 2. We set the values of these parameters based on the preliminary experimental
results. Patch size (16) corresponds to an actual length of 800 m. The root-mean-square error
(RMSE) relative to an original image was used to evaluate accuracy. We reconstructed the
remaining seven regions using eight dictionaries generated by dictionary learning. To verify
the effectiveness of ScSR, we applied bicubic interpolation to LR grid data for comparison.

4. Results

The results of the dictionary which were learned in area 0_0 (Figure 4) and the image
of area 0_2, which was reconstructed using dictionary 0_0, are presented. We obtained
a sparse representation matrix α which approximates the LR image of area 0_2 using
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dictionary 0_0. α and HR dictionary DH were used to reconstruct the HR image in 0_2
(Figure 5). The bases within the dictionary of 0_0 show that the learning process extracts
variable geomorphic characteristics, such as ridges or valley-like and mountain-like shapes
(Figure 4). Details of the topographical features indicated by the bases in the dictionary are
discussed in the “Discussion” section.
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The 0_2 image reconstructed with ScSR shows the topographical structure more clearly
than the bicubic interpolation. Focusing on the eastern part of the Iheya–Minor Ridge, the
ScSR image (Figure 5c) shows the topographical undulations more clearly compared to the
LR (Figure 5b) and bicubic interpolation images (Figure 5d). In addition, in the western
part of the Iheya–Minor Ridge, bicubic interpolation introduces undesired smoothing, that
is not present in our proposed method. Figure 6 shows the residual images between the
original HR image and bicubic-interpolated and reconstructed ScSR images. The bicubic
interpolation image has large errors in large undulating areas, such as the Iheya–Minor
Ridge, small knolls, and faults, whereas the ScSR has small errors.
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Figure 6. Residual images between the super-resolution images and original image of the area 0_2.
(a) ScSR (RMSE: 1.157 m); (b) Bicubic interpolation (RMSE: 1.713 m). The same colour scale is used in
both images.

The RMSE of the ScSR image was 1.156 m, while that of the bicubic image was 1.713 m.
Table 1 presents the RMSEs for the relevant regions reconstructed using the dictionaries
learned in the other seven areas. The RMSEs of bicubic interpolation are shown in the table.
The RMSE of the ScSR is approximately 30% lower than that of bicubic interpolation in all
the regions, indicating that ScSR improves the accuracy.

Table 1. RMSEs for eight regions reconstructed using the dictionaries learned in the other seven other
sea areas, the RMSEs for bicubic interpolation, and their ratio. The unit of RMSE is metre in this table.

Reconstruct Area 0_0 0_1 0_2 0_3 1_0 1_1 1_2 1_3 Mean

ScSR 0.803 1.183 1.156 1.853 1.193 1.259 1.414 1.723 1.323

bicubic 1.066 1.458 1.713 2.501 1.794 1.789 2.293 2.524 1.892

ScSR/bicubic 0.753 0.812 0.675 0.741 0.665 0.703 0.617 0.682 0.709

5. Discussion

Because each basis was a feature extracted from the seafloor topography of the training
dataset, the basis used in the reconstruction was chosen to represent the features of the to-
pography of the corresponding area. The basis used in this study is an 800 m square, which
is suitable for extracting geomorphological features, such as small sea knolls. In this section,
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we verify the characteristics of the bases which are learned in 0_0 and choose to reconstruct
area 0_2 and verify if the topographical features in this area are extracted properly.

Focusing on the topographical features of each basis, some bases in the 0_0 dictionary
show similar patterns to each other. To simplify the interpretation, we performed uniform
manifold approximation and projection (UMAP) [29] to project similar bases close to each
other and classified them into 23 groups based on the results (Figure 7). Figure 7 shows
that the dictionary contains bases with ridges and valleys extending in the ENE-SWS
direction (cluster 1 and 21), bases with small basin-like or mountain-like shapes in the
central part (cluster 7 and 11), bases with the NE-SW ridge features (cluster 8), and bases
with a ridge extending in the NS (cluster 14). Area 0_2 includes the Iheya–Minor Ridge of
the Mid-Okinawa Trough. Several faults running in the ENE-SWS direction were identified
to the south of the ridge. Small sea knolls were also observed in the centre of the southern
part of the area and north of the ridge.
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Figure 7. (a) Visualisation of 256 bases from the “0_0” dictionary as embedded by UMAP. (b) Distri-
bution of clusters of bases on the embedded space by UMAP. The colour shading of the symbols on
(b) corresponds to the sum of the absolute values of the coefficients of each basis in the reconstruction.
“c1” represents “cluster 1”, and the same applies to “c2” and beyond.

We examined the extraction of the geomorphic features represented by the bases
selected during the reconstruction of the Iheya–Minor Ridge, faults, and small sea knolls.
Figures 8 and 9 show the contribution of each group to the reconstruction of area 0_2.
Figure 8 shows that the absolute values of the coefficients of the bases are larger around
the faults and Iheya–Minor Ridge. Focusing on the bases used to reconstruct the small sea
knolls, different groups of bases were extracted for each small knoll. Specifically, cluster
14, which is represented by the basis of a ridge extending in the NS direction (Figure 7),
is used for the sparse representation of two small knolls north of the Iheya–Minor Ridge
(enclosed by green circles in Figure 8); however, it is not used for the representation of the
knoll in the southern part of the region (within a yellow circle), which is located more than
10 km away from the ridge (Figure 8). Conversely, cluster 8, which captures the NE-SW
ridge features, is used for sparse representation of the southern knoll and its surrounding
faults but is not used for reconstruction of the northern knoll (Figure 8). Reconstructing
an HR image using sparse representation probably enables the capture of topographical
features that are not apparent to the naked eye.
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The accuracy of super-resolution detail was also examined using the residual map
of area 0_2 (Figure 6). As mentioned above, steep gradients, which are often features of
geoscientific importance, are not well represented in the residual map of simple interpola-
tion methods (Figure 6b). Conversely, ScSR shows a significant improvement in errors at
the Iheya–Minor Ridge, small knolls, and faulted areas (Figure 6a). The proposed method
selects the basis while constraining the reconstruction to capture topographical features at
the patch-size scale.

Variations in accuracy for each region are also discussed in terms of topographical
features. Focusing on the RMSE of the bicubic interpolation, the value remarkably varies
from one area to another (Table 1). Accuracy in bicubic interpolation is better in relatively
gentle and uniform sea areas, e.g., 0_0 and 0_1. On the other hand, the bicubic interpola-
tion accuracy is poor for other sea areas where local topographical changes are notably
recognised, such as small ridges and sea hills (Figure 3). In terms of the accuracy of ScSR,
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we will discuss in which areas ScSR is highly effective compared to bicubic interpolation.
A comparison of the RMSEs of ScSR and bicubic interpolation by reconstructed areas in
Table 1 shows that ScSR is particularly effective in 0_2, 1_0, 1_2, and 1_3. The areas where
local gradient changes and landforms, such as small ridges are more characteristic than
other areas and are thought to be the result of the advantages ScSR, which reconstructs
while selecting characteristic bases from the dictionary.

Despite the effectiveness of ScSR, the proposed method is preliminary and has room
for improvement, as shown below. First, although the usefulness of ScSR has been demon-
strated in the Mid-Okinawa Trough area, it is necessary to verify the method in other areas
to confirm its versatility. Subsequently, the size of the patch and basis was 800 m square and
faults and small knolls were successfully extracted. However, it must be further verified
whether it is possible to extract a more detailed topography or global structure by changing
the patch size. Finally, we used grid data which were converted from the point-cloud data
obtained by the MBES in this study. Although grid data can be shared easily and its size is
reduced, the information included in the original point-cloud data is lost to some extent
when the data are converted. The proposed method can achieve super-resolution while
providing most of the information on the observation data by improving it to apply the
point-cloud data.

6. Conclusions

In this study, we improved the ScSR proposed by [6,9]. We separated the seabed
topographical image into a high-frequency component that specialises in the information
on topographical undulations and a low-frequency component that captures the global
information and implements sparse modelling to the high-frequency component. ScSR was
effective for the super-resolution of seabed topographical maps. This method was applied
to the map of the Mid-Okinawa Trough and the obtained RMSE was improved by 30%
over bicubic interpolation with small training datasets. The base-extraction process and
reconstruction can provide super-resolution and geoscientific interpretation simultaneously.
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Appendix A

This section describes the details on edge component extraction of the high-frequency
component of training data Ỹ and the high-frequency component of input data Y, and its
dimensionality reduction [30]. In the process of dictionary-learning, the edge components of
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Ỹ were extracted by applying first- and second-order derivative filters in both the horizontal
and vertical directions.

Ỹh = Q
(

Ỹ
⊗

fh1

)
, Ỹhh = Q

(
Ỹ
⊗

fh2

)
,

Ỹv = Q
(

Ỹ
⊗

fv1

)
, Ỹvv = Q

(
Ỹ
⊗

fv2

)
,

(A1)

where Q and f denote an up-sampling operator and differential filter, respectively. In this
study, we adopted bicubic interpolation as the up-sampling method as mentioned in the
“Method” section. The subscripts h and v denote the direction of the differential filters,
and 1 and 2 are the order of the derivative.

⊗
in an operator that acts on the matrix with

a differential filter. For each of Ỹh, Ỹv, Ỹhh, and Ỹvv, we divide them into patches of size√
n×
√

n (where n is the patch length) to obtain a group of four matrices, each with N
patches. We perform principal component analysis on the group of patches with a length
of 4n and perform dimensionality reduction up to the nlow-th component which has a
cumulative contribution rate of 99.9% (nlow < 4n).

In the process of reconstruction, edge components of Y is also extracted as the
same manner.

Yh = Q(Y
⊗

fh1), Yhh = Q(Y
⊗

fh2),
Yv = Q(Y

⊗
fv1), Yvv = Q(Y

⊗
fv2).

(A2)

We performed principal component analysis on the obtained four-edge components
and reducing the dimensionality to the nL-th component, where the cumulative contribu-
tion was 99.9%.
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