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   Abstract- High resolution images can be estimated using 

multiple low resolution images obtained from an array of sub-

imagers with overlapping fields of view. Design choices for the 

optics and sensors of a flat camera can have a significant impact 

on the performance of reconstruction algorithms. This paper 

will analyze designs that provide diversity which reduces the 

expected error of reconstruction algorithms. It will be assumed 

that the fields of view of individual sub-imagers can be 

controlled so that the desired resolution improvement at the 

object distance of interest can be achieved. Simulations will 

demonstrate the analytical results. 

 

 

I. INTRODUCTION 

A thin modular flat form factor camera could create 

numerous new imaging application areas for which a 

traditional camera is too bulky, fragile, or conspicuous. The 

boxy form factor of a camera with a lens system and a high 

resolution image sensor is determined by the parameters of 

the optical elements. One way to reduce the camera thickness 

is to use optical elements that can be positioned closer to the 

image sensor while maintaining the same point spread 

function.  This will project a smaller image onto the sensor, 

and since the size of the individual sensor elements can not 

be reduced proportionately, the captured digital image will 

have a lower resolution limited by the detector size, not the 

optics. However, if the imaging system has a compound eye 

design which produces multiple low resolution images with 

overlapping fields of view, computational imaging 

techniques can be used to reconstruct a higher resolution 

image. 

Several new computational imaging applications have 

been reported in recent years [1-9] using methods similar to 

those used in radio astronomy [10] and medical image 

reconstruction applications [11]. If a moving low resolution 

camera provides a sequence of images of a stationary scene 

from multiple shifted perspectives, image registration and 

reconstruction algorithms can be used to create a higher 

resolution image that looks the same as an image captured by 

a more expensive camera [2]. Parallel acquisition of multiple 

images can use an array of sub-imagers such as the TOMBO 

designs [3-5]. Each sub-imager consists of a micro-lens and a 

small pixel sensor array. With fixed arrays and optics, the 

registration problem is greatly reduced but only one specific 

object distance will produce the correct overlap of fields of 

view. 

The Panoptes approach to flat camera design is different 

from these two applications in several respects [6-9]. The 

high resolution images produced by the system will be used 

by automated image analysis systems, so the measure of 

performance is the information captured in the reconstruction 

rather than measures based on human perception. Like the 

TOMBO system, the low resolution images are acquired in 

parallel from an array of sub-imagers, but active control of 

the look direction of individual sub-imagers through micro-

mirror arrays allows variable resolution improvement and 

variable object range. In addition, diversity in the sub-imager 

array design is used to reduce the reconstruction error by 

eliminating the null space due to a uniform sensor array [6, 7, 

9]. 

 

II. IMAGE ACQUISITION MODEL 

Let f(x,y) be a continuous two-dimensional light intensity 

projected onto the plane of detector elements. Let p(x,y) be 

the continuous response of an individual pixel detector in the 

detector array. Then g(x0,y0), the response of an individual 

pixel detector centered at (x0,y0), is given in (1). 

dydxyxfyyxxpyxg ),(),(),( 0000 −−= ∫∫  (1) 

For an array of identical detectors with detector spacings of 

∆x and ∆y, the complete acquired image g(mx,my) can be 

represented as the convolution g(x,y) = f(x,y)*p(-x,-y) 

sampled at intervals of ∆x in x and ∆y in y. The image data 

can be stored by rows in an M×1 vector, g. 

The desired high resolution image, f(nx,ny), which is f(x,y) 

sampled at intervals of ∆x/q and ∆y/q,  can be stored by rows 

in an N×1 vector, f, where N=q2M. A linear relationship 

between f and g is given in (2) where the M×N observation 

partial matrix, H, may be space variant, and v is an M×1  

vector of measurement noise values.  

vHfg +=  (2) 

 

Algorithms to restore or reconstruct f from g must address 

three problems. For most images undersampling by a factor 

of q will cause aliasing. In addition, the integrated response 

of an individual detector, p(x,y), will blur the desired image 

and heavily attenuate some spatial frequencies. This will 

result in an ill-conditioned estimation problem.  It is assumed 

that the point spread function of the optics is much smaller 



than the individual pixel detector extent, so optical blur will 

make little or no contribution to blur at the desired 

resolution. And finally, the measurement noise will cause 

errors in the estimate of f, and the impact of the noise on the 

errors is increased when H is poorly conditioned.  

If multiple shifted low resolution images can be acquired, 

the aliasing of g relative to f can be eliminated. Assume that 

the objects in the desired image are far enough away so that a 

small lateral shift of perspective simply shifts the whole 

projected image, and at the desired resolution there is no 

measurable disparity due to object range differences. Let the 

(k,l)th image of a set of K×L low resolution images be given 

by gk,l = Hk,l f + vk,l. All the sub-imager observations can be 

combined into a single vector as shown in (3), and the 

combined H matrix and observations, g, will have the same 

form as (2). If the shifts are ∆x/q and ∆y/q, and a q × q array 

of shifted low resolution images is acquired from q2 sub-

imagers, then effectively g(x,y) has been sampled at the 

desired sampling interval for f(x,y) [12], and a simple 

reordering of H and g would represent that.  
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After an array of sub-imagers has acquired enough image 

data to eliminate the aliasing problem, a minimum variance 

of error estimator (MVE) can be used to estimate f from the 

blurred and noisy observations in g using (2) or (3). The 

reconstruction, f
)

, is given in (4) where f0 =E{f} for the class 

of images to be reconstructed. P0 is the covariance of the 

image class, and Rv is the covariance of the noise. An 

alternative form is shown in (5). In both (4) and (5) the actual 

value for the covariances is not known exactly, so estimates 

are used. The noise, v, is assumed to be zero-mean and 

uncorrelated with the image. 
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(5) 

For this estimate, the expected mean squared error (emse) 

can be computed from the average of the trace of ξ in (7). 
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The singular value decomposition of H can be used to 

determine how poorly conditioned the observation set is. In 

the singular value decomposition H = USV
T, the M×N 

diagonal matrix S holds the singular values, and U and V are 

M×M and N×N square unitary matrices. If P0= p0IN×N and   

Rv = σ2pIM×M, ξ = VΛV
T where the elements of the diagonal 

matrix,  Λ, are given by (8). When sii = 0, λii = p0. 
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 A frequency domain perspective can explain the presence 

of very small singular values even when sufficient sub-

imagers are used to avoid aliasing.  If the continuous p(x,y) 

is modeled as a uniform average over a square detector 

surface of width a, the spatial frequency response, P(u,v), is 

given in (9). Any spatial frequency that is an integer multiple 

of (1/a) will have a frequency response of zero. For spatial 

frequencies which have a very low response due to the 

detector size and shape, noise amplification is a significant 

problem when high gains are used to restore these 

frequencies in the reconstructed image. 
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III. ADDING DIVERSITY 

Adding additional sub-imagers with different detector 

sizes, different magnifications, or different rotations can 

provide information about spatial frequencies that are lost 

with a uniform array of sub-imagers. These diverse sub-

imager observations can be combined in (10) in the same 

way that was used in (3) for different uniform sub-imager 

arrays. Then previously discussed reconstruction methods 

and error analysis can be used. For this example with three 

types of sub-imager arrays, (11) can be used to compute the 

singular values. 
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Fig. 1 compares the spatial distribution of expected errors 

for reconstruction of a small 35×35 image tile of f with  q = 

3. A uniform magnification system on the left has 27 sub-

imagers with a=3d, where d is the desired resolution. A 

diverse system on the right has a=3d, 4d, and 5d and uses the 

same number of observed pixels. All four plots are scaled 

separately with white representing the lowest expected error 



and black representing the highest. The upper row shows the 

emse for the full tile. For the diverse system the highest 

errors are on the edges while for the uniform system the 

highest errors are much larger and have a periodic pattern. 

Trimming the tiles to 31×31, shown in the lower row, 

reduces the maximum error for the diverse system, but not 

the uniform system. Thus, for the diverse system, individual 

small tiles of a large image can be successfully reconstructed 

independently. If trimmed tiles are used, the tile edges must 

overlap.  

 

Fig. 1. Spatial distribution of expected squared errors for full 

35×35 tile and trimmed 31×31 tile. 

 

 

Fig. 2. Combined frequency responses for four systems.  

 

The distribution of errors also can be evaluated as a 

function of spatial frequency. Fig. 2 shows the sum of the 

squared frequency response of the continuous p(x,y) 

responses as a continuous function of (u,v) for four systems 

with q= 3.  All four systems use the same scaling with black 

representing low values of the sum, which would cause a 

high expected squared error in the estimate of F(u,v). The 

upper left shows the response for a uniform system, and the 

upper right shows the response of a system with 

magnification diversity using a = 3d, 4d, and 5d. In the lower 

left there is uniform magnification a = 3d with three sets of 

sub-imager arrays rotated by 0, π/6 and π/3. The result in the 

lower right uses four sub-imager types with  a = 3d and 4d 

and rotations of 0 and π/4. This has the highest value for the 

minimum average sum which will correspond to the lowest 

value for the expected error in the estimate of F(u,v). 

 

IV. SIMULATION RESULTS 

The emse values for a 35×35 pixel image reconstruction 

with q=3 are plotted in Fig. 3 as a function of actual 

measurement noise variance, σ2, for five array architectures. 

In all five cases the same number of observations was used. 

For each architecture four estimators using different values 

for the expected noise variance were tested. The plots shown 

with dashed lines represent uniform arrays with a=3d. High 

attenuation of some spatial frequencies causes all four 

estimators for this architecture to produce virtually the same 

results. Reducing the actual noise variance below 1, does not 

result in any expected performance gain.  

 

Fig. 3. Expected squared error for a 35x35 reconstruction tile 

with q =  3 comparing magnification diversity. 

 

It has been assumed that the observations and estimated 

pixel values are scaled to the range of [0,256) to be 

consistent with typically used 8-bit per pixel image data. 

However, it is not assumed that observations are limited to 8 

bits. An increased number of bits will be needed to represent 

the lower measurement noise variance observations, and 

more than 8 bits per pixel will be needed to represent the 

information in the images used for automatic processing 

rather than for human observation. 

Solid line plots show a diverse system where some of the 

sensors with a=3d have been replaced with sensors with a = 

4d or 5d. The larger sensors have different spatial frequency 

responses and the combined system provides improved 

performance. Reducing the actual noise variance reduces the 

emse of the reconstruction until it is limited by the expected 

noise variance used by the specific estimator. Similar results 

are obtained for a = 3.5d and 4d, shown with a dash-dot 



lines. The worst performer of the four diverse systems has a 

mild diversity with a = 3.1d and 3.2d. It performs better than 

the homogeneous system and it still allows estimators to 

benefit from a reduction in the measurement noise. 

Fig. 4 shows the singular values of the combined H matrix 

for each of the five architectures used in Fig. 3. The uniform 

system shown with the dashed line has higher values over 

most of the range, but then has a large number of values that 

are zero. The diverse system shown with the solid line has 

lower values at the left, but has the highest minimum value.  

 

Fig. 4. Singular values for H matrices for systems in Fig. 3. 

 

A. Effect of Tile Size  

Fig. 5 compares the performance of uniform and diverse 

systems when the linear dimension of the tile size is doubled. 

Although the larger tile shows a small improvement over the 

smaller one, the small tile of the diverse system is far 

superior to the large tile of the uniform system. This indicates 

that diverse systems can reduce computational complexity by 

independently reconstructing very small sections of a larger 

image. This allows parallel computation of multiple 

independent small images tile reconstructions which is also 

computationally advantageous.  

 

B. Effect of Resolution Improvement  

Fig. 6 compares the emse for a 41×41 pixel image tile with 

q = 3, 5, and 7. As the desired resolution improvement 

increases, the noise level of the measurements must be 

reduced to maintain the same noise level in the reconstructed 

image. For the two uniform systems with q = 3 and 5, the 

emse does not decrease as the measurement noise variance is 

reduced below 0.1, and the expected errors are higher for the 

resolution improvement of 5. For the diverse systems, the 

emse plots are almost exactly parallel and the increase in 

error level as q increases from 3 to 5 to 7 is easily observed. 

 

 

Fig. 5. Tiles sizes of 400 pixels and 1681 pixels. 

 

 

Fig. 6. Resolution improvement of q = 3, 5, and 7 for a 41×41 

pixel image tile. 

 

Diverse systems have been compared using the emse as a 

performance measure, but other measures of quality may also 

be appropriate. For images that will provide input for 

automatic analysis and detection systems, the overall 

performance of the complete system should be used to 

compare sub-imager architectures. In [9] the mean squared 

error for reconstructed pixel values was shown to have a 

similar behavior to the mean squared error of the edge 

gradient for several actual images, synthetic images, and 

noise images.  

In Fig. 7 a low contrast image of the Bay Bridge taken 

from the USC image data base is reconstructed with q = 3 

and σ2=0.01 using 27 sub-imagers. Results for a uniform and 

diverse system are compared. For the diverse reconstruction 

in Fig. 7d, the edge detail is a good match to the original 

image tile in Fig. 7b. Noise amplification and periodic 

structure are apparent in the uniform reconstruction in Fig. 

7c.  

 



 

 

Fig. 7. USC image data base Bay Bridge image (a) and a 35×35 

image tile (b). Reconstruction with q=3 for uniform (c) and 

diverse (d) systems. 

 

IV. CONCLUSIONS 

 For a flat form factor camera design based on arrays of 

low resolution sub-imagers, an architecture using 

magnification and orientation diversity has several 

demonstrated advantages. The diversity allows information 

about all spatial frequencies to be captured by some group of 

sub-imagers. Diverse systems can be compared in terms of 

spatial error distribution or error distribution in spatial 

frequency.  

Simulations of several diverse architectures show that even 

a small amount of diversity improves the performance as 

measured by expected mean squared error [6,7]. Similar 

performance was achieved for a variety of systems, and the 

improvement does not rely on any precise relationship 

between the sub-imagers parameters. This allows flexibility 

for calibration and adaptive control of resolution 

improvement using steerable micro-mirror arrays 

Since small tiles of a larger image can be reconstructed 

independently using a diverse system, local computation can 

be done efficiently using exact estimators without 

assumptions of space invariance or circulant approximations. 

Reduction in the expected error from increased tile size was 

much smaller than the error reduction due to added diversity. 

This structure can also use parallel computation for the 

independent reconstruction of small image tiles. 

Although resolution improvement can be controlled by the 

amount of overlap of individual detector fields of view, the 

impact of measurement noise on the reconstructed image 

increases with the desired resolution improvement. This 

implies that when the desired resolution improvement is 

increased, the measurement noise must be reduced to achieve 

the same error rate and the number of significant bits in the 

measurements must increase. 
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