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Abstract. In several previous papers we have shown that the resolution of a confocal 

scanning microscope can be improved by recording the full image at each scanning point 
and then inverting the data. These analyses were restricted to the case of coherent 
illumination. In this paper we investigate, along similar lines, the incoherent case, which 

applies to fluorescence microscopy. We investigate the one-dimensional and two- 
dimensional square-pupil problems and we prove, by means of numerical computations of 
the singular value spectrum and of the impulse response function, that for a signal-to-noise 

ratio of, say, lo%, it is possible to obtain an improvement of approximately 60% in 
resolution with respect to the conventional incoherent light confocal microscope. This 

represents a working bandwidth of 3.5 times the Rayleigh limit. 

1. Introduction 

In a previous paper ([l], hereafter referred to as I) we have investigated the 
improvement in resolution (super-resolution) which can be obtained in confocal 
scanning light microscopy (CSLM) when the full image is detected at each step of the 
scanning procedure. We recall that in the usual CSLM the image is detected only on the 
optical axis and that the two-dimensional image is the resclt of the two-dimensional 
scanning. In  I the analysis was restricted to the coherent case. In this paper we 
investigate, along parallel lines, the case of incoherent imaging. 

Incoherent CSLM applies to the imaging of fluorescent objects. In such a case the 
intensity of the fluorescent light is proportional to the intensity of the incident 
radiation. Then it is easy to show that, when the primary and the fluorescent 
wavelengths essentially coincide, the bandwidth of the usual instrument is four times 
the bandwidth of the conventional coherent microscope. The improvement in resolu- 
tion, however, is only a factor of 1.8 times the classical Rayleigh resolution distance [2]. 
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This is a consequence of the behaviour of the transfer function of the instrument, 
which tends to zero very rapidly at the edges of the band. In other words, the highest 
Fourier components of the object in this band are not transmitted in practice by the 
instrument. In order to increase the information about these components, one can 
consider a modification of the microscope such as that considered in I. This consists of 
detecting the full image at any scanning position and in using data inversion methods 
for recovering the transmitted components of the object. In the following we will call 
conuentiorzal CSLM the well established technique where the image is detected only on 
the optical axis and super-resoluing CSLM the new technique where the full image is 
determined by means of a suitable array of detectors. We point out that this new 
technique does not modify the transmitted band but introduces a considerable 
improvement of the transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 3 ] .  

If f ( x )  is the distribution of the fluorescent centres in the focal plane and if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,(x), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S,(x) are the point-spread functions of the illuminating and of the imaging lenses. 
respectively, then, assuming complete incoherence of the fluorescent radiation. the 
basic relationship between the object f ( x )  and the intensity distribution g(x) in the 
image plane is 

Notice that, even in the reflection mode of operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], the two point-spread 
functions do not coincide because the primary and the fluorescent wavelengths are 
different. This effect, however, is not large-of the order of 10%-and it can be 
neglected in the first approximation. 

In this paper the basic relationship will be (1.1). This means that we do not 
consider here one of the most interesting properties of fluorescence CSLM, i.e. the 
possibility of obtaining a three-dimensional image of the sample by means of three- 
dimensional scanning [4,5]. Also in this case one can investigate the improvement in 
resolution provided by super-resolving CSLM. This will be the subject of future studies. 
Here, as in I ,  we restrict the analysis to two-dimensional objects or, more precisely. to 
objects whose size along the optical axis is of the order of the axial resolution 
(approximately 1 pm). As a consequence we only investigate the improvement i n  
lateral resolution. 

We briefly discuss now the relationship between the basic equation of conventional 
CSLM and that of super-resolving CSLM. The scanning of the sample consists of 
considering all the possible translations of the sample itself. Now, to a translation - 6 
there corresponds a new object zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( x  + 5 )  and a new image g( 5, x) which, as follows 
from (1. l), is given by 

In conventional CSLM the image is recorded only on the optical axis, i.e. x=O. 
Then, if we neglect the finite size of the pinhole, if we ignore the difference between 
the two point-spread functions, i.e. S,(x) = Sz(x) = S(x), and if we assume that S(x) is 
an even function, then (1.2) implies that the image provided by conventional CSLM is 

where C( 6)  = g( g, 0). 
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On the other hand, in super-resolving CSLM the full image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) is detected for 
any given 5 (of course, in practice, only a finite set of values of g( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALj, x) is measured). 
Then (1.2) is an integral equation which must be solved to determine f(y+ 5) .  As is 
obvious, it is sufficient to recover the object at y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 since this value is just f (  5). More 
precisely, we do not obtain the exact value off(  g) but an approximation to it ,  which 
will be denoted byf( g) .  This approximation is the image provided by super-resolving 
CSLM and this must be compared with the image G( g)  provided by conventional CSLM. 

The solution of (1.2) implies the inversion of an integral operator and an important 
fact is that this operator is the same for any scanning position. As a consequence, the 
inversion algorithm is also independent of the scanning position. 

As in I we first consider in detail the one-dimensional problem. In such a case, if 
we take the Rayleigh distance associated with the two identical lenses as length unit 
and if we assume that the lenses are ideal low-pass filters, then the appropriate 
integral equation can be written in the form 

where 

+ =  

(Af)(x) = sinc’(x - y )  sinc’(y)f(y) dy 
- -z  

and 

sin(nx) 
sinc(x) = ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

nX 

In 802 and 3 we investigate several mathematical properties of the integral 
operator (1.5) which are relevant to the solution of (1.4). Since the basic tool is the 
singular system of the operator (1.5), in 0 4  we describe a numerical method for the 
determination of such a system. This method consists of discretising the integral 
equation using the well known sampling expansion of band-limited functions. The 

numerical results obtained by means of this method are discussed in 8 5 .  In 06 we 
determine the impulse response function and the transfer function of the super- 
resolving CSLM and in this way we determine the improvement in resolution with 
respect to the conventional CSLM. Finally in 07 we extend the results to the two- 
dimensional problem in the case of square pupils. 

2. The one-dimensional integral operator 

As we discussed in 8 1, we must investigate the following problem. Given the image 
g(x>, find the value at y=O of the solution f(y) of (1.4) and (1.5). 

The existence and uniqueness of the solution of this problem are related respect- 
ively to the structure of the range and of the null space of the integral operator (1.5). 
In fact, a solution of (1.4) exists if and only if g belongs to the range of A ,  denoted by 
R(A) .  This set will be called the set of the noise-free images. Moreover the solution of 
(1.4) is unique if and only if the null space of A ,  denoted by N(A), is trivial, i.e. if it 
coincides with the null element of the space. If N ( A )  is not trivial, then it is called the 
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subspace of invisible objects, since the elements of N(A) produce an  image which is 
zero everywhere. 

W e  assume that both objects and images are elements of L2( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, + CO) .  Then our  
first result is the following: the range of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is dense in the subspace of the band-limited 
functions with bandwidth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n .  The  proof is as follows. From (1.4) and (1.5) it is 
obvious that a function g E R(A)  must be band limited with bandwidth 2 z .  Therefore, 
in order t o  prove the result it is sufficient to prove that if a band-limited function q ( x )  
with bandwidth 2 n  is orthogonal t o  R ( A ) ,  then q = 0 .  Now, if W(x) is such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(q,  A f )  = 0 for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfe L’( - a, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ) ,  this implies that A*W=O, where A* is the 
adjoint operator given by 

(A”g)(y) = sinc’(y) sinc’(x - y)g(x) dx. I:: 
Since the function sinc’(y) is different from zero almost everywhere, the equation 

A5,b = 0 is equivalent to 

sinc’(y -x)q(x)  dx = 0. 

Now, the Fourier transform of the function s(x) = sinc’(x) is 

and therefore from (2.2) we derive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ^ ( W ) $ ( O )  = 0 everywhere. It follows that $ ( U )  = 0 
when / U /  < 2 n  and, since y ( x )  is band limited with bandwidth 2,2, it also follows that 
y (x )  = 0 everywhere. This completes the proof of the result. 

The  previous result implies that a noisy image, in general, does not belong to R(A)  
(the noise may not be band limited) and in such a case the solution of (1.4) does not 
exist. In other words, the problem is ill posed and one  must use well established 
techniques, such as regularisation methods, truncated singular function expansions etc 
[6] in order to find stable approximate solutions. 

As concerns the null space N(A) ,  a complete characterisation will be given in 93. 
Here we just point out that N ( A )  is not trivial and therefore the  solution of (1.4) is not 
unique. Now, an  arbitrary object f(y) can be uniquely decomposed into a component 
on N(A) ,  its invisible component, and a component orthogonal to N(A) ,  its transmit- 
ted component. 

It is obvious that,  given the image g, we can at  most recover the  transmitted 
component of the object. The  latter is a band-limited function with bandwidth 457, as 
follows from (2.1) if we recall that the orthogonal complement of N(A) coincides with 
the closure of the range of A ‘ .  This result justifies the statement contained in 51 ,  
namely that the bandwidths of super-resolving CSLM and conventional CSLM coincide. 

Another basic property of the operator (1.5) is compactness. More  precisely, the 
operator A is of the Hilbert-Schmidt class [7] since its kernel is a square-integrable 
function. Then we can introduce the singular system of A ,  i.e. the  set of the triples 
{Q; uk, uk};C=,, which solve the coupled homogeneous equations 

Auk = UkUk  A akuk. (2.4) 

As usual, the singular values ak are  ordered in such a way that they form a 
decreasing sequence. 
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From general properties of the singular functions uk,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk and from the results 

derived above we can make the following deductions. 
(i) The singular functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk form an orthonormal basis in the orthogonal comple- 

ment of N(A) ;  they are band-limited function with bandwidth 4n and they have 
double zeros at the integer sampling points. 

(ii) The singular functions uk are band-limited functions with bandwidth 2,2 and 
they form an orthonormal basis in the closure of R(A).  

The singular system of the operator A provides a representation of the generalised 
solution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1.4). As is well known, this is a least-squares solution of minimal norm [8]. 
It is always unique and it exists when g is a noise-free image. Another basic property 
of the generalised solution, denoted by f'(y). is that it is orthogonal to N ( A ) .  
Therefore the generalised solution coincides with the transmitted component of the 
object. Its expansion in terms of singular functions is [9] 

where (g, u k )  denotes the usual scalar product of L'( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 00, + m ) .  

data g = Af, from the relation 
Since we are only interested in the value of f ' ( y )  at y = 0, in the case of noise-free 

(g, U k )  = (Af, U k )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f, A>"k) = Q k ( f ,  4) (2.6) 

we obtain 

where 

If we take into account now the effect of the scanning, i.e. if we replace f ( y )  by 
f(y + [), if we denote byf'( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, y )  the corresponding generalised solution and if we put 
f (  6) =ti( 5,0), then we get 

This is the image provided by super-resolving CSLM, in the case of noise-free data, 
and it must be compared with the image (1.3) of conventional CSLM, which in the 
present case becomes 

G( 5) = sinc4( 5 - y ) f ( y )  dy. 
- z  

(2. lo) 

This point will be discussed in 06. 
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3. The null space of the one-dimensional operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this section we derive a characterisation of the null space of the integral operator 
(1.5), which will be used for the solution of the following problem: given an  arbitrary 
object f(y), determine its invisible component, i.e. its projection onto  N ( A ) .  

We first notice that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( A )  contains all the functions whose Fourier transform is zero 
over the band [-4x, 4x1. This subset will be denoted by N(,(A).  Therefore the 
interesting part of N ( A )  is the subspace of the  functions with bandwidth 4n. More 
precisely, we must investigate the solutions of the equation A @  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 assuming that @ is 
band limited with bandwidth 4n. This subset will be denoted by N , ( A )  so that we have 

If $(U) is the function defined in (2.3) then, by taking the  Fourier transform of 
N ( A )  = N ( , ( A ) @ N , ( A ) .  

both sides of the equation A @  =0 ,  we get 

+ %  

$(U) 1 f ( w  - w ’ ) $ ( o ‘ )  dw’ = 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- T  

(3.1) 

This equation is non-trivial only on the interval / U /  < 23 .  Since on  such an interval 
s^(w)#O and since $(w ’ )#O only when /w ’1<4n,  it follows that 

J -sa 

This equation can be written in a more explicit form using (2.3).  W e  obtain 

(3 .3 )  

and, by a change of variable in the second integral, we find 

( $ ( W ’ + ~ Z )  - $ ( U ’ ) )  dw‘=O jwI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<2x. (3.4) r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U - 2z r g  w - ? n  

$(U ’ )  dw‘ + 

Now, let us denote by ~ ( 0 ) )  the left-hand side of (3.4). Then one  easily obtains that 

(3.5) 

Since ? ‘ ( U )  is absolutely continuous, the second derivative yi”(w) exists almost 
everywhere and is given by 

?$‘(U) = $ ( U +  2 n )  - 2$(w)  + $(U - 2 x )  l w l < 2 x .  (3.6) 

Finally, if we observe that the original condition q ( w )  =0,  l w / < 2 n ,  is equivalent 
to the following set of conditions: 

q ” ( w ) = 0 ,  Jw/<271. y ‘ ( 0 )  = 0 v(0) = 0 (3.7) 

2 $ ( o )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(CO + 2 x )  - $(U - 2 n )  = 0 ( 3 . 8 )  

then we conclude that N , ( A )  is the set of all the functions @ satisfying the conditions 

/ 0 / < 2 x  

[ ’ “ $ ( w ‘ )  d o ’ =  [ ’  4 ( w r )  dw‘ (3.9) 
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$(U ’ )  dw’=- w ’ $ ( w ’ )  &U’- -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ’ $ ( W ’ >  dw’. (3.10) 

2Jz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr7 0 2x I I I  -??  

Condition (3.9) is just ~ ’ ( 0 )  = 0, while condition (3.10) is v(0) = 0. 
We notice that the conditions (3.9) and (3.10) involve only the value of $ ( U )  on 

the interval [ - 2n. 2x1 while condition (3.8) gives essentially the continuation of $(U)  
from the interval [ - 2n ,  2x1 into the intervals [ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4n, - 2x1 and [2x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4x1. Therefore, 
let us denote by &(w) the values of 4 ( w )  on the interval [ -2n, 2x1. This is a 
square-integrable function which is arbitrary except for being subjected to  conditions 
(3.9) and  (3.10). The  latter can now be written in the following form: 

&(w ‘ )& (w ‘ )  dw’ = 0 
- 2 7  

(3.11) 

(3.12) 

where E(w ’ )  denotes the  sign of w ’ .  Then (3.8) with w E ( - 2n, 0) gives the values of 
$ ( U )  in the interval ( -  457, - 2n) while the  same equation with w E ( 0 , 2 n )  gives the 
values of $ ( U )  in the interval (227,427). 

The  final result can be formulated as follows: the null space N ( A )  is given by the 
direct sum N ( A )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN , , ( A ) @ N , ( A )  where N,,(A) is the set of all the functions @I whose 
Fourier transform is zero over the  interval [ - 4n, 4x1 while N,(A) is the set of all the 
band-limited functions @I, with bandwidth 4x, whose Fourier transform is given by 

28(w + 2 ~ )  - &(U + 4n) - 4 ~ <  w < - 2~ 

- 2 x  < w < 2 n  

2x < w < 4n 

(3.13) 

2 & ( ~  - 2 ~ )  - S(W - 4 ~ )  

where &(U)  is an arbitrary function of L’( -2n .  2n) satisfying conditions (3.11) and 

(3.12). 
We  notice that,  as one  can easily check, (3.4) is satisfied by all the functions 

$,,(U) = exp(inw), Iw/  < 4n, with n # 0. From the sampling theorem it follows that 
N , ( A )  contains all the band-limited functions with bandwidth 4n whose sampling 
values are different from zero only at the sampling points x , ,=n ,  with n = k 1, 
k 2,  . . . . The  subspace of these functions, however, does not coincide with N , ( A )  but 

is a proper subset of N , ( A ) .  
W e  can now solve the problem stated at  the beginning of the section. In  fact, let 

f(y) be an arbitrary object and letf(w) be its Fourier transform. If we denote by$,(@) 
the function which coincides withf(w) for Iw/  > 427 and which is zero for I w /  < 4x, then 
5, E N,,(A).  Therefore, in order to completely determine the invisible component of 
f(y), we must determine the projection onto  N , ( A )  of the restriction of f ( w )  to the 
interval [ -4n, 4x1. This projection can be determined by looking for a function $ 
which satisfies conditions (3.13), (3.11), (3.12) and which is a solution of the following 
variational problem: 

l f (w )  - $(w)I2 d o  =minimum. L7 (3.14) 

This is a constrained minimisation problem for the function & ( U )  and it can be  
solved in a standard way using the  method of Lagrange multipliers. Since the 
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constraints are provided by (3.11) and (3.12), the constrained problem (3.14) can be 
replaced by the following unconstrained problem: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= minimum (3.15) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ ( w )  is given in terms of &(U)  according to (3.13). This problem must be solved 
for any value of the Lagrange multipliers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. and p and the values of these parameters 
must be chosen in order to satisfy conditions (3.11) and (3.12). 

If one considers separately the variation of & ( U )  when w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (0,237~) and the variation 
of &(U) when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw E ( -  ~ J G ,  0), then after some elementary but lengthy computations one 
finds that the minimum of the functional (3.15) is given by 

&(U)  =&{4f(w-2n) +3f(w)+2j’(o+2n) +j’(w+4JG)+II-p[3+ (1/2n)w]} 

&(0=&(4f(w+237C) +3f(w)+2f(w-2n) +f(w-4n) -/l-p[3- (1/2n)w]) 

0 < 0  (3.16) 

W > O .  (3.17) 

If we now insert (3.16) and (3.17) into (3.11) and (3.12) we easily recognise that I I  

(3.18) 

(3.19) 

is determined by (3.11) while p is determined by (3.12). The result is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = (1/44(31,+ I, - 1 2  - 31,) 

p = (3/16~)(714+ 313 + 312 + 711 - 3J4- J3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+J2 + 3J1) 

where 

-471271 

Z , = /  f(w)dw j =  1 , 2 , 3 , 4  
- 4n+ 27(/  - I )  

wf (w)  dw j =  1 , 2 , 3 , 4 .  

(3.20) 

(3.21) 

These formulae solve completely the problem of determining the invisible compo- 
nent of an arbitrary object fb). In particular they will be used in 96 for determining 
the impulse response function (2.8). 

4. Discretisation of the integral equation 

A basic property of the integral operator related to the one-dimensional coherent 
problem is that its singular values and singular functions have very simple analytic 
expressions [lo]. As a consequence they can be easily computed with any desired 
degree of accuracy. Moreover, as proved in I using sampling expansions both for the 
image and for the object, the determination of the generalised inverse of the coherent 
integral operator is equivalent to the inversion of an infinite-dimensional matrix. This 
equivalence is used in I for investigating the problem with discrete data and for 
computing its singular system. In a subsequent paper [ l l ]  it was shown that the inverse 
of the infinite-dimensional matrix also has a very simple analytic expression. As far as 
we know, similar results do not hold true in the incoherent case and therefore we must 



Super-resolution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin confocal scanning microscopy: I I  449 

find a numerical approach for the determination of the singular system of the integral 
operator (1.5). 

In this section we describe in detail a method based on sampling expansions, which 
is an extension of the method introduced in I and which has already been briefly 
discussed in [12]. 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( x )  is an image in the range of the operator (1.5) (noise-free image) then, as 
proved in 02, g ( x )  is a band-limited function with bandwidth 2n. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a consequence it 
can be represented by means of the sampling expansion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ a  

where 

x,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n/2 n=O, k l ,  f 2 , .  . . ( 4 4  

and the following equality holds true: 

As concerns the generalised solution (1.4), it is an element of N(A) ' ,  the 
orthogonal complement of the null space of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  and therefore we can restrict A to 
N(A) ' .  The elements of N(A)' are band-limited functions with bandwidth 4n and 
they have zeros at the integer sampling points, except y = O ,  i.e. f(m)=O if m= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 1, +2 ,  . . . . These properties follow from the results of 03. As a consequence f(y) 
can be represented by means of the sampling expansion 

+ m  

3 where yo=O, y,,= fi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy k 2 =  +a, Y , ~ =  kx, y,,= I$, etc. In general, for m f O  

m = I (3k + j )  ym = I ( k  + j/4) k=O,  1 , 2 , .  . . , j = 1 , 2 , 3 .  

(4.5) 

Equality (4.3) is replaced by 

J -3) m = - a  

If we now consider (1.4) at the point x,, and if we use the expansion (4.4) forf(y), 
we find 

where 

C,,,,, = sinc2(y - x n )  sinc'(y) sinc[4(y - y J ]  dy. 1:: 



450 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABertero, P Boccacci, M Defrise, C De Mol and E R Pike 

If we notice that the functions k,,(y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= sinc'(y -,qi) sinc'(y) a re  band limited with 
bandwidth 4 n  and if we use the projection properties of the sampling functions 

sinc[4(y - ym)l,  we get 

C,,,,, = i sinc'(x,, - y,,,) sinc'(y,,,). (4.9) 

As follows from (4.2) and (4.5), it is convenient to introduce the coefficients 

b,, = (1mg(x , , )  a,,, = $f(Y!J' (4.10) 

Then the L'-norms of the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(x) and f(y) coincide with the  I'-norms (sum of 

squares) of the sequences {b,,},;Z% and {a,,,}!::- % respectively. 
In terms of the coefficients (4.10) the infinite-dimensional linear system (4.7) takes 

the form 

(4.11) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A,,,,, = (1/23'2) sinc'(x,, - y,J sinc'(y,,,). (4.12) 

W e  notice that the inverse of this infinite-dimensional matrix does not exist. In fact 
this matrix is isomorphic to the restriction of the integral operator (1.5) to the 
subspace of band-limited functions represented by the expansion (4.4). Since this 
subspace is broader than N ( A ) ' ,  the null space of the restricted integral operator is 
not trivial. 

The  infinite-dimensional matrix (4.12) has exactly the same singular values as the 
integral operator (1.5). Moreover, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak is one  of the singular values and if {ui.,,,}I"-, , 
{ u k ,  ,j}i2z are  the singular sequences associated with this singular value, the corres- 
ponding singular functions of the integral operator (1.5) a re  obtained by means of 
(4.1), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.4.) and (4.10): 

(4.13) 

(4.14) 

Approximations of the singular values and singular functions can be  obtained h y  

considering finite sections of the infinite-dimensional matrix (4.12). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Numerical results 

The  discretisation of the basic integral equation, as described in the  previous section, 
is an extension of the method proposed in I for the coherent problem. In I it is shown 
that the method can provide excellent approximations of the largest singular values 
(we recall that the exact values are known from the result of Gori and Guattari [lo]), 
using a rather small number of sampling points for the image and a sufficiently large 
number of sampling points for the object. This result has important practical 
implications. Since only the largest singular values a re  important for practical data 
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inversion, it means that the problem with continuous data is practically equivalent to a 

problem with a small number of discrete data. I t  is interesting to verify whether a 
similar result holds true also in the incoherent case. 

Let us denote by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(;:;") the section of the infinite-dimensional matrix (4.12) which 
is obtained by taking n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 1, . . . , +. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ;  m = 0, i: 1, . . . , k M .  We put 

N 0 = 2 N + 1  M,, = 2M + 1. (5.1) 

We recall that the sampling distance is -;- for the image and for the object (the 
Rayleigh distance is the unit of length). Therefore, if N is even, N(, sampling points 
corresponds to the interval [ - N / 2 ,  N / 2 ]  in the image space. As concerns the sampling 
of the object, we recall that we have only three sampling points inside any unit 
interval. Then, if M is a multiple of 3 ,  MO sampling points corresponds to the interval 
[ - M / 3 ,  M / 3 ]  in the object space. In other words, the integral from - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx to + in 
(1.5) is approximated by the integral extended to [ - M / 3 ,  M / 3 ] .  For example, M,, = 97 
corresponds to [ - 16,161. 

The matrix Ajt;;") is a N,,x  M o  matrix. In general it is not a square matrix since we 
do not take the same number of sampling points for the image and the object. Its 
singular values provide approximations of the largest singular values of the infinite 
matrix (4.12). In fact, in the limit N+ a, M+ C O ,  the singular values of AE;'") 
converge to the singular values of A,,,,,, as follows from standard results of pertur- 
bation theory [13]. The matrix Aj;:;"' can be considered, indeed, as a perturbation of 
A,,,,,, obtained by annihilating the matrix elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,,,,, with In1 > N and/or lml> M .  
Analogously the singular vectors of A!:; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'M' provide approximations of the singular 
vectors (sequences) of A,,,,,. The corresponding approximations of the singular 
functions of the integral operator (1.5) are obtained by truncating the expansions 
(4.13) and (4.14). For example, in the case of the singular functions uk(y), we have the 
approximation 

M 

up,  ")(y> = 2 C up;,;") sinc[4(y - y,,,)] (5.2) 
,,I = - ." 

where is the singular vector of the matrix A!:;"), normalised to one with 
respect to the usual Euclidean norm. 

The computation of the singular system of the matrix A!:;.") is a standard 
numerical problem and one can use standard routines. The convergence of the 
approximation can be checked by increasing N and M .  

We have first verified the convergence with respect to M for various fixed values of 
N .  The numerical results obtained for values of N,, between 5 and 25 ( N  between 2 and 
12) indicate that as M,)  is increased from 49 to 97 the first five digits of the first 20 
singular values do not change. We give an example in table 1. 

This result implies that for an accurate computation of the largest singular values it 
is sufficient to take M,,=49,  i.e. to restrict the integral in (1.5) to the interval [ - 8 , 8 ] .  
This is reasonable because, as we will see, the singular functions associated with the 
largest singular values are concentrated inside this interval. On the other hand, the 
singular functions associated with small singular values tend to spread out of this 
interval and therefore a larger number of sampling points in the object space is 
required for a correct computation. 

The next point is to verify the convergence of the largest singular values (for 
instance, the first eleven singular values), for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,,= 49 fixed, when N,, increases. This is 
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Table 1.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASingular values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA!:, ”for  NI,= 11 and for various values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMI,, corresponding 
to the intervals ly1<2, 4, 8 and 16. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 
- 
0 

1 
2 

3 
4 

5 
6 

7 
8 
9 

10 

M,, = 13 

0.603 3185 

0.256 7505 
0.107 5034 

0.040 2823 
0.023 7160 
0.019 8000 

0.009 7259 
0.004 3345 

0.002 1716 

0.000 7147 
0.000 2587 

MI, = 25 

0.603 3185 

0.256 7506 
0.107 5038 

0.040 2860 
0.023 7641 
0.019 8619 

0.009 9324 
0.007 6321 

0.007 3423 
0.004 0795 

0.001 8277 

MI, = 49 

0.603 3185 

0.256 7507 
0.107 5038 
0.040 2860 

0.023 7641 
0.019 8619 
0.009 9324 

0.007 6322 

0.007 3423 
0.004 0795 

0.001 8280 

M,, = 97 

0.603 3185 
0.256 7506 
0.107 5038 

0.040 2860 
0.023 7641 
0.019 8619 

0.009 9324 
0.007 6322 

0.007 3423 
0.004 0795 

0.001 8280 

an  important problem from the practical point of view because its solution indicates 
the minimum number of sampling points in the image space which is required for the 
computation, within a given accuracy, of a given number of singular values. The  
results a re  given in table 2. In  the last column we give the values obtained with 
No=97,  Mo=97.  In this case all the digits are correct, as we have verified by 
increasing the number of sampling points. 

Table 2. Singular values of A!,:;”’ for Ml,=49 and for various values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,,. In the last 

column the singular values are for No = Mo = 97. 

k 
- 

0 
1 
2 

3 

4 
5 
6 

7 
8 
9 

10 

N1,=5, Ml,=49 No = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, MI, = 49 

0.602 6863 
0.256 6841 

0.106 8757 
0.039 9315 

0.013 6988 

0.603 2066 
0.2567172 
0.107 0939 

0.040 1201 

0.023 1449 
0.018 8646 
0.007 4985 

0.603 2544 
0.256 7494 

0.107 4633 
0.040 2858 

0.023 7211 
0.019 8424 

0.009 9261 
0.005 4959 

0.003 3284 

No= 11, M1,=49 

0.603 3185 

0.256 7507 
0.107 5038 
0.040 2860 

0.023 7641 

0.019 8619 
0.009 9324 
0.007 6322 

0.007 3423 
0.004 0795 

0.001 8280 

k N0=13, Mo=49 No=17,M0=49 No=21, M,,=49 N0=97, Mo=97 

0 
1 
2 

3 
4 
5 
6 
7 
8 
9 

10 

0.603 3270 

0.256 7530 
0.107 5614 

0.040 2925 
0.023 7666 
0.019 8708 
0.010 0815 
0.008 0475 
0.007 6615 
0.004 2106 
0.002 7954 

0.603 3462 
0.256 7537 
0.107 5893 
0.040 2935 

0.023 7718 
0.019 8718 

0.010 1126 
0.008 0665 
0.007 6939 
0.004 3175 
0.004 0275 

0.603 3530 
0.256 7539 
0.107 6001 
0.040 2937 

0.023 7735 
0.019 8720 
0.010 1251 
0.008 0674 
0.007 6968 
0.004 3228 
0.004 0466 

0.603 3609 
0.256 7540 
0.107 6124 
0.040 2938 
0.023 7752 
0.019 8721 

0.010 1390 
0.008 0676 
0.007 6991 
0.004 3232 
0.004 0481 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Singular value spectrum of the one-dimensional coherent problem (0) and 

singular value spectrum of the incoherent problem (A) .  In both cases log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk is plotted as a 
function of the index k .  

As follows from table 2, a satisfactory approximation of the first five singular 
values is already obtained using nine sampling points in the image space. Analogously 
the first nine singular values are well approximated using thirteen sampling points. 

In figure 1 we compare the singular value spectrum of the incoherent problem with 
that of the coherent one. We plot the first 25 singular values, obtained with 
No = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMO = 49. We notice that the singular values of the incoherent problem tend to 
zero more rapidly than the singular values of the coherent one, i.e. the incoherent 
problem is more ill posed. This implies, as will be discussed in the next section, that it 
can be rather difficult to obtain a transfer function which completely fills the available 
band [ - 4x, 4x1. 

Finally in figure 2 we plot the first eight singular functions uk(y) obtained with 
No=Mo=49.  We notice the saturation of the number of zeros inside the central 
region, a property of the singular functions already remarked in the coherent 
problem. Starting from the fifth singular function (k=4) ,  all the even singular 
functions have four zeros inside ( -  1, 1) while all the odd singular functions have five 
zeros inside the same interval. We recall that the Rayleigh resolution distance is 1. 
The points k 1 are double zeros of the singular functions, as was already remarked in 
62. We also observe that for increasing k (and therefore decreasing ak) the singular 
functions spread out of the central region, which corresponds to the central lobe of the 
illuminating beam. 

6. The impulse response function 

As follows from (2.9), the function T(y) ,  defined in (2.8), is the impulse response 
function of the super-resolving microscope in the absence of noise. In fact, T(y)  is the 
response to a unit impulse of the system which consists of the confocal microscope, of 
the detectors for the measurement of the full image, of the computer where the 
inversion algorithm (2.5) is implemented and of the scanning table. This inter- 
pretation is correct only when the full image is detected in the absence of noise and the 
reconstruction formula (2.5) is used in the absence of round-off errors. In practice, 
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since the image is noisy, the series (2.5) does not converge and it must be truncated 
(see I) .  Moreover we have only a finite set of values of the image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(x). Under these 
conditions, if the image is sampled at the Nyquist rate and if we use No sampling points 
for the image, M(l sampling points for the object and K singular functions for the 
inversion, then the impulse response function (2.8) is replaced by 

K -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

(6.1) 
TP.  ~ v l ) ( ~ )  ur. ~ M ) ( o ) ~ l , > ' .  , M ' ( Y ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k = ( l  

We notice that, since the singular functions are alternatively even and odd, only 
the even singular functions contribute to (2.8) or to (6.1). 

6.1. Noise-free data 

We use the results of 83 for determining the impulse response function (2.8), which 
corresponds to the case of noise-free data. 

We first remark that the function 

1.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2. Plot of the first eight singular functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk of the one-dimensional incoherent 

problem. 
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is the kernel of the projection operator onto the orthogonal complement of the null 
space of the operator (1.5). Since the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu I ( x )  have bandwidth 4n, from the 
projection property of the sinc function we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ r  

T(y)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4 1 P ( x ,  y )  sinc(4x) (6.3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-72 

and therefore T(y )  is the projection onto N(A) '  of the function 

f(y) = 4 sinc(4y). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6.4) 

If @ ( y )  is the projection of f ( y )  onto N ( A )  then, from the well known decompo- 
sition theorem, we have 

T(Y) =f (y )  - P(Y). (6.5) 

The Fourier transform of @ ( y ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ ( U ) ,  can be computed by means of (3.13) and 
(3.16)-(3.21). If we notice thatf(w) = 1 when / w /  <4n (and 0 elsewhere), from (3.16) 
and (3.17) we have 

1 + ,;){/I -p[3 + (1/2n)w]} w < 0 { 1 - ,il{n+,u[3-(1/2x)o]} w > 0 .  
& ( U )  = 

Moreover, from (3.20) and (3.21), always in the case f ( w )  = 1, we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I, = 2n j =  1 , 2 , 3 , 4  (6.7) 

J ,=  -5x+2nj j =  1 , 2 , 3 , 4 .  (6.8) 

A=0 p y .  (6.9) 

Then, from (3.18) and (3.19) it follows that 

By substituting in (6.6) we get 

&(o)=l -~[3- (1 /2 ,2) Iwl] .  (6.10) 

Since &(U)  is even, $(U)  given by (3.13) is also even. Therefore it is sufficient to 
compute $ ( w )  for OJ E (2n, 4n). In such a case w - 2n belongs to (0,237) and w - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4n 
belongs to (-2n, 0). It follows that 

$(U)  =2&(0 - 2n) - &(U - 4n) = 1 - 2 [7 - (3 /2~z)~0]  2n < w < 4n. (6.11) 

If we now denote by f ( w )  the Fourier 
(6. l l ) ,  we have 

2 [3 - (1/2n)Io/]  

; [7 - (3124 I w I ]  i T( U )  = 

In figure 3 we plot the function f ( w )  
Fourier transform of the impulse response 

TdY) = sinc'(y) 

transform of T ( y ) ,  using (6.5), (6.10) and 

(6.12) 

and also the function f o ( w )  which is the 
function of conventional CSLM, i.e. 

(6.13) 

as follows from (2.10). We notice that, while ?,,(U)-0 when /w1-4n, f ( w )  is never 
zero over the interval [ - 4n, 4x1 and therefore all the Fourier components of the 
object in this band are transmitted by super-resolving CSLM, at least in the absence of 
noise. 
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1.2.  

0 1  I I I 

-4ll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2n 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n 4n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. Plots of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a )  the transfer function Tli(w) for the conventional confocal scanning 
microscope and (b)  the transfer function F(w) for the noise-free super-resolving micro- 

scope, 

In figure 4 we plot the impulse response functions T(y)  and T,,(y). As one can 

(6.14) 

The super-resolving effect corresponds to the fact that the central peak of T(y)  is 
much narrower than the central peak of T,,(y). This improvement in central resolution 
is accompanied by decaying side lobes similar to those of the coherent case. 

easily derive from (6.12), T(y)  is given by 

T(y)  = + sinc’(2y) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 sinc’(y) - 3 sinc(2y) sin’(x,v). 

r C  I 

~~ 
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Y 

Figure 4. Plots of (a )  the impulse response function Tl,(y) of the conventional confocal 
microscope and ( h )  the impulse response function T ( y )  of the noise-free super-resolving 

microscope. The unit of length is the Rayleigh resolution distance. 
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6.2. Noisy and discrete data 

In the case of noisy data the expansion (2.5) does not in general converge. Then one 
must consider a truncated singular function expansion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs discussed in I, this 
approximation is especially good in the case of the recovery offt(0), since one can use 
only the singular functions which are large in the central region. Moreover, when we 
have a finite set of sampled data, we must use the approximate singular functions 
discussed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA§ 5. Under these conditions the approximate value of the restored object 
is given by 

K - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

(6.15) 

and the corresponding impulse response function is given by (6.1). 

number 
The stability of the inversion procedure (6.15) is controlled by the condition 

(6.16) 

As follows from table 2, for K = 3 ,  5 ,  7, 9 and 11, the values of the condition 
number in the case No=Mo=97 are respectively 5.61, 25.4, 59.6, 78.4 and 149. For 
smaller values of No,  M O  the values of the condition number do not change signifi- 
cantly. This result indicates that if the data are affected by a few per cent noise then 
eight terms in (6.15) can be taken into account. In this case we have a non-zero 
contribution only for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk=O,  1, 3, 5 ,  7. 

In figure 5 we plot the transfer functions f ! $ " . M ' ( ~ ) ,  i.e. the Fourier transforms of 
the functions T!$".M)(y), defined in (6.1), for various values of K, in the case 
NO = MO = 97. We see that for K S  49 the shape of the transfer function is very similar 
to that of the limit N =  M = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw , plotted in figure 3. We also notice that the behaviour of 
the transfer functions is rather irregular over the band. This means that the image 
provided by the super-resolving microscope can be strongly distorted. Filtering 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Plot of the transfer functions ?g" (w)  for various values of K (number of 

singular functions used) computed in the case No= M O =  97. 
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Figure 6. Plot of the impulse response functions T$. " (y )  for various values of K.  
computed in the case No = M,, = 97. The unit of length is the Rayleigh resolution distance. 

techniques, such as Tikhonov regularisation [6], can be used, however, in order to 
improve the fidelity of the image in the centre of the band. 

In order to estimate the improvement in bandwidth we compare, for example, the 
transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf p . " ) ( ~ ) ,  with K = 7 ,  with the transfer function Z(,(u) of the 
conventional CSLM (see figure 3). We consider the interval where the transfer function 
is greater than 0.1. This is a symmetric interval, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ - U , ,  w O ] .  Then in the case of 
?,,(U) we have coo= 2 . l n  while in the case of ~ $ " ~ " ) ( u )  we have coo= 3 . 5 ~ .  This means 
that super-resolving CSLM provides a 60% improvement in bandwidth (and therefore a 
60% improvement in resolution) with respect to conventional CSLM. The improve- 
ment corresponding to K = 9  and K =  ll'does not differ significantly from the 
improvement corresponding to K = 7. These predictions have been verified closely in 
recent laboratory experiments at King's College, London and this work will be the 
subject of a separate publication. 

In figure 6 we plot the impulse response functions Tp." ) (y)  for the same values of 
K as in figure 5.  

7. The two-dimensional problem with square pupils 

The solution of the one-dimensional problem discussed in the previous sections 
provides also the solution of the two-dimensional problem in the case of square pupils. 
In fact, in such a case in (1.1) we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S,(x) = S,(x) = S(x) = sinc(x,) sinc(x,) (7.1) 

and the singular system of the integral operator 

r 

can be obtained from the singular system of the integral operator (1.5) as follows. The 
singular values of the operator (7.2) are all the possible products of the singular values 
of the operator (1.5) 

a i . k =  a,ak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  k =  0, 1 , 2  . . . (7.3) 
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and the corresponding singular functions are given by the tensor products of the 
singular functions of (1.5) 

It is obvious that the singular values with i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk have multiplicity 2 while the singular 
values with i = k have multiplicity 1. 

Only the singular functions corresponding to even values of both indices contri- 
bute to the reconstruction of the object at the origin. The two-dimensional problem is, 
however, more ill conditioned than the one-dimensional problem. As we have seen, in 
the case of K = 5 where we use three singular functions with k = 0, 2, 4, the condition 
number is 25.4 in the one-dimensional case. In the two-dimensional case, in order to 
obtain the same resolution, we must use nine singular functions, corresponding to all 
the possible pairs of the values 0, 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. But the condition number is now (25.4)2=645 
and this value could be inconveniently high for the reduction of experimental data, 
since it would require very large values of the signal-to-noise ratio. 

8. Concluding remarks 

In 8 6 we have estimated that super-resolving CSLM can provide an improvement in 
resolution of about 60% with respect to conventional CSLM. This improvement is 
much more evident if regularisation techniques [6] are used in order to deconvolve the 
image provided by super-resolving and/or conventional CSLM. For example, in the 
case of the Tikhonov regularisation method, the transfer function T:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" ( U )  is replaced 
by the following one: 

where a is the so-called regularisation parameter whose value is related to the 
signal-to-noise ratio. Analogously f'o(w) is replaced by 

In a recent paper Sheppard [14] has proposed an alternative version of super- 
resolving CSLM. Also in this case one must use many detectors and the signals from the 
detectors must be appropriately delayed and integrated. One can easily prove that for 
the one-dimensional problem discussed in this paper the transfer function correspond- 
ing to the Sheppard method is given by 

?,(U)= ( 1-- I ~ / < 4 n  

and ?,(U) = 0 elsewhere. Also in this case one can deconvolve the image and this 
procedure provides a transfer function given by 
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Figure 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a )  Comparison of the transfer functions of the conventional confocal micro- 
scope (full curve), of the multidetector microscope proposed by Sheppard (broken curve) 
and of the super-resolving microscope discussed in this paper (chain curve). ( b )  
Regularised versions of the transfer functions plotted in (a) .  

In figure 7 we compare the transfer functions of the various methods. In figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7(a) 
we plot the unregularised transfer functions and in figure 7(b)  the regularised ones, 
assuming a value of the regularisation parameter of the order of lo-'. It is seen that 
Sheppard's method provides an improvement in resolution with respect to conven- 
tional CSLM which is smaller than the improvement provided by the method discussed 
in this paper. 
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