
Submitted to The Journal of the Acoustical Society of America (August 25, 2001) 1

Super-Resolution in Time-Reversal Acoustics

Peter Blomgren∗ George Papanicolaou† Hongkai Zhao‡

August 25, 2001

Abstract

We analyze theoretically and with numerical simulations the phe-

nomenon of super-resolution in time-reversal acoustics. A signal that is

recorded and then re-transmitted by an array of transducers, propagates

back though the medium and refocuses approximately on the source that

emitted it. In a homogeneous medium, the refocusing resolution of the

time-reversed signal is limited by diffraction. When the medium has ran-

dom inhomogeneities the resolution of the refocused signal can in some

circumstances beat the diffraction limit. This is super-resolution.

We give a theoretical treatment of this phenomenon and present nu-

merical simulations which confirm the theory.

1 Introduction

In time-reversal acoustics a signal is recorded by an array of transducers, time-
reversed and then re-transmitted into the medium. The re-transmitted signal
propagates back through the same medium and refocuses approximately on the
source. The refocusing is approximate because of the finite size of the array
of transducers (receivers and transmitters), which is called a Time Reversal
Mirror (TRM; see figure 1). The possibility of refocusing by time-reversal has
many important applications in medicine, geophysics, non-destructive testing,
underwater acoustics, wireless communications, etc., and has been studied in
a variety of settings [Fin97, Fin99, HSK+99, DJ90]. In the frequency domain,
time-reversal is equivalent to phase-conjugation which has been studied exten-
sively in optics [Por89].

Time-reversed signals propagate backwards through the time-independent
medium and go through all the multiple scattering, reflections and refraction
that they underwent in the forward direction, which is why refocusing occurs.
However, the size of the TRM is often small compared to the propagation dis-
tance, that is, the aperture of the time-reversal mirror is small, and only a
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Figure 1: Setting for time-reversal acoustics. A point source (red) emits
a wave, which is received on a screen (blue) of width a — the time-
reversal mirror (TRM) — at a distance L from the source. The domain
of numerical solution of the (parabolic) wave equation is shown with
a dotted line, and DTBC stands for Discrete Transparent Boundary
Conditions.

small part of the advancing wave is captured and time reversed. In homoge-
neous media, the spatial resolution of the time-reversed signals is limited by
diffraction and is inversely proportional to the aperture size and proportional
to the wavelength times the propagation distance. In the notation of figure 1,
the time-reversed and back-propagated signal due to a point source will focus
in a region around the source with spatial width of order λL/a. Here λ is the
wavelength of the carrier signal for the pulse, L is the distance from the source
to the TRM and a is the size of the TRM.

In underwater acoustics, typical parameters are: propagation speed c0 =
1.5km/s, wavelength λ = 1m, propagation distance L = 1 ∼ 50km, TRM size
a = 50 ∼ 100m. In non-destructive testing with ultrasound these lengths are
scaled by a factor 10−3, so that typical wavelengths are λ = 1mm.

If the medium is randomly inhomogeneous the focusing resolution of the
back-propagated signal can be better than the resolution in the homogeneous
case. This is referred to as super-resolution. Roughly speaking, the random in-
homogeneities produce multipathing and the TRM appears to have an aperture
that is larger than its physical size, an effective aperture ae > a. This means
that the re-compressed pulse is narrower than in the homogeneous medium and
we have super-resolution with a spatial scale of order λL/ae. This phenomenon
was observed in underwater acoustics experiments [DJ90, HSK+99, KHS+97]
as well as in the ultra-sound regime [DRF95, Fin97, Fin99].

An attempt at a theoretical explanation of super-resolution by multipathing
is given in [DJ92]. This, however, requires ensemble averages in random me-
dia and does not account for the remarkable stability of the compressed pulse,
without any averaging, as seen in the actual experiments. In figure 2, numerical
computations with time-harmonic signals illustrate the lack of any resolution
realization-by-realization, while on average the resolution is remarkable. For
time-harmonic signals, time reversal is the same as phase conjugation on the
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Figure 2: Time-harmonic waves in random media. Propagation distance
1000m, TRM width 50m, width of numerical domain 150m, width of ran-
dom medium 112.5m, contrast ±5%, 428 realizations. (a) Amplitude
of the mean: Homogeneous (red) and average over random realizations
(blue) case. (b) Relative variance, > O(1) except for a very small in-
terval. (c) Individual realizations that show super-resolution (blue) as
well as no resolution at all (black).

TRM (usually called the Phase Conjugation Mirror, in this setting).
The key to the statistical stability of time-reversed signals is their frequency

spread. This stabilization of pulses has been seen in other contexts in stochastic
equations and random media [SP00] but not in connection with time-reversal,
as it is presented and analyzed here.

In this paper, we explore analytically and numerically the phenomenon of
super-resolution in time reversal in a regime of parameters where the effects of
the random medium are fully developed. This regime can be described roughly
as follows. The propagation distance, L, the carrier wavelength, λ, the aperture
of the TRM, a, the correlation length of the medium fluctuations, l, and the
variance of the sound speed fluctuations,

〈
µ2

〉
, are scaled by a single parameter

ǫ = λ/L, which we assume to be small. We assume also that l ∼ λ and that〈
µ2

〉
∼ ǫ. In this regime:

• The propagation distance is much larger than the correlation length of the
inhomogeneities, which is large or comparable to the wavelength.

• The aperture of the TRM is relatively small so that the effect of the
random medium and multipathing can be felt.

• The random fluctuations of the propagation speed are weak so that waves
are scattered mostly in the forward direction.

Many situations in underwater acoustics and in ultrasound propagation fall in
this regime.

The objectives of this paper are to:

• Systematically calculate statistics of the the back-propagated phase-conju-
gated field using transport and Wigner equations in the frequency domain.
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• Derive an effective aperture formula for a TRM in random media. In
particular, we show that the effective aperture for a finite aperture or
Gaussian TRM is

ae(L) = a

√
1 +

L3γ

a2
,

where γ is a constant with dimensions of reciprocal length that depends on
the statistics of the fluctuations of the propagation speed (see section 7 for
details). It is assumed that the effective aperture is still small compared
to the propagation distance, ae(L) ≪ L.

• Show that for a pulse in the time domain, super-resolution is linked to
the effective aperture, ae, of the TRM, and that self-averaging due to
the frequency spread of the signal makes super-resolution in time-reversal
statistically stable.

In section 2, we set up equations for back-propagated fields and quantities of
interest in the frequency domain. In section 3, we introduce an invariant em-
bedding approach in order to derive transport and Winger equations for the
time-reversed signal originating from a point source. Then, in section 4, the
diffraction limit for a homogeneous medium is calculated, in both the frequency
and time domain for Gaussian and finite aperture TRMs. Scaling for the Wigner
equation for the transport limit, from which the effective aperture will be de-
rived, is introduced in section 5. Pulse stabilization in the time domain and the
beam approximation are discussed in sections 6 and 7, respectively. Details of
the numerical implementation and numerical results are shown in section 8. The
concept of dynamic TRM placement is introduced in section 9 and is explored
with numerical simulations. Finally in section 10 we consider time-reversal in
a waveguide and show the results of several numerical simulations without dis-
cussing here the theory that explains them. In Appendix A we explain carefully
the various scaling limits which lead to super-resolution and statistical stability
in the time domain as described here.

2 Back-Propagated Fields

The time-reversed signal is synthesized from time-harmonic waves by the inverse
Fourier transform. We start with the Helmholtz equation for time-harmonic
waves u(x, y, z)e−iωt

uxx + uyy + uzz + k2n2(x, y, z)u = 0.(1)

Here k = ω
c0

is the wavenumber, c0 is a reference speed, c(x, y, z) is the propa-
gation speed and n(x, y, z) = c0

c(x,y,x) is the index of refraction. When the time

reversal mirror has small aperture (beam geometry) and the fluctuations in the
propagation speed are weak, we can use the parabolic or paraxial approxima-
tion (see [Tap77]). We let u = eikzψ(x, y, z) and ignore backscattering in the
Helmholtz equation (the term ψzz) to obtain a parabolic initial value problem
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for the wave amplitude ψ, in which the direction of propagation z plays the role
of time (see [BEHJ88])






2ikψz + ∆⊥ψ + k2
(
n2 − 1

)
ψ = 0, ∆⊥ is the transverse Laplacian

ψ|z=0 = ψ0(x; k), x = (x, y).
(2)

We note that the parabolic approximation is not valid in the immediate
neighborhood of a point source. The full Helmholtz equation must be solved
near the source and then matched with the parabolic equation further away
from it. We will use a Gaussian beam in the frequency domain as an initial
wave amplitude ψ0, that is, a Gaussian in the transverse space coordinates. We
take the pulse to be Gaussian in time as well, which means a Gaussian in the
wavenumber k or frequency ω. By Fourier synthesis the wave function in the
time domain is given by

Ψ(t, x, y, z) =

∫
eiω(z/c0−t)ψ(x, y, z;ω/c0) dω.(3)

We will also use a point source and consider it as the limit of a Gaussian in
space whose width is very small or zero.

The Green’s function G(z, z0;x, ξ; k) with a point source at (z0, ξ) satisfies





2ikGz + ∆xG + k2µ(x, z)G = 0, z > z0, µ(x, z) = n2(x, z) − 1

G(z0, z0;x, ξ; k) = δ(x − ξ).
(4)

By reciprocity G(z, z0;x, ξ; k) = G(z0, z; ξ,x; k). If the initial source distribu-
tion at z0 = 0 is ψ0(η; k) then the wave field at z = L is

ψ(y, L; k) =

∫
G(L, 0;y, η; k)ψ0(η; k) dη.(5)

In time-reversal problems it is convenient to introduce the tensor product of two
Green’s functions




Γ(L,x,y; ξ, η; k) = G(L, 0;x, ξ; k)G(L, 0;y, η; k)

Γ(0,x,y; ξ, η; k) = δ(x − ξ) δ(y − η)
(6)

because Γ(L,y,y; ξ, η; k) describes the response, at the source plane, of a point
source at η, whose signal is recorded on the TRM at y, phase-conjugated, back-
propagated and observed at ξ. In the following section we derive an equation
for Γ, which is a form of invariant embedding.

Using Γ(L,y,y; ξ, η; k), the time-harmonic, phase-conjugated and back-prop-
agated field at the source plane, z = 0, can be written as

ψB(ξ, L; k) =

∫
G(L, 0;y, ξ; k)ψ(y, L; k)χA(y) dy

=

∫∫
χA(y)ψ0(η; k)G(L, 0;y, ξ; k)G(L, 0;y, η; k) dη dy

=

∫∫
χA(y)ψ0(η; k)Γ(L,y,y; ξ, η; k) dη dy.

(7)



Submitted to The Journal of the Acoustical Society of America (August 25, 2001) 6

Here χA(y) is the aperture function for the TRM occupying the region A and
is equal to 1 if y ∈ A, and 0 otherwise. We use the same notation for other
aperture functions as well. The back-propagated time-reversed field is obtained
by Fourier synthesis

ΨB(ξ, L, t) =

∫
ψB(ξ, L;ω/c0)e

−itω dω.(8)

Here t is relative time, on the scale of the pulse width. The travel-time to and
from the TRM has been eliminated.

3 Invariant Embedding and the Wigner Equa-

tion

From the equation for the Green’s function G(z, z0;x, ξ; k) we can derive an
equation for Γ(L,x,y; ξ, η; k)





2ik

∂Γ

∂L
+ (∆x − ∆y) Γ + k2 (µ(x, L) − µ(y, L)) Γ = 0

Γ(0,x,y; ξ, η; k) = δ(x − ξ) δ(y − η).

(9)

Here ∆x and ∆y are the Laplacians in the transverse variable x and y, respec-
tively. We introduce the following change of transverse variables






X =
x + y

2
, x = X − Y

2

Y = y − x, y = X +
Y

2

∆x − ∆y = (∇x −∇y) (∇x + ∇y) = −2∇X∇Y.

(10)

This transforms equation (9) into





2ik
∂Γ

∂L
− 2∇X∇YΓ + k2

(
µ

(
X − Y

2 , L
)
− µ

(
X + Y

2 , L
))

Γ = 0

Γ(0,X,Y; ξ, η; k)
def
= δ

(
X − Y

2 − ξ
)

δ
(
X + Y

2 − η
)
.

(11)

With the Fourier transform defined by





f̂(p) =
1

(2π)d

∫

Rd

eip·xf(x) dx

f(x) =

∫

Rd

e−ip·xf̂(p) dp
(12)

and the scaling rule δ(x) = |α|dδ(αx) for δ functions in d dimensions, with
d = 1, 2 here, we introduce the Wigner distribution

W (L,X,P; ξ, η; k) =
1

(2π)d

∫
eiP·YΓ(L,X,Y; ξ, η; k) dY.(13)
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It satisfies the Wigner equation (Fourier transform in Y of the Γ-equation)

k
∂W

∂L
+ P · ∇XW =

ik2

2

∫
e−iQ·Xµ̂(Q, L)

[
W

(
L,X,P + Q

2

)
− W

(
L,X,P − Q

2

) ]
dQ,

(14)

with initial condition

W (0,X,P; ξ, η; k) =
1

(2π)d
e−iP·(ξ−η)δ

(
X − ξ+η

2

)
.(15)

Here µ̂(P, L) is the Fourier transform of µ(x, L) in the transverse variable x.
We can recover Γ from W by a Fourier transform, and in particular

Γ(L,y,y; ξ, η; k) =

∫
W (L,y,P; ξ, η) dP.(16)

Thus, the phase-conjugated back-propagated time harmonic field is given by

ψB(ξ, L; k) =

∫∫
ψ0(η; k)χA(y)

(∫
W (L,y,P; ξ, η; k) dP

)
dy dη,(17)

in terms of the solution W of the Wigner equation (14).

4 Deterministic Diffraction Limit

In this section we will use the expression (17) for the back-propagated field
and the invariant embedding and Wigner equations from section 3 to calculate
the deterministic diffraction limit for a time-dependent pulse, emanating from
a point source in space.

For a homogeneous medium, with µ ≡ 0, the solution to the Wigner equation
(14) with initial condition (15) is

W (L,X,P; ξ, η) =
1

(2π)d
e−iP·(ξ−η)δ

(
X − LP

k − ξ+η
2

)
.(18)

Now, equation (16) gives

Γ(L,y,y; ξ, η; k) =
∫

W (L,y,P; ξ, η) dP

= 1
(2π)d

(
k
L

)d
e−i k

L (y− ξ+η
2 )·(ξ−η).

(19)

From this we get the following expression for the phase-conjugated and back-
propagated time harmonic field:

ψB(ξ, L; k) =
∫∫

ψ0(η, k)χA(y) 1
(2π)d

(
k
L

)d
e−i k

L (y− ξ+η
2 )·(ξ−η) dy dη

=
(

k
L

)d ∫
χ̂A

(
k
L (η − ξ)

)
ψ0(η, k)ei

k(ξ2−η2)
2L dη

=
(

k
L

)d
ei kξ2

2L

∫
χ̂A

(
k
L (η − ξ)

)
e−i kη2

2L ψ0(η, k) dη.

(20)
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Here χ̂A is the Fourier transform of the aperture function χA. If the source is
a δ-function in space (point source), ψ0(η) = δ(η), then the expression for ψB

simplifies to

ψB(ξ, L; k) =

(
k

L

)d

ei kξ2

2L χ̂A

(
−kξ
L

)
.(21)

We will now use this result for two different types of time reversal mirrors.
First, we consider a finite aperture TRM, from which we have edge diffraction
effects. Then, we consider a TRM with a Gaussian aperture function. We
comment briefly on the resolution limits in time-reversal for these two kinds of
TRMs.

4.1 Finite Aperture TRM

For simplicity we consider only one transverse dimension, d = 1. Let χA(y)
be the indicator function of a TRM of size a centered at y = 0. The Fourier

transform of χA(y) is χ̂A(P ) = sin Pa/2
πP . Plugging this into equation (21) gives

ψB(ξ, L; k) =
1

πξ
sin

(
kξa

2L

)
ei kξ2

2L .(22)

The diffraction limited resolution can be measured by the distance ξF from the
origin to the first Fresnel Zone, that is, the first zero of the phase-conjugated
back-propagated field

ξF =
2πL

ka
=

λL

a
.(23)

If the pulse is a point source in space and a Gaussian in the time domain with
carrier frequency ω0, that is,

Ψ0(η, t) = δ(η)
1√
2πσ2

t

e
− t2

2σ2
t e−iω0t, ψ0(η, ω) =

1

2π
δ(η)e−

(ω−ω0)2σ2
t

2 ,(24)

then the time-reversed and back-propagated signal in time at the source plane
is

ΨB(ξ, L, t) = 1
2π

∫
ψB(ξ, L, ω

c0
)e−

(ω−ω0)2σ2
t

2 e−iωt dω

=
∫

1
(2π)2iξ

(
e

iωξa
2c0L − e−

iωξa
2c0L

)
e

iωξ2

2c0L e−
(ω−ω0)2σ2

t
2 e−iωt dω

= 1
(2π)3/2iξσt

e
−iω0

(

t− ξ2

2c0L

)

{
e

iω0ξa
2c0L e

−

[

(t−
ξ2

2c0L
)−

ξa
2c0L

]2

2σ2
t

−e
−iω0ξa
2c0L e

−

[

(t−
ξ2

2c0L
)+

ξa
2c0L

]2

2σ2
t

}
.

(25)
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Figure 3: The left figure shows the spatial diffraction pattern of the
amplitude of (25) at time t = 0. The right figure is a space-time contour
plot of the amplitude of (25) and shows the parabolic shift in arrival
time. Here the pulse width is σt = 1.33ms, the TRM width a = 50m,
the propagation speed is c0 = 1500m/s, the propagation distance is
L = 1000m, and the period of the carrier is 0.22ms at 4.5KHz.

Diffraction from the two edges of the TRM is seen clearly. At the wave front,

where t = ξ2

2c0L , we have

ΨB(ξ, L,
ξ2

2c0L
) =

√
2π

σt

1

2π2ξ
sin

[
ω0ξa

2c0L

]
e−ξ2/2[ 2σtc0L

a ]
2

.(26)

If the width of the pulse in time σt is large compared to λ0/c0, the time period,
then the variance of the Gaussian in ΨB is

2σtc0L

a
=

2σtc0

λ0

λ0L

a
≫ ξF =

λ0L

a
.(27)

Thus, the diffraction limit is determined by the carrier frequency. A plot of
ΨB(ξ, L, 0) is shown in figure 3.

4.2 Gaussian TRM

We now consider the case where the aperture function, χA, is a normalized,
isotropic Gaussian with variance a,

χA(y) ∼ 1

(2πa2)
d
2

e−
|y|2

2a2 .(28)

In this case, the phase-conjugated back-propagated time-harmonic field from a
point source is

ψB(ξ, L; k) =

(
k

2πL

)d

e−
a2k2|ξ|2

2L2 ei
k|ξ|2

2L .(29)

The resolution of the refocused signal is proportional to the variance of this
Gaussian, which is λL

a .
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Figure 4: The spatial shape of the compressed pulse with a Gaussian
aperture function at time t = 0, from (31). Here the pulse width is
σt = 1.33ms, the TRM width is a = 50m, the propagation speed is
c = 1500m/s, propagation distance is L = 1000m, and the time period
of the carrier is 0.22ms. Note the absence of Fresnel zones for a Gaussian
TRM.

If the pulse is a point source in space and a real Gaussian in time with carrier
frequency ω0 then

Ψ0(η, t) = δ(η)
1√
2πσ2

t

e
− t2

2σ2
t e−iω0t, ψ0(η, ω) =

δ(η)

2π
e−

(ω−ω0)2σ2
t

2 .(30)

We use the inverse Fourier transform to synthesize the self-averaging, time-
reversed and back-propagated signal at the source plane

ΨB(ξ, L, t) = 1
2π

∫
ψB(ξ, L, ω

c0
)e−

(ω−ω0)2σ2
t

2 e−iωt dω

= 1
2π

∫ (
ω

2πc0L

)d

e
− a2ω2ξ2

2c20L2
e

iωξ2

2c0L e−
(ω−ω0)2σ2

t
2 e−iωt dω = 1

2π

(
i

2πc0L

)d

·

dd

dtd




e
−iω0

(

t− ξ2

2c0L

)

e
− a2ω2

0ξ2

2c20L2
√

2π
a2ξ2

c20L2 +σ2
t

e

[

i

(

t−
ξ2

2c0L

)

+
a2ω0ξ2

c20L2

]2

2a2ξ2

c20L2
+2σ2

t




.

(31)

Here ξ2

2c0L is the a parabolic shift in time of the front and d = 1, 2. A plot of the
absolute value of this function at t = 0 is shown in figure 4. When the aperture
is small, a

L ≪ 1, and the time duration of the pulse is large compared to the

time period of the carrier, σt ≫ λ0

c0
then the width of the compressed pulse in

space is approximately λ0L/a. With the parameters as in figure 4 this ratio is
6.6m, which is roughly the width at mid level of the curve shown.
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5 Scaled Wigner Equation and the Transport

Limit

In order to study the effect of random inhomogeneities we introduce a scaling of
parameters as follows: (i) The wavelength λ is short compared to the propaga-
tion distance L and we let ǫ = λ

L ≪ 1 be a small dimensionless parameter which
scales all other variables. (ii) The wavelength is comparable to the correlation
length, l, that is l ∼ λ. This allows full interaction between the waves and the
random medium, which is the interesting case to study. (iii) The fluctuations,
µ = n2 − 1, of the index of refraction are weak and isotropic, |µ| ∼ √

ǫ. If the
fluctuations are very strong or very anisotropic (as in a layered medium) the
parabolic wave equation cannot be used. If they are very weak then stochastic
effects will not be observable.

We want to analyze long distance and long time propagation so we rescale
the space variables by x → x

ǫ , L → L
ǫ . We do not rescale the time t → t

ǫ in (8)
because in this paper t is always relative time on the scale of the pulse width.
So it will remain of order one. The Green’s function in the scaled variables is






Gǫ(L, 0;x, ξ; k) = G(L
ǫ , 0; x

ǫ , ξ
ǫ ; k),

Γǫ(L,x,y; ξ, η; k) = Gǫ(L, 0;x, ξ; k)G
ǫ
(L, 0;y, η; k),

(32)

and Γǫ satisfies the scaled equation






2ikǫ
∂Γǫ

∂L
+ ǫ2 (∆x − ∆y) Γǫ + k2

√
ǫ

[
µ(

x

ǫ
,
L

ǫ
) − µ(

y

ǫ
,
L

ǫ
)

]
Γǫ = 0

Γǫ(0,x,y; ξ, η; k) =
1

ǫ
δ

(
x − ξ

ǫ

)
δ

(
y − η

ǫ

)
.

(33)

The scaling of the initial conditions for Γǫ is adjusted so that the wave energy
is independent of the small parameter ǫ.

Since we are interested in the local coherence of wave fields, within a few
wavelengths or correlation lengths, we introduce the scaled change of variables






X =
x + y

2
, x = X − ǫY

2

ǫY = y − x, y = X +
ǫY

2
,

(34)

so that ∆x − ∆y = (∇x −∇y) (∇x + ∇y) = − 2
ǫ∇X∇Y. In the new variables

Γǫ(L,X,Y; ξ, η; k) satisfies





2ik
∂Γǫ

∂L
− 2∇X∇YΓǫ +

k2

√
ǫ

(
µ

(
X
ǫ − Y

2 , L
ǫ

)
− µ

(
X
ǫ + Y

2 , L
ǫ

))
Γǫ = 0

Γǫ(0,X,Y; ξ, η; k)=
1

ǫ
δ
(

X
ǫ − Y

2 − ξ
ǫ

)
δ
(
X
ǫ + Y

2 − η
ǫ

)
.

(35)
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We again let W ǫ(L,X,P; ξ, η; k) be the Fourier transform of Γǫ(L,X,Y; ξ, η; k)
in Y and then W ǫ satisfies

k
∂W ǫ

∂L
+ P · ∇XW ǫ =

ik2

2
√

ǫ

∫
e−

iQ·X
ǫ µ̂(Q, L

ǫ )
[
W ǫ

(
L,X,P + Q

2

)
− W ǫ

(
L,X,P − Q

2

) ]
dQ,

(36)

with initial condition

W ǫ(0,X,P; ξ, η; k) =
1

(2π)d
e−iP· (ξ−η)

ǫ δ(X − ξ+η
2 ).(37)

By the asymptotic theory that we review briefly in Appendix A, the average
Wigner function 〈W ǫ(L,X,P; ξ, η; k) 〉 → W (L,X,P; ξ, η; k), as ǫ → 0, and W
satisfies the transport equation






k ∂W
∂L + P · ∇XW = πk3

4 ·
∫

R̂
(

P2−Q2

2k ,P − Q
) [

W (L,X,Q; ξ, η; k) − W (L,X,P; ξ, η; k)
]
dQ

W (0,X,P; ξ, η; k) = e−iP·(ξ−η)/ǫ

(2π)d δ
(
X − ξ+η

2

)
,

(38)

where R is the correlation function

R(z,x) = 〈µ(η,y)µ(η + z,y + x) 〉 ,(39)

and R̂(p,P) is its Fourier transform in (z,x), that is, the power spectral density
of the fluctuations of the refractive index.

It is important to note that the initial condition for W in (38) depends on the
small parameter ǫ, even though we have passed to the asymptotic limit in the
equation. Small ǫ means high frequency asymptotics, that is, long propagation
distances compared to the wavelength, as well as long propagation distances
compared to the correlation length, which produces the incoherent scattering
terms on the right side of the equation in (38). By keeping the ǫ dependence
of the initial conditions we retain coherent diffraction effects in the transport
approximation, which are clearly important in time reversal.

In Appendix A we discuss several scaling limits in which multipathing effects
are relevant. We also discuss the validity of the paraxial approximation in
these limits. In particular, the paraxial approximation may be violated in the
transport limit but its validity is restored in the narrow beam limit of section
7.

6 Pulse Stabilization

As we noted in the introduction, time reversal of time harmonic or very narrow
band signals (phase conjugation) is statistically unstable. This means that

〈
ψB(ξ, L, k)

〉
=

∫∫ [∫
W (L,y,P; ξ, η; k)) dP

]
ψ0(η, k)χA(y) dy dη(40)
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gives no information at all about the behavior of ψB(ξ, L, k) for individual re-
alizations of the medium, as demonstrated in figure 2 which is obtained by nu-
merical simulations. How is it then that super-resolution in time reversal is seen
clearly in a variety of physical experiments where there is no ensemble of random
media or averaging? This issue is not addressed in the time reversal literature
and poor understanding of it tends to make super-resolution counter-intuitive
and somewhat mysterious, especially to those familiar with phase conjugation.

The explanation is that super-resolution is a time domain phenomenon and
it is the re-compressed pulse in space and time that is statistically stable. Pulse
stabilization in randomly layered media is well understood, [SP00] and references
therein, and the reason for this stabilization is similar to the one encountered in
time reversal here. In the asymptotic limit of high frequency, short correlations
and long propagation distances, described in the previous section, we also have
statistical decorrelation of the wave functions for different frequencies. For k 6=
k′ we have

〈
ψB(L, ξ, k)ψB(L, ξ, k′)

〉
≈

〈
ψB(L, ξ, k)

〉 〈
ψB(L, ξ, k′)

〉
,(41)

in the limit ǫ → 0. This is the property that gives pulse stabilization in the time
domain. To see this, we note that the time-reversed, back-propagated field is

ΨB(L, ξ, t) =

∫
e−iωtψB(L, ξ, ω/c0) dω,(42)

and thus

〈
ΨB(L, ξ, t)2

〉
=

〈(∫
e−iωtψB(L, ξ,

ω

c0
) dω

)2
〉

(43)

=

∫ ∫
e−i(ω1+ω2)t

〈
ψB(L, ξ,

ω1

c0
)ψB(L, ξ,

ω2

c0
)

〉
dω1dω2

≈
∫ ∫

e−i(ω1+ω2)t

〈
ψB(L, ξ,

ω1

c0
)

〉 〈
ψB(L, ξ,

ω2

c0
)

〉
dω1dω2

=
〈
ΨB(L, ξ, t)

〉2
.

This means that for any δ > 0, the probability

P{|ΨB(L, ξ, t) −
〈
ΨB(L, ξ, t)

〉
| > δ}(44)

≤

〈 (
ΨB(L, ξ, t) −

〈
ΨB(L, ξ, t)

〉)2
〉

δ2
≈ 0,

by the Chebyshev inequality and (43). That is,

ΨB(L, ξ, t) ≈
〈
ΨB(L, ξ, t)

〉
,(45)

so that the time-reversed and back-propagated field is self-averaging in this
asymptotic regime. Put in another way, averaging over frequencies is like av-
eraging over realizations, in the appropriate asymptotic regime, as discussed in
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Appendix A. This is why super-resolution is observed in physical situations
as well as in numerical simulations. In section 8 we will discuss figures 7, 8,
and 9 where the self-averaging property is quite clearly seen in the numerical
simulations.

From (43) it is clear that, in general, fluctuation statistics of the time-
reversed and back-propagated field depend on the two-frequency correlation
function

〈
ψB(L, ξ, ω1/c0)ψ

B(L, ξ, ω2/c0)
〉
. This differs substantially from its

incoherent limit
〈
ψB(L, ξ, ω1/c0)

〉 〈
ψB(L, ξ, ω2/c0)

〉
only when |ω1 − ω2| ≈

ǫ (ω1 +ω2)/2. The two-frequency correlation function can be expressed in terms
of the two-frequency Wigner function for which a transport equation like (38)
can be derived for its evolution in L. The additional information obtained this
way affects only the tail of the time-reversed and back-propagated field, a phe-
nomenon that is well understood in randomly layered media [SP00, AKP+91].
Tail behavior, that is, large t behavior of (8), and hence two-frequency statistics,
is important in a more refined theory of super-resolution where there are several
sources of different strengths, in different but nearby locations in space as well
as in time. We then want to get theoretical limits of when these sources can be
discriminated in the time-reversed and back-propagated field and for that we
do need to know the tail behavior.

7 Beam Geometry

We will assume from now on that the difference ξ − η is of order ǫ and we
will drop the ǫ in the phase of the initial condition in the transport equation
(38). This means that we will restrict our attention to the behavior of the
time-reversed, back-propagated field in the vicinity of the source.

We will now introduce the beam approximation for the the solution W of the
transport equation (38). This is simply a diffusion approximation in P space

that is valid when the power spectral density R̂(p,P) is peaked near zero in the
transverse wavenumber P. We will describe this approximation qualitatively
without introducing a small parameter and doing a formal asymptotic analysis.
We do this because it is a relatively simple and well known approximation, and
in any case does not involve high-frequency asymptotics or statistical consider-
ations like the derivation of (38). The narrow beam approximation is discussed
further in Appendix A.

The physical basis for the narrow beam approximation is this: When we are
in the transport regime and the aperture of the TRM is small, that is, a ≪ L in
figure 1, then only multiply scattered waves that stay near the z axis contribute
significantly to the time-reversed and back-propagated field. So the wave goes
over many correlation lengths in the direction of propagation but only over a
few in the transverse direction. This is what makes the power spectral density
appear to be peaked in the transverse direction.

A quick derivation of the beam approximation is as follows. We expand W



Submitted to The Journal of the Acoustical Society of America (August 25, 2001) 15

around the point P up to second order on the right side of (38) to obtain





k
∂W

∂L
+ P · ∇XW =

πk3

4

∫
R̂

(
P2−Q2

2k ,P − Q
)
·

[
∇W (P) + 1

2∇∇W (P)(Q − P)
]
· (Q − P) dQ

W (0,X,P; ξ, η; k) =
1

(2π)d
e−iP·(ξ−η)δ

(
X − ξ+η

2

)
,

(46)

where ∇∇W is the matrix of second derivatives of W . The gradient term on
the right is zero because R̂ is even, so (46) becomes






k
∂W

∂L
+ P · ∇XW =

πk3D(P)

8
∆PW (P)

W (0,X,P; ξ, η; k) =
1

(2π)d
e−iP·(ξ−η)δ

(
X − ξ+η

2

)
,

(47)

where ∆P is the Laplacian in wavenumber space and the wavenumber diffusion
constant D(P) is given by

D(P)
def
=

∫
R̂

(
P2−Q2

2k ,P − Q
)
|P − Q|2 dQ.(48)

When this wavenumber diffusion constant, which is a reciprocal length, is es-
sentially independent of the wavenumber P then equation (47) is the narrow
beam approximation to the transport equation (38). In many interesting scaling
limits the phase space diffusion coefficient D does turn out to be constant, as
we discuss in Appendix A.

For D constant, equation (47) can be solved by elementary methods. To get
the time-reversed, back-propagated field we need Γ(L,y,y; ξ, η; k), which is the
inverse Fourier transform of W at Y = 0. Thus,

Γ(L,y,y; ξ, η; k) =
∫

W (L,y,P; ξ, η; k) dP

=
[

k
2πL

]d
e
−i

k
L

(
y − ξ+η

2

)
· (ξ − η)

e−πk2DL(ξ−η)2/2.

(49)

Let

γ =
πD

8
.(50)

Then the mean phase-conjugated and back-propagated time-harmonic field is
given by

〈
ψB(ξ, L, k)

〉
=

∫∫ [∫
W (L,y,P; ξ, η; k)) dP

]
ψ0(η, k)χA(y) dy dη

=
(

k
L

)d
ei kξ2

2L

∫
χ̂A

(
k
L (η − ξ)

)
e−i kη2

2L ψ0(η, k)e−γLk2(ξ−η)2 dη.

(51)

Comparing this result with the exact solution of the deterministic phase-con-
jugated and back-propagated field (20), we see that the effect of the random
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medium is just the Gaussian factor e−γLk2(ξ−η)2 . Using (51) we can now com-
pute an effective aperture for the phase-conjugated (or time-reversed) and back-
propagated mean field due to a point source in the case of Gaussian TRM and
finite aperture TRM, in both the frequency and the time domain.

7.1 Gaussian TRM

For a point source and a Gaussian aperture of the form (28) we obtain from
(51)

〈
ψB(ξ, L; k)

〉
=

(
k

2πL

)d

e
−

(

a2

2L2 +γL
)

k2ξ2

ei kξ2

2L .(52)

Comparing this with the deterministic field (29) we determine an effective aper-
ture for the TRM for the mean time-harmonic wave,

ae = a

√
1 +

2γL3

a2
.(53)

This result was also derived in a different way in [DJ92]. We will see that it is
essentially universally valid in the beam approximation, both in the frequency
and in the time domain. It is clearly not valid unless

ae(L)

L
≪ 1,(54)

which means that the effective TRM aperture size must be consistent with the
beam approximation. From (53) and from the numerical experiments that we
report in section 8 it is clear that ae(L) ≫ a when the propagation distance L
is large.

The self-averaging, time-reversed and back-propagated field can be calcu-
lated exactly as in the deterministic case by replacing a with ae in equation
(31). If ae = ae(L) is much smaller than the propagation distance L, as it
must be by (54), then our analysis for the deterministic field carries over, which
means that we get the same ae in the time domain.

Super-resolution is now precisely the phenomenon of having the self-averag-
ing, time-reversed and back-propagated field be essentially equal to the deter-
ministic field with a replaced by ae, which is much larger than a for L large.
The width in space of the re-compressed field is proportional to λ0L/ae where
λ0 is the wavelength of the carrier wave.

7.2 Finite Aperture TRM

With a finite aperture TRM the formula for the compressed pulse is more compli-
cated. Stochastic, multipathing effects modify edge diffraction from the TRM,
in the time domain, in a complicated way. The mean phase-conjugated and
back-propagated time harmonic field is

〈
ψB(ξ, L; k)

〉
=

1

πξ
sin

(
kξa

2L

)
ei kξ2

2L e−γLk2ξ2

.(55)
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We do a Fourier synthesis to get the self-averaged, time-reversed and back-
propagated signal in the time domain for a point source, Gaussian pulse. The
result is a combination of (25) and (31),

ΨB(ξ, L, t) =
∫

ψB(ξ, L, ω
c0

)e−
(ω−ω0)2σ2

t
2 e−iωt dω

=
∫

1
2πiξ

[
e

iωξa
2c0L − e−

iωξa
2c0L

]
e

iωξ2

2c0L e
− γ2Lω2ξ2

c20 e
(ω−ω0)2σ2

t
2 e−iωt dω

= 1
2πiξ

√
π

σ2
t
2 + γ2Lξ2

c20

e
−iω0

(

t− ξ2

2c0L

)

e
− γ2Lω2

0ξ2

c20

{
e

iω0ξa
2c0L e

[

i(t−
ξ2

2c0L
)−i

ξa
2c0L

+
2γ2Lω0ξ2

c20

]2

2σ2
t +

4γ2Lξ2

c20

−e
−iω0ξa
2c0L e

[

i(t−
ξ2

2c0L
)+i

ξa
2c0L

+
2γ2Lω0ξ2

c20

]2

2σ2
t +

4γ2Lξ2

c20

}
.

(56)

In figure 5 we show formula (56) at t = 0, with various parameter values. We
use the effective aperture formula

ae = a

√
1 +

2γL3

(
a
2

)2 ,(57)

which is like the Gaussian TRM effective aperture formula (53) but with the
constants adjusted using the numerical results presented in section 8. In all
calculations we use the estimate γ = 2.12 × 10−5m−1 that we obtained from
direct numerical simulations. This is discussed further in the next section.

The effective aperture formula (57), or (53), cannot be used when L is too
small, so that there is not enough multipathing, or too large so that the beam
approximation is not valid. We must have ae(L) ≪ L. Using (57), this means
that L ≪ (8γ)−1 ≈ 6km. The range 300 − 400m to 1km is roughly where the
effective aperture formula is valid for random media like the one we simulated.
At 600m the effective TRM aperture is already 195m, nearly five times larger
than the physical size of the TRM, which is 40m.

At the wave front, t = ξ2

2c0L , expression (56) becomes

ΨB(ξ, L, t = ξ2

2c0L ) = 1
2πiξ

√
π

σ2
t
2 + γ2Lξ2

c20

e

−

(

a2

4c20L2
+

2σ2
t γ2Lω2

0
c20

)

ξ2

2σ2
t +

4γ2Lξ2

c20 ·
{

e
iω0ξa
2c0L e

− i2aγ2ω2
0ξ3

2c30σ2
t +4c0γ2Lξ2 − e−

iω0ξa
2c0L e

i2aγ2ω2
0ξ3

2c30σ2
t +4c0γ2Lξ2

}
.

(58)
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Figure 5: Comparison of the theoretical formula (56) at time t = 0, for
a medium with L = 600m, ae = 195m, γ = 2.12×10−5 m−1. The left

figure shows a plot of (56) for a homogeneous medium, γ = 0, with
a TRM of width a = 40 (in red / wide Fresnel zone), and the random
medium with γ = 2.12 × 10−5 and a = 40 (in blue / narrow Fresnel
zone). The right figure shows a plot of (56) for a homogeneous
medium, γ = 0, with a = ae = 195 (in red), and the random medium
with γ = 2.12 × 10−5, and a = 40 (in blue). The match confirms the
validity of (57). The values of ae and γ originate from the numerical
estimates of the effective aperture summarized in table 1 in section 8.

8 Numerical Simulations

In this section we present the results of some numerical experiments highlighting
the theoretical results of the previous sections. We transmit a time-dependent
pulse through the random medium. It is synthesized from 64 frequencies, which
allow for enough zero-padding to avoid aliasing problems, and at the same time
allow for a sufficient number of energy-carrying frequencies to resolve time-
domain effects. The unit of length is the peak-energy wavelength, λ0. We
use a discretization with 10 points per wavelength, i.e. ∆x = ∆z = 0.1λ0.
For the random medium fluctuations µ we take a Gaussian random field with
exponential correlation, constructed spectrally. The correlation length is ∼
10λ0, and the maximum contrast is 5%, or 10%.

We use a second order accurate Crank-Nicholson (CN) discretization of the
paraxial wave equation

2ikψz + ψxx + k2µψ = 0,(59)






2ikδ+
z ψn,m + 1

2δ+
x δ−x (ψn,m + ψn+1,m)

+ 1
2k2 (µn+1,mψn+1,m + µn,mψn,m) = 0.

(60)
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Figure 6: Structure of the numerical domain: In the center strip the
random medium is at full strength (75% of the thickness), then there
is a smooth transition layer (5–10%) where the strength decreases. In
the outer layer the medium is homogeneous, allowing for effective im-
plementation of Discrete Transparent Boundary Conditions.

where





δ+
z ψn,m =

ψn+1,m−ψn,m

∆z

δ±x ψn,m = ±ψn±1,m−ψn,m

∆x .
(61)

This numerical approach may seem overly direct, for there are widely-used
phase-screen methods which do not require sub-wavelength resolution, [DFR85,
FRD87]. However, for this series of numerical simulations we really wanted to
resolve everything. Our code is limited to 2D. Extension of this direct approach
to 3D is no longer viable in the long-range regime that we want to use it. There
are, however, good numerical methods for solving the paraxial wave equation in
3D [BCJ98].

We use discrete transparent boundary conditions (DTBCs) to limit the nu-
merical domain while simulating an infinite medium. They are obtained by
matching the interior CN-Finite-Difference-Time-Domain (CN-FDTD) scheme
with an exact exterior CN-FDTD, yielding an exact discrete radiating boundary
condition. This is worked out in detail in [Arn95].

We have validated our implementation of the DTBCs for long distances,
up to 1000m for random media and up to 5000m for homogeneous media, by
comparing the solutions in domains of width x ∈ [−w,w] to the ones in domains
of double the width, x ∈ [−2w, 2w]. In a random medium, or a medium with
scatterers, the DTBCs work very well as long as the random medium or the
scatterers are sufficiently far away from the boundary. In practice this means
about 4–5λ, with a resolution of 10 points per λ. In this setting, the estimated
error is of the order of machine-precision.

In the numerical simulations we use a random medium at full strength in the
center 75% of the numerical domain. The strength smoothly approaches zero
in a region of 5–10% of the domain-width in order to avoid artificial reflections
from the numerical random-homogeneous interface. In the outermost layer of
the domain the medium is homogeneous. This allows for effective DTBCs (see
figure 6).
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The code is written entirely in Matlab, compiled under Matlab 5.2 with
compiler 1.2 and Matlab 5.3 with compiler 1.2.1. A typical simulation, with
a 1000m × 200m numerical domain, and 64 frequencies, completes in approxi-
mately 22 hours, on a dual-Pentium-III Xeon 550MHz Linux workstation, where
the embarrassingly parallel nature of the problem is exploited.

8.1 Numerical Results

We show numerical results for propagation through random media with maxi-
mum fluctuations contrast of 10%, i.e. |µ| ≤ 0.1. This is actually quite a lot
of randomness and is really pushing the validity of the paraxial approximation.
The reason we use such high contrast is to observe super-resolution phenomena
in a numerical domain that is manageable on a small network of workstations.

The width of the finite-aperture TRM is 50m, and the numerical domain
in 200m wide. Simulations for three different propagation distances are shown.
(i) When the propagation distance is short, only 200 meters. As can be seen
in figure 7, this distance is too short for the randomness to have an impact on
the resolution of the self-averaging, time-reversed and back-propagated signal.
(ii) With a propagation distance of 600 meters the super-resolution effect is
quite noticeable. The peak of the re-compressed signal in the random medium
is about 40% higher and quite a bit narrower than the one in the homogeneous
medium. This is very stable from realization to realization and figure 8 shows
a typical case. (iii) As we increase the propagation distance to 1000 meters,
more energy spills out of the domain by radiation through the boundaries, and
multipathing contributing to super-resolution is lost. In figure 9 we are past the
limit of what our numerical setup can do.

8.2 Numerical limits

For a given width of the numerical domain, and of the random medium, there
is a limit to how long a propagation distance can be used in the numerical
experiments. As the effective aperture, ae exceeds the size of the domain, the
configuration can no longer accurately model an infinite medium. In table 1 we
show estimates for ae and for the medium-characterizing parameter γ, in inverse
meters, for different propagation distances with fixed domain and TRM-widths.

It is reasonable to expect the growth of ae(L) with L for the finite aperture

case to be similar to the one for a Gaussian aperture, that is, ∼
√

γL3 as
in equation (53). We have found from the numerical simulations that ae, a,
and γ are related by equation (57), for a finite aperture TRM. If we use this
formula to estimate γ, we might expect it to approach a constant as we sample
an increasing part of the random medium. However, table 1 and figure 10 show
that this is not the case. Given the width of the numerical domain, there is a
range of propagation distances for which the estimated γ is close to constant.
For larger propagation distances there is a drop-off since the numerical setup
cannot adequately capture the multipathing and the growing effective aperture.
The numerical limitations of the effective aperture formula (57) are more severe
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Figure 7: Numerical simulation of time-reversal. The width of the time
reversal mirror and the numerical domain are 50m, and 200m, respec-
tively. The maximum contrast is ±10%, that is |µ| ≤ 0.1. The left
figure shows the signal as received on the TRM-plane. This signal is re-
stricted to the mirror, time-reversed, and re-emitted into the medium.
The right figure shows a spatial section through the re-focussed signal.
Here, the propagation distance is very short, only 200m, or about 20
correlation lengths. We see that there is not enough randomness to
observe super-resolution.

in our setup than the theoretical ones coming from the beam approximation
and discussed at the end of section 7.

Our numerical calculations show that it is hard to simulate super-resolution
with long propagation distances. We have used more than 200 time-harmonic
realizations per propagation distance to estimate γ and ae, whereas the self-
averaging for figures 7–9 uses only 64 frequencies, and one realization of the
random medium, and cannot therefore be expected to be as stable statistically.
By using more frequencies, and widening the medium, these simulations should
become more stable statistically.

9 Dynamic TRM Placement

It is possible that the main part of the energy misses a statically placed time
reversal mirror. This can occur when the medium has a systematic drift (cross-
wind), or when the randomness is anisotropic. In such cases it may be advan-
tageous to be able to move the TRM laterally so as to capture as much energy
as possible. In this section we consider the effects of dynamic placement of
the TRM. At this time, we do not have a theory that covers dynamic TRM
placement, so the study is numerical.

We dynamically move the TRM with infinite speed, that is, we place the
TRM in the optimal lateral location where it captures the most energy.

We show two realizations, each for the time-reversal experiment for a propa-
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Figure 8: In this simulation the propagation distance is 600m. Now
we clearly see the super-resolution phenomenon: the peak of the re-
compressed pulse in the random medium (blue) is sharper than the one
for the homogeneous medium (red). (All other parameters are as in
figure 7.)

gation distance of 600 meters (figure 11) and 1000 meters (figure 12), comparing
the centered static placement with the dynamic placement. For the first realiza-
tion in figure 11, the pulse energy is quite smeared out when it reaches the TRM
plane, and the statically placed screen just barely manages to capture enough
information to resolve the source. The dynamically placed TRM re-compression
is approximately 3 times better, and clearly super-resolves the source. In the
second realization in figure 11, the pulse energy is still quite concentrated when
it reaches the TRM-plane, but it is a little bit off-center, so moving the mirror
enhances the re-compression.

As discussed earlier, in section 8.2, the 1000-meter propagation calcula-
tion cannot capture enough multipathing to give an accurate picture of super-
resolution. However, as can be seen in the first realization shown in figure 12,
dynamic placement can improve the re-compression, even in this case. There
are settings, as in the second realization, when the energy is too spread out,
where dynamic placement does not help.

10 Time Reversal in a Wave Guide

In this section we briefly explore numerically time-reversal in random media
where the boundaries are strongly reflecting, so that the energy gets trapped
as in a wave-guide. This is physically the case in underwater acoustics, where
sound is reflected from the surface and from the bottom of the ocean, or in
sound propagation in a channel.

Dirichlet or Neumann boundary conditions are, of course, a very simplified
way to account for the physical boundaries where the surface is rippled, and the
bottom rough. However, it is still of interest to see how the reflections off the
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Figure 9: In this simulation the propagation distance is 1000m. Al-
though the first peak of the recompressed signal in the random medium
is much narrower, there is really no super-resolution in this case be-
cause of the large side-lobes. The limits of the numerical simulations
are discussed in section 8.2. (All other parameters as in figure 7.)

boundaries and the randomness of the medium interact. We use homogeneous
Dirichlet boundary conditions in our numerical simulations.

We compare time reversal through homogeneous and random media in a
series of numerical calculations as follows. The numerical domain has width
100m, the propagation distance is 800m and the maximum contrast, in the ran-
dom case, is 10%. The first, and third numerical experiments, (figure 13 and
figure 15), are standard time-reversal in an infinite domain (radiating boundary
conditions), with a statically placed TRM. The second and fourth experiments
are in a wave-guide with zero (Dirichlet) boundary conditions. In the second
case (figure 14), the TRM is of the same width as the domain, so it captures
all available energy and the re-compressed signals are very good for both the
homogeneous and random media. In the forth, and most interesting case (fig-
ure 16), the TRM is 60m (or 60% of the wave-guide), and we clearly see how the
randomness help us achieve super-resolution. The side-lobes are are eliminated
by multipathing inside the wave-guide.

We also consider smaller TRMs, in the same setting, to make sure that the
results for 60 meters (figure 16 are not special or nontypical. In figure 17, where
the TRM width is 50m, we see clearly that the incoherence induced by the
randomness dampens the side-lobes and the peak is much better resolved in the
random case. This is super-resolution in a wave-guide.

11 Summary and Conclusions

We have presented a detailed analytical and numerical study of how multi-
pathing in random media enhances resolution in time-reversed acoustics, that
is, how super-resolution arises in random media. We have clarified, in particu-
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L aE
e γ aT

e N

300 77 2.00 × 10−5 77 207
350 86 1.69 × 10−5 92 418
400 104 1.83 × 10−5 109 202
450 123 1.86 × 10−5 127 202
500 150 2.11 × 10−5 147 205
600 195 2.12 × 10−5 190 213
650 217 2.08 × 10−5 213 260
700 248 2.19 × 10−5 238 202
750 266 2.05 × 10−5 263 235
800 275 1.81 × 10−5 289 201
850 293 1.71 × 10−5 316 223

Table 1: The table shows the propagation distance, L in meters; the nu-
merically estimated effective aperture, aE

e in meters; the corresponding
estimate for γ, in inverse meters, using equation (57); a “theoretical”
effective aperture, aT

e computed using (57) with γ = 2.12 × 10−5 (the
median of the estimated γs); and the number of realizations used for
each estimated pair of (aE

e , γ). The other parameters are: TRM width,
a = 40m; maximal contrast 10%, width of the numerical domain 150m;
width of the random media 112.5m.

lar, the statistical stabilization of the re-compressed pulse in the time domain.
We have also shown that when the propagation distance is large compared to
the wavelength and the correlation length of the inhomogeneities, and the Time
Reversal Mirror is small, then there is an exact expression for the effective size
of the TRM, its effective aperture (57), valid in both in the time and frequency
domain. Multipathing makes the effective size of the TRM much larger than its
physical size. We have verified the theoretical results with careful and exten-
sive numerical calculations, using exact non-reflecting boundary conditions in
one transverse direction to simulate an infinite medium. Full two dimensional
transverse propagation is intractable on a workstation, at present, especially for
long distances. This is because the discrete transparent boundary conditions
are non-local.

A Comments and References for the Transport

Approximation

The paraxial equation (2), or (4), is a Schrödinger equation in which z plays the
role of time and the fluctuations µ = n2 − 1 are the random, “time” dependent
potential. When these fluctuations are δ-correlated in z then we have exact
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Figure 10: The estimated values of γ for table 1. The estimate stabilizes
as the propagation distance increases, until the numerical setup cannot
capture adequately the multipathing and the rapidly growing effective
aperture. In our setup we can simulate an effective aperture up to about
twice the width of the random medium.

closed equations for moments of products of Green’s functions
〈

N∏

j=1

G(L, 0,xj , ξ; kj)

N+M∏

j=N+1

G(L, 0,xj , ξ; kj)

〉
,(62)

where ξ is the source location, xj are observation points and the wave numbers
kj may be the same or different. This is done in [Fur93] or in the articles in
[TIZ93], and in a more mathematical way in [DP84]. In the case of two factors,
N = M = 1, the product is denoted by Γ, and satisfies (9). The mean of its
Fourier transform (13) is the mean Wigner function that now satisfies equation

(38) exactly. The power spectral density R̂ is a function of P − Q only, so the
transport equation (38) is a convolution equation and can be solved explicitly.
One can then do the narrow beam approximation as we did in section 7, and
this can be found in the literature in many places, in [Fur93] as well as in
this appendix. The white noise or δ-correlation limit leading to (38) is also
considered in [BP84].

The mathematical idealization of having δ correlated fluctuations is relevant
in many situations in underwater acoustics and in many other propagation prob-
lems, as we will explain in this appendix with a careful scaling of the problem.
Using δ correlated fluctuations is convenient analytically but may obscure other
limits that are relevant, such as the high frequency limit. This makes little
difference for single frequency statistics but it needs to be analyzed carefully in
order to explain pulse stabilization in the time domain, as discussed in section
6. That is why we presented the resolution analysis of time reversal in a random
medium as we did here.

When backscattering is important then the transport approximation is more
involved and must be used carefully. A theory for the transport approximation
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Figure 11: Dynamic TRM placement: 600m propagation. The Left

Figure shows the pulse in space-time as received on the TRM-plane.
The Center Figure shows a spatial cut through the peak of the re-
compressed pulse using static TRM placement. The Right Figure

shows a spatial cut through the peak of the re-compressed pulse using
optimal dynamic TRM placement. Note that each plot is for one random
realization of the medium. The maximum contrast is 10%, that is |µ| ≤
0.1. The TRM is 50 meters wide and the numerical domain 200 meters
wide. The red curves correspond to time-reversal in a homogeneous
medium and the blue curves to time-reversal in the random medium.

using Wigner functions is given in [RPK96] where many other references can be
found. A recent survey of transport theory for random media is [vRN99]. Time
reversal in randomly layered media is analyzed in [CF97]. Transport theory in
a waveguide is considered in [KP77].

A.1 Scaling I

We will now consider some specific scalings that result in the phase diffusion
equation (47), and have the frequency decorrelation property (41) that gives
pulse stabilization.

We begin by rewriting the Schrödinger equation (2) or (4) in dimension-
less form. Let Lz and Lx be characteristic length scales in the propagation
direction, the distance L between the source and the TRM for example, and in
the transverse direction, respectively, and k0 a characteristic wave number. We
introduce a dimensionless wave number k′ = k/k0 with k0 = ω0/c0 and ω0 a
central frequency. We rescale x and z by x = Lxx

′, z = Lzz
′ and rewrite (2) in
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Figure 12: Dynamic TRM placement: 1000m propagation. (For param-
eter information see the caption for figure 11).

the new coordinates dropping the primes:

2ik
∂ψ

∂z
+

Lz

k0L2
x

∆ψ + k2k0Lzσµ

(
xLx

l
,
zLz

l

)
ψ = 0.(63)

The physical parameters that characterize the propagation problem are: (a)
the central wave number k0, (b) the strength of the fluctuations σ, and (c)
the correlation length l. The length scales Lx, Lz and the central wave length
λ0 = 2π/k0 characterize the propagation regime that we wish to consider. The
random fluctuations µ are normalized to have unit variance and unit correlation
length. We introduce now three dimensionless variables

δ =
l

Lx

, ǫ =
l

Lz

, β =
1

k0l
(64)

which are, respectively, the reciprocals of the transverse scale relative to correla-
tion, the propagation distance relative to correlation, and the correlation length
relative to the central wave length. We will assume first that the dimensionless
parameters β, σ and δ are small

β ≪ 1, σ ≪ 1, δ ≪ 1 .(65)

This is a regime of parameters where super-resolution phenomena as described
here can be observed. It is a high-frequency regime (λ ≪ l, β ≪ 1), not the
one on which the paper is based, but it is important physically and is easier to
deal with analytically. The ‘transport’ regime (β ∼ 1) that we analyze in the
paper is taken up after, as is the regime ǫ ≪ 1 that gives white noise.
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Figure 13: The re-compressed pulse for homogeneous (left) and random
(right) media. The propagation distance is 800m, the domain width is
100m, and the maximal contrast is 10%. The boundary conditions are:
DTBC. TRM width 100m. Here, we can see clearly super-resolution as
the re-compressed peak is narrower in the random medium.
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Figure 14: Homogeneous medium on the left, random medium on the
right. Here we have Wave-Guide boundary conditions with TRM width
100m. We capture all the energy inside the wave-guide on the TRM, so
the wave-guide effect is much stronger than the random-medium effect.
There can be no super-resolution in this setting.
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Figure 15: Homogeneous medium on the left, random medium on the
right. Type of boundary conditions: DTBC with TRM width 60m. We
can clearly see super-resolution as the re-compressed peak is narrower in
the random medium case. The fluctuations in the side-lobes are partly
due to the fact that we are pushing the paraxial approximation beyond
its limit; the 10% contrast is stretching the “low-contrast” assumption.
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Figure 16: Homogeneous medium on the left, random medium on the
right. Type of boundary conditions: Wave-Guide with TRM width
60m. The wave-guide effects are quite strong, but an argument for
super-resolution can be made, since the peak is better defined. Ran-
domness does not, in any case, degrade the results.
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Figure 17: Homogeneous medium on the left, random medium on the
right. Type of boundary conditions: Wave-Guide with TRM width
50m. The wave-guide effects are quite strong, but there is super-
resolution since the peak is better defined in the random medium.

The Fresnel number is defined by

θ =
Lz

k0L2
x

= β
δ2

ǫ
(66)

After multiplying by θ we can rewrite the Schrödinger equation (63) in the form

2ikθψz + θ2∆xψ +
k2

ǫ1/2
µ(

x

δ
,
z

ǫ
)ψ = 0.(67)

provided that we relate ǫ to σ and δ by

ǫ = σ2/3δ4/3.(68)

The asymptotic regime (65) is realized with the ordering

θ ≪ ǫ ≪ δ ≪ 1 ,(69)

which implies that β ≪ 1 also holds, corresponding to the high-frequency limit.
We see from the scaled Schrödinger equation (67) that this regime has the
following interpretation. We have first take a high frequency limit θ → 0, then
a white noise limit ǫ → 0, and then a broad beam limit δ → 0. We will now
discuss briefly and interpret these limits. A full analysis is given in [PRS01].
Other orderings are considered in the next section.

For the high frequency limit, especially in random media, we use the Wigner
function as we explained before. Let ψθ(z,x) be a solution of the rescaled
Schrödinger equation (67). The Wigner function depends on the propagation
distance z, the transverse position x and wave vector p, and is given by

Wθ(z,X,P) =

∫

Rd

dy

(2π)d
eiP·Yψθ(z,X − θY

2
)ψθ(z,X +

θY

2
).(70)
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It satisfies the evolution equation

∂Wθ

∂z
+

P

k
· ∇XWθ =

ik

2
√

ǫ

∫
eiQ·X/δµ̂

(
Q,

z

ǫ

) Wθ

(
P − θQ

2

)
− Wθ

(
P + θQ

2

)

θ

dQ

(2π)d
.

In the limit θ → 0 the solution converges in a suitable weak sense, for each
realization, to the solution of the random Liouville equation

∂W

∂z
+

P

k
· ∇XW +

k

2
√

ǫ
∇Xµ

(x

δ
,
z

ǫ

)
· ∇PW = 0.(71)

The initial condition at z = 0 is that W equals to the limit Wigner function
W0(X,P) of the initial wave function. This is, of course, what we expect in the
high frequency limit since the characteristics of (71) are the ray equations in
the random medium.

We next consider the white noise limit ǫ → 0 in the random Liouville equa-
tion (71). Then Wǫ(z,X,P) converges weakly (in a probabilistic sense) to the
stochastic process W (z,X,P) that satisfies the Itô stochastic partial differential
equation

dW =

[
−P

k
· ∇XW +

k2D

2
∆PW

]
dz − k

2
∇PW · dB(

X

δ
, z).(72)

Here B(X, z) is a Brownian random field, that is, a Gaussian process with mean
zero and covariance

〈Bi(X1, z1)Bj(X2, z2) 〉 = −
(

∂2R0((X1 − X2))

∂Xi∂Xj

)
min{z1, z2}.

where

R0(X) =

∫ ∞

−∞
R(s,X)ds , R(z,X) = 〈µ(s + z,Y + X)µ(s,Y) 〉 ,

and

D = − 1

16
∆R0(0),

which is the negative Laplacian of the reduced covariance R0 at zero. We call
equation (72) the Itô-Liouville equation. Note that the Brownian field that
enters the stochastic partial differential equation (72) depends explicitly on the
dimensionless correlation length δ in the transverse direction. Therefore the
limit process also depends on δ. Note also that the average of W , 〈W (z,X,P) 〉,
satisfies the phase space diffusion equation (47) but with a diffusion constant D

that differs from (48). The first argument of R̂ in the integral in (48) is now set
to zero, which then becomes the Fourier transform of the reduced covariance
R0. The D above agrees with (48) after this change. A detailed discussion of
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the white noise limit is in [PRS01] and the theoretical background of stochastic
partial differential equations like (72) is presented in [Kun97].

From the Itô-Liouville equation (72) we can get closed equations for all the
moments of the Wigner function W, not only for its mean, as well as for moments
with different wave numbers k. The wave number enters (72) as a parameter.
To have the decorrelation property (41) we need to show that

〈W (z,X,P; k1)W (z,X,P; k2) 〉 ≈ 〈W (z,X,P; k1) 〉 〈W (z,X,P; k2) 〉(73)

for k1 6= k2. This is true in the limit δ → 0, as is explained in detail in
[PRS01], because it is as if the Brownian fields B in (72) have spatial correlation
zero. After a scaling change this translates into decorrelation for different wave
numbers.

We can summarize the results of doing the scaling limits θ → 0, followed by
ǫ → 0, followed by δ → 0 by noting that they represent a precise analytical way
to study the regime where the wavelength is much smaller than the correlation
length (high frequency limit), the propagation distance is much larger than
the correlation length and the fluctuations are weak (white noise limit), and
the transverse length scale is much larger than the correlation length (δ →
0). The first two limits are fully compatible with the paraxial or parabolic
wave approximation of Section 2, while the last one requires that the beam,
which is narrow because of the first two limits, must not be too narrow. Note
that this scalimg limit analysis is different from the one we use in the paper,
but appropriate for underwater acoustics. It leads to the same phase space
diffusion equation (47) for 〈W (z,x,p) 〉 but the structure of the higher moments
is different here, coming from (72), than under the scaling followed in the paper.
We now consider this scaling.

A.2 Scaling II

The second scaling we want to consider is the one described in Section 5, where
the wavelength is comparable to the correlation length, λ ∼ l, the small param-
eter ǫ = λ

Lz
≪ 1 and the standard deviation of the fluctuations σ ∼ √

ǫ. The
scaled Schrödinger equation follows from (33) and has the form

2ikǫψz + ǫ2∆xψ + k2ǫ1/2µ(
x

ǫ
,
z

ǫ
)ψ = 0.

To connect with the precise scaling of (67) we simply have to set θ = ǫ, δ = ǫ
and ǫ = σ2, which implies that β = 1. This is the transport scaling. If however
we want to follow this with the narrow beam limit of Section 7 we must allow
for different horizontal and vertical length scales by letting

ζ =
ǫ

δ
,(74)

which from (66) gives

ζ2θ = ǫβ.
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With σ = ζ
√

ǫ, the scaled Schrödinger equation now is

2ikζ2ǫβψz + (ǫβ)2∆xψ + k2ζ3
√

ǫµ(
ζx

ǫ
,
z

ǫ
)ψ = 0.

Letting ǫ → 0 with β and ζ fixed is the transport limit. Letting β/ζ → 0 is
the high frequency, phase space diffusion limit and letting ζ → 0 restores the
validitiy of the parabolic approximation. We refer to these last two limits as
the narrow beam approximation.

The transport limit is analyzed in [RPK96] and in [BPR01], where a rigorous
proof of convergence of the mean Wigner function is given. It is the same as
(38) in Section 5 except that we now have the parameters β and ζ so that the
average Wigner function satisfies






k ∂W
∂L + P · ∇XW = πk3ζ4

4β4 ·
∫

R̂
(

ζ2(P2−Q2)
2kβ , ζ(P−Q)

β

) [
W (L,X,Q; ξ, η; k) − W (L,X,P; ξ, η; k)

]
dQ

(75)

The narrow beam limit β/ζ → 0 followed by ζ → 0 comes from a two term
Taylor expansion of the integrand in (75), leading to the phase space diffusion
equation (47) with the phase space diffusion coefficient given by

D(P) =

∫
R̂

(
ζ P·Q

k ,Q
)
|Q|2 dQ.

We must now let ζ → 0 as well, otherwise the parabolic approximation itself may
be violated. This will then give the same phase diffusion coefficient obtained in
the high frequency limit (69) of the previous section.

What we have not been able to show in [BPR01] is that in the transport
limit the decorrelation property (73) holds exactly. However, formal asymptotic
analysis as well as numerical simulations indicate that this is true even though
a mathematical proof is lacking at present.

Let us make some remarks that contrast the scaling limits of this and the
previous section. The frequency decorrelation property is a consequence of the
transport limit ǫ → 0 and does not depend on the narrow beam limit β/ζ → 0
and ζ → 0. The narrow beam limit gives not only an important analytical
simplification leading to an easy to solve phase space diffusion equation. It is
in a way an essential part of the theory because without it the paraxial approx-
imation is unlikely to hold in the transport limit. The validity of the paraxial
approximation is, however, re-established after the narrow beam approximation.
Note also that ζ → 0 brings in the anisotropy between horizontal and transverse
length scales that is needed in the paraxial approximation.

The white noise limit corresponds to the ordering

ǫ ≪ θ ≪ δ ≪ 1,(76)

with σ = δ−2ǫ3/2. It is different from both the transport limit of this section

ǫ ≪ β ≪ ζ ≪ 1,(77)



Submitted to The Journal of the Acoustical Society of America (August 25, 2001) 34

as well as the high frequency limit

θ ≪ ǫ ≪ δ ≪ 1,(78)

(69) of the previous section. However, our analysis [PRS01] shows that in all
cases the average Wigner function satisfies the same phase space diffusion equa-
tion (47). We expect that the structure of the higher order moments, including
the frequency decorrelation property, will also be the same but we can only
show this in the high frequency limit (69) and the white noise limit (76), where
the Itô-Liouville equation (72) characterizes the Wigner function fully. The fact
that several different asymptotic scale orderings lead to the same limit behavior
explains why super-resolution and statistical stability in time reversal are seen
very clearly both in physical experiments and in numerical simulations.

We also expect that the full wave transport limit [RPK96], without the
paraxial approximation, will have the frequency decorrelation property and
hence pulse stabilization. This has been seen clearly in full wave numerical
simulations in random media [TP01, BBPT01].
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