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Abstract: The lack of high-resolution thermal images is a limiting factor in the fusion with other

sensors with a higher resolution. Different families of algorithms have been designed in the field

of remote sensors to fuse panchromatic images with multispectral images from satellite platforms,

in a process known as pansharpening. Attempts have been made to transfer these pansharpening

algorithms to thermal images in the case of satellite sensors. Our work analyses the potential of these

algorithms when applied to thermal images from unmanned aerial vehicles (UAVs). We present

a comparison, by means of a quantitative procedure, of these pansharpening methods in satellite

images when they are applied to fuse high-resolution images with thermal images obtained from

UAVs, in order to be able to choose the method that offers the best quantitative results. This analysis,

which allows the objective selection of which method to use with this type of images, has not been

done until now. This algorithm selection is used here to fuse images from thermal sensors on UAVs

with other images from different sensors for the documentation of heritage, but it has applications in

many other fields.

Keywords: thermal imaging; infrared; pansharpening; resolution enhancement; multispectral;

super-resolution; remote sensing

1. Introduction

The use of thermal cameras with a sensor that is sensitive to the long-wave thermal
infrared part of the electromagnetic spectrum (9–14 micrometres) is becoming increasingly
widespread. However, unlike other kinds of sensors such as visible spectrum range RGB
cameras, the resolution of even the most advanced commercial sensors, that are sensitive to
wavelengths usually between 2.5 and 15 µm, does not exceed the megapixel frontier. This
is due to technical limitations: the miniaturization of the microbolometers, the elements
that react to incoming infrared thermal waves, is inversely proportional to the signal-noise
ratio [1]. It can reasonably be assumed that the resolution of thermal sensors will not equal
that of other sensors (visible and near-infrared spectrum range) in the short and medium
term [2].

Our work studies the quality of the results when we set out to increase the resolution
of thermal images by fusing them with images from another sensor. This is particularly
interesting as it is quite common to take thermal imaging simultaneously with other visible
spectrum sensors. It is essential to visually inspect the study zone at the time the thermal
data is taken, as objects in thermal imaging lack contrast, making it difficult to identify the
focus. That is the reason almost every thermal sensor is combined with visible spectrum
cameras to assure the right frame of capture.

Since the 1970s a variety of algorithms have been developed in remote sensing to
improve the resolution of one type of low-resolution sensors with information from images
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with a higher resolution. These procedures are called pansharpening. This name was
selected as these algorithms originally improved the low resolution of multispectral images
using the panchromatic images taken by both satellite-mounted sensors [3].

Although pansharpening procedures are widely known, the first approaches to merg-
ing thermal and RGB images to enhance the resolution of the original thermal image
involved applying the intensity-hue-saturation (IHS) pansharpening algorithm [4,5]. Other
authors subsequently conducted research combining information from high-resolution
visible spectrum images with thermal images obtained from terrestrial sensors [6–8].

The industry’s strategies to enhance thermal imaging include the development by
the thermal camera maker FLIR of the Ultramax© technology, which combines numerous
shots (16 shots per second), each slightly different from the other due to the inevitable
movements and vibrations during the capture process. This proposed solution achieves a
twofold improvement in the resolution [9].

Another manufacturer, InfraTec, devised a hardware solution with a fast-rotating
wheel, which allows four images to be taken in rotation, which are fused in the final
image [9].

Other approaches include Deep Learning techniques applied to this problem, intro-
ducing RGB images as part of the established network architecture [10]. The limitation of
these approaches is that they require a prior training phase, and the extrapolation of this
training may not be adequate in all situations.

In the field of enhancement and super-resolution algorithms of thermal images, fo-
cused only on sensors onboard satellite, there are other options different from pansharp-
ening algorithms. Processes called downscaling land surface temperature (DLST) try to
obtain high-resolution thermal images from satellite data [11,12].

Apart from hardware solutions, we consider pansharpening algorithms applied to
thermal imaging to be the best method to improve image resolution where simultaneous
visible spectrum imaging is available.

New pansharpening algorithms known as hyperpansharpening are currently available
for fusing several high-resolution images with multi and hyperspectral images [13–17].
These new algorithms are not studied in this analysis, as our aim is to relate our results with
previous research on how to improve the resolution of thermal images with pansharpening
algorithms [4,5,18,19].

The main aim of our study is to analyse the quality of the various pansharpening
methods when using thermal images, based on the composition of a pseudo-multispectral
(PS-MS) image from the raw thermal image. When fused with other much higher-resolution
images using pansharpening methods, these PS-MS images will provide enhanced thermal
imaging with a higher resolution than the original thermal image. This is the first quantita-
tive analysis of UAV thermal images until now, and it allows a far more objective criterion
for the algorithm for selecting the method to be used when processing this type of images.

In our work we have studied over ten pansharpening algorithms used in satellite
image pansharpening from the two main families in order to determine their possibilities,
performance, and results when used in thermal imaging. We apply our study to the case
of UAVs, where the resolution and close geometry of these devices substantially modifies
the results, and where it is necessary to fuse images from a range of image sensors. This
research confirms the performance of pansharpening algorithms, and analyses the final
products by means of numerical quality imaging indices to establish their quality. Prior
research on thermal image pansharpening did not monitor performance in measurable
and comparable numerical parameters, and as the findings were based merely on visual
observation, it was impossible to ensure the quality in further processes and analyses using
these enhanced images.

The rest of this manuscript is organized as follows. Section 2 introduces the pan-
sharpening algorithms tested, the sample data and the testing methodology, which are
the basis of the proposed qualitative assessment method. Finally, the algorithms are
evaluated. Section 3 presents the quantitative quality results obtained for the selected
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algorithms. Section 4 contains a discussion of these results and their implications. The
work is concluded in Section 5.

2. Materials and Methods

Multispectral images are composed of spectral bands that represent different parts of
the electromagnetic spectrum. The typical bands in these images correspond to “colours”
from the visible spectrum: red, green, and blue. Other common bands in multispectral
imaging denote separate parts of the infrared spectrum such as near-infrared (NIR) or
short-wavelength infrared (SWIR). The part known as long wave infrared (LWIR) in the
infrared spectrum corresponds to thermal imaging. Other bands commonly found in
multispectral imaging are from the ultraviolet spectrum.

In summary, we can define a multispectral image as the compound of multiple images
(usually between 3 and 15) corresponding to different parts of the spectrum or “colours”.

Thermal images are usually processed using various masks or colour charts to form a
false colour image. This aids the visual analysis and makes it easier for users to interpret.
The colour chart most commonly used in these images shows lower temperatures in cold
colours such as blue and violet, and higher temperatures in colours like yellow, orange and
red. Although this is merely an artificial representation of the value of the raw grayscale
image, it helps us form our pseudo-multispectral image (PS-MS).

Our PS-MS image is composed of four bands: three bands (red, green and blue)
from the false colour image and the band corresponding to the original thermal image
in grayscale. To clarify our assessment methodology, Figure 1 shows the workflow we
followed, from the raw thermal image to the pansharpened final products.

To verify the performance of the various pansharpening algorithms we started by
obtaining the PS-MS image in low resolution (PS-MS_LR), as the image was taken with a
lower resolution sensor (160 × 120 pixels). This is done by applying a gaussian pyramidal
algorithm, with ratio = 4 and σ = 4/3 (downsampling) [20].

The visible spectrum RGB images must have approximately the same field of view as
the raw thermal image. The alignment step consists of calculating an affine transformation,
identifying common points from both images, and then applying it. Most popular image
alignment algorithms are feature-based and include keypoints detectors and local invariant
descriptors [21]. In this work, we have implemented an ORB alignment algorithm [22,23],
calculating the parameters which define the affine transformation.

The thermal and visible spectrum images are now coherent. The next step is to express
the three RGB image bands in a single band in grayscale (grayscaling step). This is the
panchromatic image (PAN) that is required for every pansharpening algorithm [16]. This
PAN image is a simulation of the image that would be taken with a single specific sensor
with a spectral range from blue to red (400–700 nm). As we are not using a high-resolution
multispectral image, we do not analyse the hyperpansharpening algorithms.

The PAN image in our work has a resolution of 640 × 480 pixels (the original was
3048 × 1480 pixels). This will help us in later steps, as our aim is to analyse the pansharp-
ening of the simulated low-resolution pseudo-multispectral image (160 × 120 pixels) and
compare the final product with the original pseudo-multispectral image, with a resolution
of 640 × 480 pixels.

The prior step for all the pansharpening algorithms analysed is the conversion of the
low-resolution images to match the resolution of the panchromatic image. The size of both
the low-resolution pseudo-multispectral (PS-MS_LR) and panchromatic image must match.
This is achieved by applying a nearest neighbour-upsampling method, which yields a
PS-MS_HR’ image (upsampling).

We can now apply all the selected pansharpening algorithms to obtain the enhanced
resolution image PS-MS_HR*, formed by four bands: three RGB false colour bands and
one thermal band (Figure 1). For further analysis, we split the final pansharpened image
PS-MS_HR* into two images: one false colour and one thermal image.
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Thermal Image 
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640 x 480 pix
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RGB Image
3048 x 1480 pix

3 bands

RGB Image
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3 bands

Thermal Image
False Color

640 x 480 pix
3 bands
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Raw

640 x 480 pix
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MultiSpectral 
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PS-MS_HR
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640 x 480 pix

4 bands

Pansharpening

Thermal Image 
Enhanced

640 x 480 pix
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False Color
Enhanced

640 x 480 pix
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Figure 1. Proposed workflow for the pansharpening assessment methodology of thermal and RGB

images with pseudo-multispectral image composition, and the down- and upsampling resolution

steps.

2.1. Pansharpening Algorithms

Pansharpening algorithms belong to the image fusion branch of computer imaging,
and their purpose is to enhance low-resolution images using images from another sensor
with a higher resolution. It should be noted that both images must show the same object
and have the same field of view. Two well-defined families of pansharpening algorithms
are described in the scientific literature, mainly differentiated by whether their approach to
the problem is spatial or spectral.
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Algorithms known as COMPONENT SUBSTITUTION (CS) are based on the low
resolution (LR) image colour space transformation in another space, and disassociate spatial
and spectral information. The spatial information is then substituted by the information
from the high resolution (HR) image. The process ends with the inverse colour space
transformation. CS algorithms are global, as they act uniformly throughout the entire
extension of the image [24].

MULTIRESOLUTION ANALYSIS (MRA) methods use linear space-invariant digital
filtering of the HR image to extract the spatial details to be added to the LR bands [25].

MRA-based techniques substantially split the spatial information from the LR bands
and the HR image into a series of bandpass spatial frequency channels. The high-frequency
channels are inserted into the corresponding channels of the interpolated LR bands [25].

Our work focuses on the following algorithms from among all the pansharpen-
ing methods:

• IHS: Fast Intensity-Hue-Saturation (FIHS) image fusion [26].
• PCA: Principal Component Analysis [3].
• BDSD: Band-Dependent Spatial-Detail with local parameter estimation [27].
• GS: Gram Schmidt (Mode 1) [28].
• PRACS: Partial Replacement Adaptive Component Substitution [29].
• HPF: High-Pass Filtering with 5 × 5 box filter for 1:4 fusion [3]
• SFIM: Smoothing Filter-based Intensity Modulation (SFIM) [30,31].
• INDUSION: Decimated Wavelet Transform (DWT) using an additive injection

model [32].
• MTF-GLP: Generalized Laplacian Pyramid (GLP) [33] with Modulation Transfer

Function (MTF) matched filter [34] with unitary injection model.
• MTF-GLP-HPM: GLP with MTF-matched filter [34] and multiplicative injection

model [35].
• MTF-GLP-HPM-PP: GLP with MTF-matched filter [34], multiplicative injection model

and post-processing [36].
• MTF-GLP-ECB: MTF-GLP with Enhanced Context-Based model (ECB) algorithm [34].

Algorithms IHS, PCA, GS, BDSD, and PRACS belong to the CS category, and we
selected HPF, SFIM, INDUSION and the different MTF variations from the group of MRA
algorithms. All these algorithms have been computed using a MATLAB library distributed
by Vivone et al. [37].

After establishing the scope of our study, we then define the characteristics to be met
by the final products to ensure an adequate quantitative assessment. These properties are
defined by Wald’s protocol [38].

2.2. Wald’s Protocol

Before proceeding, the images resulting from the pansharpening methods must be
evaluated in terms of quantitative quality indices, as a visual inspection of the result is
insufficient to determine their suitability.

The research community accepts Wald’s protocol [38,39] as establishing the essential
properties of the products of image fusion algorithms where possible. These are as follows,
as expressed by Aiazzi et al. [25]

Theorem 1. Consistency: any fused image Â, once degraded to its original resolution, should be as
identical as possible to the original image A

Theorem 2. Synthesis: any image Â fused by means of a high-resolution (HR) image should be as
identical as possible to the ideal image AI that the corresponding sensor, if it exists, would observe
at the resolution of the HR image.
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Theorem 3. The multispectral vector of images Â fused by means of a high-resolution (HR)
image should be as identical as possible to the multispectral vector of the ideal images AI that the
corresponding sensor, if it exists, would observe at the spatial resolution of the HR image.

As the original image AI is available in our research, we can comply with Theorems 2 and 3
of Wald’s protocol.

The quality of the final products of fusion imaging must then be assured. Visual
checking may be necessary, but an objective numerical comparison is compulsory. Vari-
ous image fusion quality indices have been proposed to assess the quality of the fusion
image procedures.

2.3. Quality Metrics

Fusion imaging quality indices aim to measure spatial and spectral distortion based on
different statistical expressions with variations between them. They examine one particular
aspect: some focus on the quality of the spatial reconstruction, whereas others are designed
to evaluate the spectral variation.

Some terms must be defined in order to explain the indices involved, some terms must
be defined. Let us define High Resolution Pseudo-Multiespectral image PS-MS_HR as

X ∈ R
B×P, with B bands and P pixels. X = [x1, . . . , xB]

T = [x1, . . . , xP], where xi ∈ R
P×1 is

the ith band (i = 1, . . . , B) and xj ∈ R
B×1 is the feature vector of the jth pixel (j = 1, . . . , P).

X∗ is the resulting image product after the pansharpening method (PS-MS_HR*). All the
indices have been computed using the SEWAR python package [40].

2.3.1. Root Mean Squared Error (RMSE)

The computed root mean squared error of the two images reveals the variation in the
pansharpening process [41]. RMSE expresses both the spectral and spatial distortion of the
improved image. The optimal value of RMSE is zero.

RMSE(X, X∗) =

√

√

√

√

1

B

B

∑
i=1

∥

∥xi − x∗i
∥

∥

2
(1)

RMSE may lead to an error in interpretation. It should be noted that under human per-
ception, images that are unquestionably different may have an identical RMSE. Although
the RMSE statistic may not be the most specific for expressing quality results, it contributes
to the global vision with more complex indices such as SAM, ERGAS, etc. [42].

2.3.2. Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)

A more advanced image quality index than RMSE was proposed by Ranchin and
Wald [39]. ERGAS is a global statistic expressing the quality of the enhanced resolution
image. ERGAS measures the transition between spatial and spectral information [43].

ERGAS(X, X∗) = 100d

√

√

√

√

√

1

B

B

∑
i=1

∥

∥xi − x∗i
∥

∥

2
2

(

1
P 1P

Txi

)2
(2)

where d is the resolution ratio between the LR image and HR image (d = 4, in this case),

and 1P = [1, . . . , 1]T ∈ R
P×1. ERGAS is the band-wise normalized root-mean-squared

error multiplied by the GSD ratio in order to consider the difficulty of the fusion problem
into consideration [44]. The optimal value of ERGAS is 0.

2.3.3. Spectral Angle Mapper (SAM)

Another quality index, this time focused on spectral information, is the Spectral Angle
Mapper SAM [44]. SAM measures the spectral distortion with the angle formed by two
vectors of the spectrum of both images.
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SAM
(

xj, x∗ j
)

= arccos

(

xT
j x∗ j

∥

∥xj
∥

∥

2

∥

∥x∗ j
∥

∥

2

)

(3)

The equation determines the similarity between two spectra by calculating the angle
between them and treating them as vectors in a space with a dimensionality equal to the
number of bands [45]. The optimal value of SAM is zero. Here we express SAM as the
average of all pixels in the image, in radians.

2.3.4. Peak Signal to Noise Ratio (PSNR)

PSNR describes the spatial reconstruction in the final images [44], and is defined by
the ratio between the maximum power of the signal and the power of the residual errors

PSNR(xi, x∗i ) = 10 · log10

(

max(xi)
2

∥

∥xi − x∗i
∥

∥

2
2
/P

)

(4)

where max(xi) is the maximum pixel value in ith band in the PS-MS_HR image.
A higher PSNR value implies a greater quality of the spatial reconstruction in the final

image. If the images are identical, PSNR is equal to infinity.

2.3.5. Universal Quality Index (UQI)

UQI estimates the distortion produced by combining three factors: correlation loss,
luminance distortion and contrast distortion [46], as can be seen in the following equation.

UQI =
σxx∗

σxσx∗
·

2x̄x̄∗

(x̄)2 + (x̄∗)2
·

2σxσx∗

σ
2
x + σ

2
x∗

(5)

where σxx∗ = 1
P ∑

P
j=1

(

xj − x̄
)(

x∗j − x̄∗
)

, σx =

√

1
P ∑

P
j=1

(

xj − x̄
)2

, σx∗ =

√

1
P ∑

P
j=1

(

x∗j − x̄∗
)2

, x̄ =

1
P ∑

P
j=1 xj, and x̄∗ = 1

P ∑
P
j=1 yj.

UQI values move inside the [−1, 1] interval, where 1 is the optimal.
The quality indices have been computed separately for a more detailed analysis:

false colour images and the image in grayscale corresponding to the fourth band in the
PS-MS_HR and PS-MS_HR* images. This allows us to distinguish the transformation
quality independently of the colour mask applied.

2.4. Datasets

Two different image datasets were built in order to test the performance of the pan-
sharpening algorithms in thermal imaging. We started working with the FLIR ADAS
dataset to evaluate the thermal quantification. This dataset is provided by FLIR thermal
sensors brand and can be understood as a theoretical collection. For that reason, Illescas
UAV was captured by us to evaluate and contrast the first dataset, this time focused on
UAV specifically.

2.4.1. FLIR ADAS Dataset

The FLIR Thermal Starter Dataset [47] was originally designed to supply a thermal
image and a set of RGB images for training and validating neural networks for object
detection. It provides thermal and RGB images simultaneously, making it optimal for
applying pansharpening methods.

The dataset was acquired via a RGB and thermal camera mounted on a vehicle (car).
It contains 14,452 annotated thermal images with 10,228 images sampled from short videos,
and 4224 images from a continuous 144 s video. All videos were taken on streets and
highways in Santa Barbara, CA, USA, under generally clear-sky conditions during both
day and night.

Thermal images were acquired with a FLIR Tau2 (13 mm f/1.0, 45-degree horizontal
field of view (HFOV) and a vertical field of view (VFOV) of 37 degrees). RGB images
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were acquired with a FLIR BlackFly at 1280 × 512 pixels (4–8 mm f/1.4–16 megapixel lens
with the field of view (FOV) set to match Tau2). The cameras were 48 ± 2 mm apart in a
single enclosure.

As both sensors were mounted on the same structure with different lenses and resolu-
tions, a previous work of alignment is essential [48]. Image alignment (also known as image
registration) is the technique of warping one image (or sometimes both images) to ensure
the features in the two images line up perfectly so that both images show the same field.
We calculated an affine transformation to resolve this by identifying clearly-distinguished
common points in both images. The result of this transformation is that both images are
now aligned in preparation for further pansharpening analysis.

Once the performance of the algorithms was confirmed, we obtained our own dataset
with the requirements needed for our application, with a focus on aerial surveying.

2.4.2. Illescas UAV Dataset

This second dataset comprised images taken from an unmanned aerial vehicle over
an industrial building located in the town of Illescas (Toledo, Spain) on 13 August 2019
(40°8′41′′ N, 3°49′12′′ W).

The aerial vehicle was equipped with two sensors: a 4K RGB CMOS sensor with
a resolution of 3840 × 2160 pixels; and an uncooled VOx microbolometer radiometric
thermal infrared sensor with a pixel size of 17 micrometres. The thermal images have
640 × 512 pixels, spectral bands of between 7.5 and 13.5 micrometres, and a temperature
sensitivity of 50 mK.

As with the FLIR ADAS dataset, an affine transformation must be computed to ensure
both images are aligned before further analysis.

3. Results

Tables 1–4 show a summary of the quality indices explained in Section 2.3 and calcu-
lated from the FLIR ADAS and Illescas UAV datasets. As stated above, these indices have
been computed independently for false colour images and raw grayscale images to allow
us to distinguish real performance without the influence of the false colour table. Bold
values show the column best index value.

We have chosen a sample of 12 images from each dataset following our complete
proposed workflow, and then computed all the quality indices with all the final products
obtained from the sample 12 images from both datasets. The following values correspond
to the mean values of the group and their dispersion expressed by their standard deviation.

Figures A1–A4 in the Appendix A show a composition of a sample image from
each dataset: the original, the upsampled, and pansharpened images from every studied
algorithm. We confirm that a visual analysis is insufficient to validate the final quality of
the image fusion process.

Table 1. Quality indices for the False Colour Thermal Pansharpened images of the FLIR ADAS dataset for each pansharpen-

ing algorithm tested.

Algorithm
RMSE ERGAS SAM PSNR UQI

Mean Std Mean Std Mean Std Mean Std Mean Std

PCA 72.565 31.019 118.645 98.245 0.811 0.187 6.117 1.147 0.488 0.077
IHS 57.025 33.458 71.754 55.219 0.766 0.234 6.318 1.080 0.462 0.151

BDSD 59.318 32.405 55.732 43.369 0.765 0.279 6.205 1.095 0.530 0.092
GS 67.068 30.342 77.425 57.028 0.815 0.190 5.866 1.151 0.472 0.091

PRACS 46.300 35.710 51.463 44.451 0.728 0.219 6.233 1.067 0.558 0.097

HPF 46.014 36.066 53.070 45.810 0.722 0.217 6.254 1.081 0.443 0.164
SFIM 49.102 35.220 56.999 48.461 0.756 0.251 6.208 1.078 0.555 0.097

INDUSION 39.666 29.428 48.817 41.172 0.736 0.218 6.196 1.078 0.435 0.170
MTF-GLP 46.426 35.898 53.918 46.157 0.723 0.214 6.255 1.072 0.440 0.168

MTF-GLP-HPM 49.816 35.031 58.035 49.192 0.759 0.243 6.186 1.080 0.553 0.097
MTF-GLP-HPM_PP 50.127 33.860 60.282 53.623 0.884 0.360 5.913 1.400 0.481 0.150

MTF-GLP-ECB 47.818 35.316 54.997 47.433 0.740 0.250 6.277 1.035 0.426 0.196
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Table 2. Quality indices for the False Colour Thermal Pansharpened images of the Illescas UAV dataset for each pansharp-

ening algorithm tested.

Algorithm
RMSE ERGAS SAM PSNR UQI

Mean Std Mean Std Mean Std Mean Std Mean Std

PCA 66.084 13.109 40.524 5.339 0.323 0.069 11.883 1.597 0.854 0.046
IHS 46.524 3.162 27.716 1.736 0.224 0.018 14.798 0.599 0.891 0.020

BDSD 26.167 1.415 17.235 1.079 0.125 0.008 19.789 0.472 0.925 0.014
GS 88.872 11.741 29.372 3.428 0.438 0.065 9.241 1.253 0.798 0.044

PRACS 42.932 5.172 17.977 1.444 0.207 0.026 15.537 1.026 0.919 0.015

HPF 38.962 3.236 23.463 2.332 0.187 0.016 16.350 0.758 0.947 0.006
SFIM 44.139 4.425 29.593 1.927 0.212 0.023 15.284 0.961 0.951 0.007

INDUSION 40.867 4.060 24.698 2.753 0.197 0.020 15.951 0.932 0.917 0.020
MTF-GLP 39.435 3.128 23.585 2.266 0.190 0.015 16.243 0.726 0.945 0.006

MTF-GLP-HPM 44.432 4.259 29.617 1.790 0.214 0.022 15.222 0.913 0.951 0.007
MTF-GLP-HPM_PP 42.047 2.671 39.971 25.048 0.202 0.014 15.675 0.584 0.950 0.006

MTF-GLP-ECB 43.876 3.439 33.677 2.671 0.211 0.018 15.314 0.699 0.931 0.009
MTF-GLP-CBD 30.612 4.561 18.023 2.340 0.147 0.021 18.503 1.231 0.959 0.008

Table 3. Quality indices for the Grayscale Thermal Pansharpened images of the FLIR ADAS dataset for each pansharpening

algorithm tested.

Algorithm
RMSE ERGAS SAM PSNR UQI

Mean Std Mean Std Mean Std Mean Std Mean Std

PCA 51.432 23.291 22.231 11.541 0.424 0.143 13.692 5.176 0.751 0.117
IHS 41.121 16.668 18.692 10.303 0.329 0.048 15.152 3.569 0.783 0.105

BDSD 34.386 18.594 17.346 12.541 0.300 0.390 17.486 6.454 0.765 0.264
GS 38.844 16.334 17.767 10.694 0.311 0.065 15.756 4.101 0.800 0.109

PRACS 23.521 17.460 11.548 12.030 0.085 0.048 21.132 4.960 0.918 0.131

HPF 23.769 17.956 11.491 12.244 0.062 0.004 22.499 6.956 0.917 0.137
SFIM 24.098 17.842 11.582 12.136 0.073 0.020 22.307 7.105 0.921 0.134

INDUSION 21.525 15.616 10.243 10.554 0.084 0.008 22.892 6.929 0.926 0.117
MTF-GLP 24.326 17.910 11.718 12.228 0.073 0.005 22.074 6.728 0.916 0.137

MTF-GLP-HPM 24.854 17.780 11.879 12.088 0.087 0.025 21.780 6.907 0.919 0.134
MTF-GLP-HPM_PP 23.432 15.712 10.940 10.374 0.104 0.032 22.146 7.108 0.927 0.113

MTF-GLP-ECB 24.489 17.868 11.733 12.143 0.076 0.014 21.870 6.508 0.911 0.134

Table 4. Quality indices for the Grayscale Thermal Pansharpened images of the Illescas UAV dataset for each pansharpening

algorithm tested.

Algorithm
RMSE ERGAS SAM PSNR UQI

Mean Std Mean Std Mean Std Mean Std Mean Std

PCA 31.774 7.927 5.209 2.353 0.208 0.071 18.353 2.127 0.954 0.038
IHS 39.167 4.122 5.837 0.851 0.250 0.028 16.322 0.939 0.940 0.015

BDSD 7.400 1.933 1.084 0.504 0.048 0.017 31.014 2.107 0.995 0.007
GS 32.743 4.492 4.974 1.326 0.211 0.038 17.915 1.242 0.954 0.022

PRACS 25.352 9.352 2.885 1.413 0.159 0.058 20.934 4.354 0.972 0.014

HPF 15.108 2.883 2.274 0.468 0.096 0.016 24.693 1.569 0.994 0.003
SFIM 16.610 2.933 2.436 0.504 0.106 0.017 23.847 1.436 0.994 0.002

INDUSION 16.848 3.282 2.565 0.521 0.106 0.018 23.754 1.609 0.991 0.004
MTF-GLP 15.441 2.866 2.315 0.474 0.098 0.016 24.496 1.525 0.993 0.003

MTF-GLP-HPM 16.892 2.885 2.471 0.509 0.107 0.017 23.693 1.388 0.994 0.002
MTF-GLP-HPM_PP 17.210 2.770 2.540 0.517 0.109 0.017 23.519 1.322 0.993 0.003

MTF-GLP-ECB 26.334 5.769 3.640 0.922 0.168 0.039 19.917 1.826 0.982 0.008
MTF-GLP-CBD 8.567 3.627 1.283 0.573 0.054 0.021 30.125 3.244 0.997 0.002

Figure 2 contains a graphic representation of the values of the various indices to aid
the interpretation of the results.
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Figure 2. Graphic representation of computed quality indices. The different indices have been categorized in false color and grayscale.

Dots represent quality index value, and vertical line length shows sample standard deviations. Graphics in ERGAS row are not directy

comparable due to different y-axis scale.
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4. Discussion

The FLIR ADAS and Toledo UAV datasets were processed and analysed, with the
following results:

• The results for the false colour and grayscale images are quantitatively different.
Grayscale images perform better than false colour images, thus confirming our hy-
pothesis of separating the image fusion products into false colour and grayscale.
The values of the RMSE index obtained for the images in grayscale are similar or
even lower than in researches in the same field (RMSE similar to 31) [9]. The final
grayscale image should be chosen for the subsequent processes, even when the same
or a different false colour table needs to be applied again

• Apart from certain specific values, the two different families of algorithms have a
similar performance. Minor differences in the way the different algorithms process the
data produce better results. One instance of this can be seen in the case of the CS family
with the BDSD algorithm, which performs better than the rest of the family. Figure 2
also reveals homogeneity among the values in the MRA family in all the indices.

• In general, MRA algorithms perform better than CS methods in thermal imag-
ing, except in the case of the Component Substitution BDSD algorithm in the
Illescas UAV dataset (Table 4), which has the best values in almost all the quality
indices (RMSE = 7.400, ERGAS = 1.084, SAM = 0.048, PSNR = 31.014, UQI = 0.995).
Haselwimmer et al. [5] suggest the IHS algorithm to fuse thermal and RGB images.
Our work confirms that IHS is not the best choice of algorithm. Among the CS
methods, the BDSD algorithm achieves the best results.

• Radiometrically speaking, there is no single best choice. ERGAS and SAM indices
appear similar in both cases, although the algorithms from the MRA family perform
slightly better. This agrees with the general behaviour described for these algorithms
in the literature [49]. The values obtained in the SAM index (SAM < 1) are even better
than those from other works on multi- and hyperspectral data fusion (SAM > 1) [17].

• Spatial reconstruction is better in MRA methods. PSNR has higher values in both
datasets, denoting a greater geometrical quality of the spatial details. Again, the
BDSD algorithm is the best in terms of spatial reconstruction.

• Regarding the behavior of the datasets, the UAV dataset obtains better results in all
indices, possibly due to the nature of the FLIR ADAS dataset. The lack of homogeneity
between the distances to the objects, may explain the poorer performance of the
pansharpening algorithms, and may also be the reason for higher dispersion values
in the whole FLIR dataset. We could fix this by decomposing the images in subzones
where the distances were homogeneous and analyzing their influence.

• Our work allows the use of thermal sensors with a lower resolution than other types
of sensors used simultaneously in the same project, since this method enhances the
resolution of the thermal images and homogenises their resolution. One limitation is
that it depends on the resolution ratio between visible and thermal spectrum images.
Here, a ratio of more than four may lead to unexpected artifacts and to the failure of
processes [50].

• Although the results may vary depending on the false colour representation of the
thermal information adopted, the validation by the grayscale band highlights the
interest of further developments to adjust the parameters of the algorithms to adapt
them specifically to infrared thermal images.

5. Conclusions

The use of certain pansharpening algorithms applied to thermal images has been
tested in previous research. This work contains a complete review of a number of al-
gorithms, and provides an in-depth study of thermal imaging pansharpening, with a
numerical assessment.

We have validated the potential of pansharpening algorithms to enhance the resolution
of thermal images with the help of higher-resolution visible spectrum RGB images. Algo-
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rithms from the two main pansharpening families have been tested on different datasets,
and the quality of the results has been verified. This quantitative analysis allows us to
make a critical comparison.

Our focus on UAV imaging suggests a primary application, as all UAV platforms have
quite different sensor resolutions between the thermal and visible spectrum. This type of
aerial platforms fitted with this type of sensors are already very useful in such key areas as
volcanism, the detection of temperature changes as a possible parameter for forecasting
future events, and the inspection of industrial electromechanical elements, where they can
be a key factor in preventing system malfunctions. The availability of a more accurate
estimate of the quality of thermal image pansharpening algorithms will make it easier to
develop more reliable automatic remote sensing systems.
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Figure A1. Cont.
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(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A1. UAV Illescas dataset RGB: (a) Reference image; (b) Low-resolution upsampled image;

(c) PCA; (d) IHS; (e) BDSD; (f) GS; (g) PRACS; (h) HPF; (i) SFIM; (j) INDUSION; (k) MTF-GLP;

(l) MTF-GLP-HPM; (m) MTF-GLP-HPM-PP; (n) MTF-GLP-ECB; (o) MTF-GLP-CBD.

(a) (b) (c)

(d) (e) (f)

Figure A2. Cont.
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(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure A2. UAV Illescas dataset grayscale: (a) Reference image; (b). PCA, (c) IHS; (d) BDSD; (e) GS;

(f) PRACS; (g) HPF; (h) SFIM; (i) INDUSION; (j) MTF-GLP; (k) MTF-GLP-HPM; (l) MTF-GLP-HPM-

PP; (m) MTF-GLP-ECB; (n) MTF-GLP-CBD.

(a) (b) (c)

(d) (e) (f)

Figure A3. Cont.
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(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A3. FLIR ADAS dataset [47] grayscale: (a) Reference image; (b) Low-resolution upsampled

image; (c) PCA; (d) IHS; (e) BDSD; (f) GS; (g) PRACS; (h) HPF; (i) SFIM; (j) INDUSION; (k) MTF-GLP;

(l) MTF-GLP-HPM; (m) MTF-GLP-HPM-PP; (n) MTF-GLP-ECB; (o) MTF-GLP-CBD.

(a) (b) (c)

(d) (e) (f)

Figure A4. Cont.
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(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure A4. FLIR ADAS dataset [47] RGB: (a) Reference image; (b) PCA, (c) IHS; (d) BDSD; (e) GS;

(f) PRACS; (g) HPF; (h) SFIM; (i) INDUSION; (j) MTF-GLP; (k) MTF-GLP-HPM; (l) MTF-GLP-HPM-

PP; (m) MTF-GLP-ECB; (n) MTF-GLP-CBD.
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