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ABSTRACT Ultrasound offers a safe, non-invasive, and inexpensive way of imaging. However, due to its
natural intrinsic imaging characteristics, it produces poor quality images with low resolution (LR) compared
to other medical imaging modalities. Various image enhancement techniques have been extensively studied
to overcome these shortcomings. Super-resolution (SR) is one of these methods, which endeavor to obtain
high resolution (HR) images from LR images while enlarging them. Numerous studies have already utilized
different SR techniques in various stages of ultrasound imaging (USI). Unlike other studies, which aimed at
obtaining SR in the pre-processing phase or early stages of the post-processing phase of USI, we achieved
SR on B-mode ultrasound images, which is the last stage of USI. We constructed a deep convolutional neural
network (CNN) and trained it with a very large dataset of B-mode ultrasound images for the scale factors
2, 3, 4, and 8. We evaluated the performance of our proposed model quantitatively with eight image quality
measures. The quantitative results revealed that our algorithm is much more successful than other methods
at each magnification factor. Furthermore, we also verified that there is a statistically significant difference
between our approach and others. Besides, qualitative analysis of the reconstructed images also confirms
that it produces much better quality HR images than other methods in terms of the human visual system.

INDEX TERMS Ultrasound, super-resolution, deep learning, convolutional neural network.

I. INTRODUCTION

Ultrasound imaging (USI) has become a standard imaging
modality since it enables to execute a safe, non-invasive, and
portable way of imaging [1]. Besides, it is an inexpensive
modality compared to other imagingmodalities, such as com-
puterized tomography (CT), X-ray, and magnetic resonance
imaging (MRI). In medical imaging, it is nearly the most
preferred method for imaging of the cardiovascular system,
abdominals, urology, vascular system, obstetrics, gynecol-
ogy, and so on. On the other hand, USI suffers from the
artifacts emerging during the travel of sound waves through
the medium. A typical cause of artifacts is the transmission of
ultrasound signals in a short duration in time. Thus, the sig-
nals are affected by multiple noise sources [2]. The speckle
noise is another fundamental problem destructively affecting
ultrasound images. The speckle is the outcome of the coher-
ent interface of constructive and destructive backscattered
echoes. Inhomogeneity of tissues also distorts sound waves.
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A variety of techniques have been extensively investigated
to overcome the poor image quality in USI. The main goal
of these techniques involves the reduction of speckle noise,
removal of blurring effect, preserving high-frequency com-
ponents, and enhancement of the resolution [2]. Improving
the resolution is referred to as super-resolution (SR). The
SR aims to produce finer details missing in the LR image
while enlarging it by a scale factor to obtain a high resolu-
tion (HR) image. In this study, we obtained SR on B-mode
ultrasound images. Almost 28 thousand ultrasound images
were employed for training a deep convolutional neural net-
work (CNN) to produce HR images. We denominate our pro-
posed model as DECUSR1 (deep convolutional network for
ultrasound super-resolution). We compared DECUSR with
four well-known interpolation methods (Bicubic, Bilinear,
Lanczos, and Nearest interpolation), the method proposed
in [3], and two deep learning (DL) models: super-resolution
convolutional neural network (SRCNN) [4], and enhanced
deep super-resolution network (EDSR) [5]. We used eight

1Source codes are available at https://github.com/htemiz/DECUSR
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image quality measures (IQMs) in our quantitative evalua-
tions. We used two separate test sets of images from two
different sources. The findings in both test sets reveal that our
method surpasses other methods significantly. We confirmed
that there is a statistically significant difference between our
method and others.
The qualitative comparisons of HR images reconstructed

by each algorithm also confirm that our method produces
much better quality images than others. In other words,
the proposed model greatly surpasses other methods in terms
of the human visual system (HVS) as well.
As a summary, the main contributions of this paper are as

follows:

• We obtain SR at multiple scales factors (2, 3, 4, and 8).
• We developed a novel CNN model that offers high-
quality ultrasound image reconstruction.

• We compared our model with other models by using
eight IQMs, and also qualitatively in terms of the human
visual system.

• We also checked the statistical significance of our
method against other methods.

The rest of the paper is organized as follows. Section 2 gives
a summary of related works previously done. In Section 3,
the architecture of the proposed model is described in detail.
A comprehensive description of the experiments and results
is given in Section 4. In the conclusion section, we briefly
outline and discuss the contributions of this paper.

II. RELATED WORK

SR is being employed for increasing resolution while pre-
serving or even improving details in images. It can be imple-
mented on still images or multiple images in a sequence.
Multi-frame SR algorithms first register the sequences of
images to estimate relative motion. The relevant sequences
of the same scene are then projected into a coordinate system
introducing an interpolation method. As a final step, some
image enhancement algorithms are applied to interpolate
finer details to obtain better image quality.
On the other hand, a single image super-resolution (SISR)

aims at obtaining an HR image from a single LR image.
In this study, we adopted a learning-based SISR approach by
exploiting a CNN. In the next two sections, we list related
works on SR in two different topics: SR in real-world imag-
ing, and USI.

A. SUPER RESOLUTION IN REAL WORLD IMAGING

Plentiful methods exploiting either single or multiple images
have been introduced in the last few decades to solve the SR
problem. Such as interpolation-based [6], reconstructional
[7], frequency domain applications [8], and in recent studies
mostly learning-based methods in SISR [9]–[12]. SRCNN
network, proposed byDong et al. [4], is the first DL algorithm
applied to SR. After then, many different network architec-
tures have been designed for SISR. The former networks
were mostly a kind of CNN with some special architecture

adjustments or loss functions. Some of them used residual
learning approach; DRCN [13], VDSR [14], DRRN [15].
ESPCN [16], and EDSR [5], which has won the NTIRE 2017
challenge [17], have used the sub-pixel convolutional layer
structure. The authors of FSRCNN [18] aimed to implement
a fast and efficient algorithm. Densely connected layers were
used with DenseNet [19] and RDN [20]. MemNet [21] pro-
posed a special architecture consisting of the recursive unit
and a gate unit. Laplacian pyramid architecture was used
in LapSRN [22]. EnhanceNet [23] has focused on creating
realistic textures. Very recent special CNNs are HCNN [24]
introducing hierarchical structure, and MGEP-SRCNN [25],
which proposes multilabel gene expression programming
(MGEP).

Apart from CNN architecture, especially in recent stud-
ies, generative adversarial networks (GANs) have exhibited
outstanding performance in SISR. The authors of SRGAN
[26] intended to recover finer texture details, especially at
large upscaling factors, by introducing a perceptual loss func-
tion established with an adversarial loss and a content loss.
Reference [27] derived ESRGAN from SRGAN. RTSRGAN
[28] combined the advantages of ESRGAN and the real-time
performance of ESPCN. DGAN [29] used multi generators in
the network structure. Cycle-in-cycle GAN is recently used
in MCinCGAN [30]. CGAN [31] integrated Laplacian pyra-
mid architecture into GAN. Wasserstein GAN architecture
is utilized in WGAN [32]. Feature-guided SR is proposed
in FG-SRGAN [33] by pointing out that it is impractical
to super resolve LR images due to the absence of ground-
truth HR images in the real world. The authors of GCN
[34] proposed collaborative network architecture. Gradient
Magnitude Similarity Deviation (GMSD) metric is adapted
to GMGAN [35] in order to produce HR images in line with
the human vision system (HVS). The authors of SRNTT [36]
focused on the information loss in LR images, and, proposed
a reference-based SR approach for generating better texture
details from reference images. A probabilistic generative
framework, PGM, which offers the low computational cost
and robustness to noise, is proposed in [37]. Reference [38]
proposedG-GANISR exploiting the least square loss function
instead of cross-entropy. The authors targeted to exhaust
all image details without loss of information by gradually
increasing the charge of the discriminator.

B. SUPER RESOLUTION IN ULTRASOUND IMAGING

We summarize here the SR studies implemented in the post-
processing phase of USI since the pre-processing phase of
USI is out of the scope of this paper. A multi-frame SR task
was experimented in [39]. The authors mainly focused on
the registration step to get a better ultrasound image quality.
RF line sequences were used for bilinear deformable block
matching (BDBM), which was adapted for motion estimation
and small local deformations. Very similar implementation
was also performed in [40]. To measure the thickness of
intima-media more accurately, it is aimed at [41] to reduce
speckle noise while obtaining an HR image by utilizing SR.
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For this purpose, anisotropic diffusion regularization was
performed by employing a maximum a-posteriori (MAP)
approach with transformation information in the frequency
domain. In [42], a patch-based Gaussian process regression
with multiple annotators (GPRMA) was performed for com-
puting an estimated actual HR image. The authors endeav-
ored to minimize the evidence logs utilizing gradient descend
with a radial basis function (RBF) kernel for parameter esti-
mation. Instead of utilizing a single image in breast tumor
classification, a multi-image SR approach using complemen-
tary information from multiple images before tissue analysis
is recommended in [43]. Because ℓ1-norm was proven to be
more robust in comparison to ℓ2-norm, ℓ1-norm was chosen
as a similarity cost function with total bilateral variation
(BTV) regularization. The authors achieved the best results
for all texturemethods, especially for 5 LR images. Reference
[44] proposed a ℓp-norm regularizer for ultrasound tissue
reflectivity function for motion estimation. The researchers
proposed an approach to decimation and blurring operators
for solving the related optimization problem.
The authors in [45], implemented a two-dimensional

homomorphic deconvolution filter, ensuring real-time pro-
cessing to the first and second harmonics in the RF image
array. As a result, the second-harmonics resulted in better
spatial resolution than the first-harmonics.
A sparse coding scheme was implemented in [46] with

non-local structural similarity regularizer based on the fact
that medical images often have many repetitive image struc-
tures. To improve the quality of the constructed HR image,
the researchers adapted a non-local similarity constraint into
the patch aggregation process after finding similar patches
by the Gaussian neighborhood. The proposed algorithm was
applied to MRI, CT, and USI. Another research for SR with
sparse representation was carried out in [42] for the recon-
struction of ultrasound images. Reference [47] employed
the idea that RF signal envelopes have to be improved to
increase the resolution of images. The authors implemented
a multi-dimensional autoregressive (AR) modeling using
inverse Fourier transform of non-demodulated In-phase and
Quadrature (IQ) signals, instead of directly estimating the
envelopes of RF signals. Another experiment in [48] was per-
formed with the Alternating Direction Method of Multipliers
(ADMM) technique on IQ signals.
Yoon and Ye [49] utilized a CNN model for achieving SR

on randomly subsampled RF data, rather than using every
bit of it since there is only a little incremental change in
the sequences of RF signals. In this way, they achieved
fast run-time reconstruction of ultrasound images. Refer-
ence [3] employed a weighted regression for SR for a 2x
scale. Another DL architecture akin to the optical flow
method was designed in [50] for implementing the multi-
frame SR approach with motion estimation. The researchers
specifically focused on the motion estimation step of the
multi-frame SR task for enhancing the quality of images. Ref-
erence [51] employed an SRGANnetworkwith sub-pixel fea-
ture channels for generating intravascular ultrasound images.

Reference [52] also used SRGANwith small modifications to
achieve SR on the lateral axis of USI. The authors obtained
SR on RF data before scan conversion to B-mode for a 4x
scale. An unsupervised learning-based method with dilated
CNN and residual learning for a single ultrasound image has
been proposed by Lu and Liu [53]. The method does not
require a training dataset since it learns the LR-HR map from
the given image. Reference [54] utilized repetitive data in the
non-local neighborhood of samples by first denoising image
and then applying a Bayesian approach for SR. Another
Bayesian approach with the SR technique is implemented in
[55] for ultrasound image restoration.

III. METHOD

In this study, we attained the SR of ultrasound images by
using a CNN. We empowered our model to learn the func-
tional relationship between LR and HR images by training
it with a large training set of B-mode ultrasound images.
We will explain the entire process in detail in the next sec-
tions.

A. SUPER RESOLUTION

The super-resolution (SR) is a process of obtaining high res-
olution (HR) images from a single or multiple low resolution
(LR) images generated from either multiple observations of
the same scene or produced synthetically from HR images.
It strives to produce finer details as well while improving the
actual resolution. Thanks to successful results, it has been
used for many different applications, such as medical image
processing, image conversion from standard-definition tele-
vision (SDTV) to high definition television (HDTV), image
mosaicking, aerial, and satellite imaging, and image enhance-
ment [56]. There are two main attitudes of the SR task:
software-based methods and hardware-based methods. One
of the hardware-based methods aims to decrease the pixel
size beyond a certain threshold. Current technologies have
already reached the limit of such threshold sizes. Besides,
decreasing the pixel size gives rise to a drop in the amount
of light reaching the corresponding cell of the pixel on the
sensor. Subsequently, it causes an increase of the shot noise.
The other member of the hardware-based method aims to
increase the capacitance of the imaging device. That is,
it finally slows down the charge transfer rate. In addition
to the issues mentioned above, hardware-based approaches
are generally expensive, especially in large-scale imaging
devices. Therefore, algorithmic-based methods are more pre-
ferred than hardware-based approaches.

The task of obtaining LR images from HR images is for-
mulated with the following definition:

x(i, j) = D(B(M (y))) + η(i, j) (1)

where x and y are LR and HR images, respectively. M is
a warping function, B is a blurring function, and D is a
downsampling function. η stands for additive noise. As seen
from (1), the SR task is an inverse problem that HR images
can be estimated from LR images. From given HR images,
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LR images are simulatedwith a series of operations defined in
Eq. (1). Afterward, the missing information between LR and
HR images is being estimated using the relationships between
them. Very recent algorithms try to recover these relations
by exploiting a variety of learning algorithms. Likewise,
the proposed model is also a learning algorithm that aims to
comprehend these relationships between LR and HR images.

B. OUR PROPOSED METHOD

We provide theoretical background, implementation, and
training details of our proposed algorithm in the next sections.

1) MOTIVATION

Aconvolutional neural network is comprised of convolutional
layers with a particular activation function and parameters
2 = {W,B}. Where W is a set of convolution kernels (fil-
ters), and B is a set of biases. At each layer, the input image x
is convolved with a set of K kernelsW = {W1,W2,. . . ,WK }

and added biases B = {b1, b2, . . . , bK }. The convolution
operation at each layer generates a new feature map xk. After-
ward, these features are subjected to an activation function,
which results in an element-wise non-linear transform. Such
that, a = σ (W ∗ x+ b). Here, ‘∗’ and σ respectively denote
the convolution operation and activation function.
The same process is repeated for x and 2 at every convo-

lutional layer l:

x
l
k = σ

(

W
l−1
k ∗ xl−1 + bl−1

k

)

(2)

Consequently, a convolutional neural network with an L
number of layers is given as:

f (x; 2)

= σ

(

W
L ∗ σ

(

W
L−1 . . . σ

(

W
0 ∗ x + b0

)

+ bL−1
)

+ b
L

)

(3)

where,Wn represents the K number of kernels in layer n.
Our proposed model, as a CNN, maps a given LR image

x to estimated HR image ŷ = f (x;2) that is closed to the
ground-truth image y. For the optimization of the network
error over given a training dataset D

{

x(i), y(i)
}N

i=1, we define
a loss function such that:

L
(

y, ŷ;2
)

=
1

N

∑N

i=1
‖yi − f (xi;2)‖2 (4)

where N is the number of training samples. In (4) we intro-
duce the mean-squared-error (MSE) for computing the loss
value by quantifying the discrepancy or distance between
each predicted image ŷ and its corresponding ground-truth
image y. MSE defined as follows:

MSE =
1

PR

∑P

i=1

∑R

j=1

∥

∥y(i, j) − ŷ(i, j)
∥

∥

2
(5)

where P and R are pixel sizes in both direction, height, and
width. So, it is required here to minimize the difference
between ŷ and y. That is, the network must learn to accurately
predict the actual output y from given LR image x as much
as possible.

Including a regularization term, we define an objective
function such that;

J (2) =
1

N

∑N

i
L

(

x
i
)

+ λr(2) (6)

where r is a regularization term with weight λ > 0, and L

is the loss function defined in (4). Now that our goal is to
minimize the objective function J . In other words, we would
like to find our network’s parameters 2 = {W,B}, such
that make the objective function be the minimum. This opti-
mization problem could be solved with the gradient descent
algorithm.
Since our training set D is too large for computation,

we use a mini-batch training method that makes our objective
function as follows:

J (2) ≈
1

|M |

∑|M |

i
L

(

x
i
)

+ λr (2) (7)

Each time we draw M ≪ N number of samples (128 sam-
ples, in our case) from D, and compute L in the forward pass,
and the gradient ∇L in the backward pass. The parameter
update ∇(W,B) is found from the error gradient ∇L and
regularization gradient ∇r . For updating the parameters 2 =

{W,B}, we used a well-known gradient-based optimization
method, ADAM [57]. It is a first-order gradient-based opti-
mization algorithm for stochastic objective functions.

2) IMPLEMENTATION OF THE NETWORK

We dominate our method as DECUSR (Deep Convolu-
tional Network for Ultrasound Super Resolution) for brevity.
It essentially consists of three different components: fea-
ture extraction block (FEB), repeating blocks (RBs), and
upsampling layers. There are three different types of layers
in the network: convolution, upsampling, and concatenation.
We present the architecture in Fig. 1. Each convolution layer
has 16 filters except for the last one, which has only one 1×1
filter. For a convolutional layer in our network, we can write
(2) as follows since we use ReLU as the activation function:

x
l
k = ReLU

(

W
l−1
k ∗ xl−1 + bl−1

k

)

(8)

where k = 1 for the last layer and k = 16 for the rest.
Traditional networks generally have a single upsampling

layer in the case that the network upscales input image
by itself. In contrast, others intake an LR image, which is
already-upscaled by an interpolation method. The critical
question is, at what stage and how to upscale LR image?
E.g., directly upscaling after the input layer, or after a kind
of feature extraction process. We think that there will be
some amount of information loss in either way. Hence,
we employed two separate upsampling layers in our net-
work: feature upscaling layer LFUP and direct upscaling layer
LDUP. LFUP enlarges the extracted features generated by FEB,
whereas LDUP directly enlarges the LR image. We observed
in our experiments that both upsampling layers positively
contribute to the network.
Similar to the idea of densely connected layers [19],

we adopted densely connected RBs to better propagate the
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FIGURE 1. The architecture of our proposed model.

information throughout the network. We use concatenation
layers in RBs for dense connections. There are also three
subsequent convolutional layers in RBs. The first and second
convolution layers have 16 3× 3 filters, whereas the last one
has 16 1× 1. A concatenation layer (LCONCAT) combines the
outputs of both the upsampling layer (LDUP and LFUP) and the
outputs of each preceding RB. The accumulated information
by the help of the concatenation in the RBs enables the
network to learn the non-linear transition from LR to HR
images in an efficient and balanced manner. In this way, our
model becomes more robust. Besides, it learns much better.
In the next section, we explain the mechanism of RB with the
concatenation in detail.

a: REPEATING BLOCKS AND CONCATENATION

Let Xl and Tl∈ R
wxhxk respectively be the output and the

feature map (a tensor in our case) of ℓth layer in a network.
Here, w, h, and k ∈Z+, and respectively denote the width,
height, and depth of the layer. Typically, each layer in ordi-
nary CNN implements a non-linear transformation F(·). A
traditional CNN deems the output of the ℓth layer as the input
of the (ℓ + 1)th layer. Such that, the output of the ℓth layer
can be formulated as Xl = Fl(Xl−1). Unlike ordinary CNN
layers, a concatenation layer stacks its inputs into a single
tensor in the same order. For a n number of input featuremaps,
the output of a concatenation layer can bewritten asXconcat =

Fconcat

(

T
wxhxk1
1 , T

wxhxk2
2 , . . . , T

wxhxkn
n

)

, which produces a

new feature map T wxhx(k1+k2...+kn).
The first layer in an RB is a concatenation layer, which

stacks LFUP, LDUP, and the outputs of each preceding RBs in
the given order. Namely, kth repeating block RBk is connected
to LFUP, LDUP, and RB1out , . . . ,RBk−1

out via its concatena-
tion layer. We initialed the baseline model with three RBs
and endeavored in our experiments to find out the optimum
number of them. According to our evaluations, our network
achieves the top performance with four RBs. We discuss this
later in the next sections.

b: DISSECTING THE COMPONENTS

Before finding out how many RBs should exist, we examined
the contributions of the components of the network. For this

FIGURE 2. Performances of the baseline model (3 RBs) in the
presence or absence of its components.

TABLE 1. Components of the baseline model (with 3 RBs) and their
contributions to the performance.

purpose, we trained our baseline model (with 3 RBs) in the
presence and/or absence of FEB, LFUP, LDUP, LCONCAT for a
2x scale. We give training graphs for each scenario in Fig. 2.
The MSE loss of the baseline model in the absence of FEB,
LDUP, and LCONCAT is shown with orange, green, and red
colors, respectively. The blue line shows the baseline in the
presence of all components. The loss is minimum when all
components are present. The figure clearly shows that their
presence positively contributes to the network.

Table 1 also shows PSNR scores of each scenario
obtained in TestSet-I. According to the results, LDUP slightly
improves the network’s performance (0.1 dB). PSNR score
is 43.5736 (dB) in the absence of the layers LCONCAT and
LDUP, whereas 43.8772 (dB) only in the absence of LDUP.
These results mean that the concatenation layers consider-
ably contribute to the network’s performance (by 0.3036 dB
PSNR). Likewise, PSNR score is 43.8147 (dB) in the
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TABLE 2. Layer details of our network with four RBs.

absence of FEB. Therefore, it contributes to the network by
0.0625 dB PSNR. As a result, we see that each component
contributes more or less positively to our network. Based on
these observations, we incorporated all components into our
network.

c: THE NUMBER OF REPEATING BLOCKS (RBS)

We constructed the baseline network with 3 RBs at the begin-
ning of our experiments. After then, we trained the network
by removing existing RBs or plugging new ones. We checked
the network’s performance after every addition or reduction.
We stopped the procedure when the next two additions did not
improve performance. In this way, we obtained six different
models with a single RB to six RBs, since five and six RBs
could not perform better than four RBs. Figure 3 illustrates
the training loss in MSE and PSNR scores in TestSet-I by the
different number of RBs. Using less than three RBs severely
deteriorates the performance.
On the other hand, the network with four RBs converges

rapidly in the second epoch and stabilizes the convergence
throughout the training. Five RBs also exhibit a very similar
learning curve as four RBs, but with slightly lower in the
performance. The performance deteriorates noticeably with
six RBs. Based on these results, we decided to employ four
RBs in our network.

TABLE 3. Training parameters.

IV. EXPERIMENTS AND RESULTS

In this section, we discuss the details of the network’s archi-
tecture, datasets, training, and evaluation.

A. DATASETS

We benefited from two different web sites to create
training and validation sets and two separate test sets.
In total, we downloaded 36149 B-mod ultrasound images
from the former web site, http://www.ultrasoundcases.info.
We excluded images that are not in good condition. From
the remaining 29696 images, we composed the validation and
test set ‘TestSet-I’ by randomly selecting a thousand images
for each set, without replacement. Finally, the training set
consisted of the remaining 27696 images.

The second test set, ‘TestSet-II,’ consisted of the images
only from the following web site http://www.ultrasound-
images.com. We cropped randomly selected 500 images so
that their size is 600× 450 pixels. In this way, we eliminated
and/or minimized unnecessary dark regions at sides, or marks
printed by imaging devices. The training and validation
sets consisted of the images collected only from the former
website.

B. TRAINING

We constructed our model with KERAS.2 It consists of a
total of 39265 parameters. In III-B.2.c, we delineate the entire
network architecture in detail. All convolution layers are
initialized with Glorot uniform initializer. We employed a
rectified linear unit (ReLU) as the activation function in the
convolutional layers. Padding is set to ‘same’ so that the size
of the output image does not change.

We obtained LR images dividing each training image by
255.0 after downscaling by bicubic interpolation. The images
were cropped to make their size is multiple of the scale.
We trained ourmodel onNVIDIAGeForce RTX2080TiGPU
at most ten epochs with batch size 128, learning rate 1×10.3,
minimum learning rate 1 × 10.7, early stopping patience 5,
and weight decay 1×10.6. The learning rate was halved after
the training is not improved for three epochs. All training
parameters are summarized in Table 3.

The size of input image patches is 16, 11, 8, and 4 for the
scales 2, 3, 4, and 8, respectively. A similar approach has
been applied in determining the stride values. We used stride
values 6, 4, 3, and 1 for scales 2, 3, 4, and 8, respectively.
In this way, we obtained approximately the same number

2 https://keras.io
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FIGURE 3. Performance change of Decusr by the number of repeating blocks (RBs). (a) training performance; (b) PSNR scores in TestSet-I. When the
number of RBs is four (red line), Decusr converges very rapidly and preserves its success throughout the training. Furthermore, it scores the highest.

of training image patches for each scale. The images in the
training set were randomly reordered at the beginning of each
epoch. Similarly, the image patches were also extracted in
random order from each input image.

C. EVALUATION

The quality of HR images obtained from each method was
quantitatively measured by the following image quality met-
rics: peak signal to noise ratio (PSNR), structural similarity
index (SSIM) [58], multi-scale structural similarity index
(MS-SSIM) [59], feature similarity index (FSIM) [60], mean
absolute deviation (MAD), Haar wavelet-based perceptual
similarity index (HaarPSi) [61], gradient magnitude similar-
ity deviation (GMSD) [62], and visual fidelity information
(VIF) [63]. Since PSNR is one of the most widely used mea-
sures for image quality assessment, we present the definition
of PSNR as follows:

PSNR = 10log10

(

L2

MSE

)

(9)

where L is the maximum intensity value in images (255 for
this case), and MSE is defined in (5).
The performance of the proposedmethod is compared with

Bicubic, Bilinear, Lanczos and Nearest interpolation meth-
ods, SRCNN, EDSR (baseline model with approximately
1.5M parameters), and the method proposed in [3]. We short-
ened the name of this method as RWRUSR to easy reference.
The benchmarks were performed for all scales.

We did our best to obtain the best results from RWRUSR.
Since the authors did not mention how they upscaled the LR
image before constructing the design matrix in the regression
procedure, we tried three different ways of upscaling the LR
image in each direction (horizontal or vertical) for each pass
of regression. In the first approach, we just repeated existing
rows and columns in the new rows and columns, respectively.
In the second approach, instead of repeating the same values,
we fill in the average values of adjacent rows or columns.
In the last approach, we used the bicubic interpolationmethod
for upscaling LR images. Since it offered much better results
than others, the first technique was employed for the scales

2, 4, and 8. The authors state in their work that magnification
by multiples of two can be yielded by repeatedly implement-
ing the algorithm. Namely, the authors used the algorithm
only for the magnification factors that are multiples of two.
Therefore, for scale 3, we introduced the bicubic interpolation
method for upscaling LR images since it yielded better results
than the first two approaches.

D. RESULTS

We evaluated the performance of each method in quantitative
and qualitative terms. We present in Table 4 the quantitative
results of the methods in both test sets. The highest score is
marked with red color, whereas the second one with blue.
According tomost IQMs, ourmethod outperforms other algo-
rithms by a noticeable margin at all scale factors. The second-
best performance is mostly achieved by EDSR in TestSet-I,
and by SRCNN in TestSet-II. Except for FSIM measure at
scales 3, 4, and 8, our method achieves the highest scores
in TestSet-II as well. SRCNN surpassed EDSR in this test
by mostly achieving the second-highest scores. In both tests,
no method other than DLmethods ranked the top two. Exper-
iments show that Lanczos interpolation outperforms other
interpolation methods. We observed in our experiments that
EDSR yields a very low PSNR score at each scale. To us, this
may be due to the use of ℓ1 loss. The authors trained EDSR
with ℓ1 loss, instead of ℓ2 loss, which maximizes PSNR, for
the reason that it offers fast convergence. Therefore, it yields
too low PSNR score compared to others. However, this does
not apply to other metrics. It mostly offers the second-best
performance in other IQMs in TestSet-I. It even achieves the
highest FSIM score in TestSet-II for scales 3, 4, and 8, as we
mentioned above.

For visual evaluation, we represent these results graphi-
cally in Figs. 1 and 2 in Appendix A. The subfigures (a),
(b), (c), (d), (e), (f), (g), and (h) respectively show the aver-
age score curves of the following IQMs: FSIM, GMSD,
HAARPSI, MAD, MS-SSIM, PSNR, SSIM, and VIF. Lower
value in GMSD andMADmetrics means better performance,
whereas the opposite is true for others. We show our method
with a green line in both figures. The stability in the perfor-
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TABLE 4. Quantified performances of methods in TestSet-I and TestSet-II. Red shows the highest while blue shows the second highest. Our method
exhibits superb performance almost in all IQMs. EDSR and SRCNN perform the second-best in TestSet-I and TestSet-II, respectively.

FIGURE 4. Run-time performances of methods for 2x scale factor. Values
in parenthesis indicate PSNR score and average run-time. Our method
surpasses other algorithms with moderate run-time overhead.

mance ranking of the algorithms in both test sets can easily
be seen in both figures.
To make a qualitative comparison between the methods,

we present in Figs. 5 and 6 the same region of the HR images
reconstructed by each method from a given LR image in each
test set. The full-size original images with their ground-truth
patches are also given on the left. We represent the PSNR
and SSIM scores of each method below the images. It is very

clear from the figures that the best quality images, in terms of
HVS, are the ones reconstructed by the proposedmethod. Our
method very successfully preserved high-frequency details.
The lowest quality images were yielded by Nearest interpo-
lation, and then RWRUSR. The aliasing artifacts yielded by
both algorithms may easily be seen in all figures. Particularly
at large scales. The images produced by EDSR have some
pixel corruptions, especially in dark areas. In contrast, our
method yields very good resolution and sharpness. The larger
the scale, the higher the difference in image quality between
our method and others.

We also checked the statistical significance of ourmethod’s
success against other methods by one-way analysis of vari-
ance (ANOVA) and Welch’s t-test at 0.05 level of signifi-
cance. We performed 224 measurements (4 scales x 8 IQMs
x 7 methods) in total for each test set. We present the full
list of p values of the measurements in Table 1 Appendix B.
The p values greater than 0.05, which indicate no signifi-
cant difference between our method and others, are marked
in red. Respectively, 211 and 208 measurements performed
in TestSet-I and TestSet-II, confirmed the significance of
our method. Most of the remaining 29 analyses, which are
showing no significance, are the ones performed against
EDSR, and then SRCNN. Almost half of these analyses were

VOLUME 8, 2020 78815



H. Temiz, H. S. Bilge: SR of B-Mode Ultrasound Images With DL

FIGURE 5. Visual comparison of an HR image reconstructed by each method. Values below the images, respectively, designate PSNR and SSIM scores. Our
method produces much better images in terms of the human visual system.

FIGURE 6. Visual comparison of an HR image reconstructed by each method. Values below the images, respectively, designate PSNR and SSIM scores. Our
method produces much better images in terms of the human visual system.

performed in FSIM, and the rest are mostly in VIF and SSIM
measures. All measurements in HAARPSI and MS-SSIM
confirm our method’s significance. Apart from only one, two,
and three measurements, respectively, all measurements in

GMSD, MAD, and PSNR, also confirm the significance of
our method.

In addition to statistical analyses, we present the run-time
performances of all methods in Fig. 4. The figure reveals that
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FIGURE 7. Average performances of methods in TestSet-I in terms of (a) FSIM, (b) GMSD, (c) HAARPSI, (d) MAD, (e) MS-SSIM, (f) PSNR, (g) SSIM, and (h)
VIF. Lower value in GMSD and MAD measures means better performance, whereas the opposite is true for others. DECUSR (green line) exhibits superb
performance almost in all measures compared to other methods.

FIGURE 8. Average performances of methods in TestSet-II in terms of (a) FSIM, (b) GMSD, (c) HAARPSI, (d) MAD, (e) MS-SSIM, (f) PSNR, (g) SSIM, and (h)
VIF. Lower value in GMSD and MAD measures means better performance, whereas the opposite is true for others. DECUSR (green line) exhibits superb
performance almost in all measures compared to other methods.

our method surpasses other algorithms with moderate run-
time overhead.

V. CONCLUSION

We implemented in this study a novel deep learning approach
to improve the low resolution and quality of ultrasound
images. We achieved SR on the B-mode ultrasound images,

which is the last stage of USI, rather than obtaining SR in the
pre-processing phase or early stages of the post-processing
phase of USI.

The proposed approach utilizes a deep learning algorithm
that learns from samples the non-linear relationships between
LR and HR ultrasound images. We trained our network with
a huge training set of final B-mode ultrasound images to
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TABLE 5. Statistical significance analysis of our method against others in terms of ANOVA and WELCH’S t-test at 0.05 level of significance. We round of
the p-values up to three digits since it is sufficient. p-values indicating no significant difference are marked in red. Respectively, 211 and 208 out of the
224 measurements in TestSet-I and TestSet-II confirmed the significance of our method.
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obtain SR for the scale factors 2, 3, 4, and 8.We benchmarked
our method with four well-known interpolation methods and
two state-of-the-art DL networks. We used eight IQMs for
quantitative evaluations. We also evaluated the quality of the
reconstructed images by each method in terms of HVS.
We created two separate large test sets composed of images

from two separate sources. The experiments showed that the
proposed model surpasses other methods by a significant
margin. Our algorithm achieved much better scores than oth-
ers almost in all IQMs at each magnification factor. We also
confirmed the statistical significance of our method by two
statistical analyses. Besides, we demonstrated the success of
our proposed method in producing high-quality images in
terms of HVS. It reconstructs very good images in many
aspects, such as resolution, edge-preserving, and sharpness.
As a conclusion, we showed with this study that our pro-

posed approach exhibits excellent performance in qualitative
and quantitative terms. Our method maintains high-quality
ultrasound image reconstruction. Since it is software-based,
it can be easily adapted to other image processing algo-
rithms or integrated into imaging devices without the need
for any hardware modifications or expansions.

APPENDIXES

APPENDIX-A

Visual representations of method’s scores in TestSet-I and
TestSet-II.

APPENDIX-B

Statistical significance analysis of the proposed method with
others.
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