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ABSTRACT Recently, the magnetic resonance imaging (MRI) images have limited and unsatisfactory

resolutions due to various constraints such as physical, technological, and economic considerations.

Super-resolution techniques can obtain high-resolution MRI images. The traditional methods obtained the

resolution enhancement of brain MRI by interpolations, affecting the accuracy of the following diagnose

process. The requirement for brain image quality is fast increasing. In this paper, we propose an image super-

resolution method based on overcomplete dictionaries and the inherent similarity of an image to recover the

high-resolution (HR) image from a single low-resolution (LR) image. We use the linear relationship among

images in the measurement domain and frequency domain to classify image blocks into smooth, texture,

and edge feature blocks in the measurement domain. The dictionaries for different blocks are trained using

different categories. Consequently, an LR image block of interest may be reconstructed using the most

appropriate dictionary. In addition, we explore the nonlocal similarity of the image to tentatively search

for similar blocks in the whole image and present a joint reconstruction method based on compressed

sensing (CS) and similarity constraints. The sparsity and self-similarity of the image blocks are taken as

the constraints. The proposed method is summarized in the following steps. First, a dictionary classification

method based on the measurement domain is presented. The image blocks are classified into smooth, texture,

and edge parts by analyzing their features in the measurement domain. Then, the corresponding dictionaries

are trained using the classified image blocks. Equally important, in the reconstruction part, we use the CS

reconstruction method to recover the HR brain MRI image, considering both nonlocal similarity and the

sparsity of an image as the constraints. This method performs better both visually and quantitatively than

some existing methods.

INDEX TERMS Brain MRI, super-resolution, dictionary, sparse representation, compressed sensing,

self-similarity.

I. INTRODUCTION

OVER the past decade, the brain Magnetic Resonance Imag-

ing (MRI) has become one of the most important methods

to diagnose the ailing brains. High-resolution (HR) images

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

with sufficient details have found significant applications in

medical imaging. Therefore, the requirement for image qual-

ity is fast increasing. However, due to the limitations of the

physical resolution of the terminal devices or the bandwidth

in the transmission process, it is difficult to obtain the high-

resolution brain MRI images that satisfy the basic require-

ment for applications. Attempts to resolve this dilemma have
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resulted in the development of an emerging research topic

in image signal processing, known as super-resolution (SR)

image reconstruction, which has been extensively studied in

recent years. SR is an inverse problem that tackles the recov-

ery of a high-resolution image from a single image ormultiple

low-resolution images of the same scene based on either

specific a priori knowledge or reasonable assumptions about

the imaging model that degrades the high-resolution image to

the low-resolution ones.

SR image recovery is a terrible ill-posed problem because

there are no sufficient low-resolution images, the blurring

operators are unknown, and the solution from the recov-

ery constraint is not unique. Many regularization methods

have been presented to further improve the inversion of this

underdetermined problem, such as [1]–[3]. However, these

reconstruction-based SR algorithms often lead to poor robust-

ness and unsatisfied performance when the magnification

factor is large. Thus, the reconstructed images may be overly

smooth and absent of critical high-frequency details [4].

The interpolation-based SR approach is another type of

SR method. Takeda et al. [5] presented an interpolation

algorithm based on the controllable kernel regression, which

constructs the direction-controllable interpolation kernel

function through a covariance matrix. Li et al. applied dif-

ferent interpolation strategies for image blocks with various

features. That is, in the bilinear interpolation for smooth

regions and particular edge regions, the local covariance is

used to adjust the interpolation coefficients [6]. Recently,

some structural adaptive interpolationmethods have achieved

good results. Lee and Yeon [7] proposed an edge-oriented

local RBF interpolation algorithm. Romano et al. [8] com-

bined the interpolation with the nonlocal self-similarity and

sparse representation of images and explored a new adap-

tive interpolation method. However, high-resolution images

recovered by these interpolation-based methods are prone to

be overly smooth and have ringing and jagged artifacts.

Another category of SR methods is based on machine

learning techniques, which seeks to obtain the co-occurrence

prior between low-resolution (LR) and high-resolution (HR)

image patches. Freeman et al. first put forward using learning

techniques to improve the image resolution. The authors

used the Markov random field (MRF) to establish the cor-

responding relationship between the HR image block and

the LR image block. The initial value of the HR image was

obtained by interpolation. The lost high-frequency details

of the HR image were recovered by learning and added

with the initial value; then, the HR image was obtained [9].

Sun et al. further improved this approach by applying the

primal sketch priors to improve blurred edges, ridges, and

corners. The SR methods using the convolutional neural

network are presented in [10] and [11], which per-

formed single- and multi-contrast super-resolution recon-

structions simultaneously. Unfortunately, the aforementioned

approaches generally require databases, which contain

millions of HR and LR patch pairs and are therefore

computationally intensive. In addition, there exist untrue

high-frequency details, which are recovered by learning from

external training databases.

The emergence of compressed sensing (CS) offers a

new different perspective to address large underdetermined

problems. CS can reconstruct sparse or compressible sig-

nals using fewer measurements than conventional methods

without prior knowledge about the support of the signals.

CS claims the inaccuracy of the conventional wisdom that the

acquisition and reconstruction must follow Nyquist sampling

theory [13]–[18]. This favorable and promising tool has

proven to be applicable for various fields, including machine

learning [19], [20], wireless communication [21], [22], and

medical imaging [23], [24]. Fortunately, due to its favorable

property, CS can be applied to solve the SR problem. The

application of CS and sparse representation in the field of

SR recovery has captured the interest and attention of an

enormous number of researchers in the past decade. The

pioneer works can be traced to [25]–[29]. Sen and Darabi [25]

proposed a new algorithm to generate a super-resolution

image from a single, low-resolution input without using a

training data set. The CS theory was used to recover the

HR image in magnetic resonance imaging [27]. Then, these

methods were extended in [28], [29]. The authors presented

new approaches to the single-image SR problem based on the

sparse representation. In [30], Rueda et al. proposed a sparse-

based super-resolution method coupling up high and low

frequency information to reconstruct a high-resolution brain

MRI image. Several papers (e.g., [31]–[35]) have studied

related sensing issues. However, these previous work failed

to consider the combination of the sparse representation and

nonlocal self-similarity. Although much effort has been spent

on improving the performance of SR recovery, an efficient

and effective method has not been developed.

The purpose of this paper is to apply CS, the sparse rep-

resentation and inherent similarity of an image to recover an

HR image from a single LR image. It is of great interest and

significance to address the questions in CS for ill-posed prob-

lems such as SR. In this paper, we have extended the previous

work by paying attention to the nonlocal self-similarity of

an LR image. We propose an image SR algorithm based on

compressed sensing and self-similarity constraint. Because

the difference of image blocks is not consideredwhen training

dictionaries, a dictionary classification method based on the

measurement domain is proposed in the dictionary training

part. Specifically, we use the linear relationship between

images in the measurement domain and frequency domain

to classify the image blocks into smooth, texture and edge

feature blocks in the measurement domain. The dictionar-

ies for different blocks are trained by using different cate-

gories. Consequently, an LR image block of interest may be

reconstructed using the most appropriate dictionary. If one

merely learns the prior knowledge from the external image

database, it tends to generate false details of the reconstructed

HR image.

In our proposed method, we use the nonlocal similarity of

the image to tentatively search for similar blocks in the whole
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image and present a joint reconstruction method based on

CS and similarity constraints. The sparsity and self-similarity

of the image blocks are used as the constraints. The pro-

posed method is summarized in the following steps. First,

a dictionary classification method based on the measurement

domain is presented. The image blocks are classified into

smooth, texture and edge parts by analyzing their features

in the measurement domain. Then, the corresponding dictio-

naries are trained using the classified image blocks. Equally

important, in the reconstruction part, we use the CS recon-

struction method to recover the HR image considering both

the nonlocal similarity and sparsity of an image as constraints.

This approach results in visually and quantitatively better

performance than some existing methods.

The remainder of this paper is organized as follows.

In Sec.II, we briefly introduce the correlative theoretical

basis, including CS, followed by the discussion of image

SR using CS. Then, the proposed SRmethod based on CS and

self-similarity is described in detail in Sec. III. The explana-

tion, illustration, and analysis of the experimental results are

demonstrated in Sec. IV. Finally, the summary of this paper

is presented in Sec. V.

II. IMAGE SUPER-RESOLUTION USING CS

A. COMPRESSED SENSING

For completeness, we briefly introduce the fundamental

background of CS. CS can reconstruct sparse or compress-

ible signals using fewer measurements than the traditional

approach uses. The advent of CS has tremendously affected

signal acquisition and signal recovery [13]–[15] because the

compressibility or sparsity is of great significance. Suppose

that x is a discrete signal with size n; if it has no more than r

nonzero values, then x is called ‘‘r-sparse’’. A signal may

have no sparsity in some domains. Fortunately, we can always

find a certain domain where signal x can be considered sparse

with an appropriate basis.

Considering the natural images, it is beneficial that there

are sufficient bases and dictionaries so that the natural

images in these bases become sparse or approximately

sparse. A signal is considered ‘‘approximately sparse’’ if its

amplitude exponentially decays. A signal is referred to as

‘‘compressible’’ if it has an approximately sparse represen-

tation on a certain basis. Concerning a sparse signal, there

is much less valuable ‘‘information’’ than unimportant data.

CS can reconstruct sparse or compressible signals with much

fewer samples than traditional methods.

Let x (x ∈ RN ) be a discrete signal; θ represents its

coefficients in a certain orthonormal basis

y = 8x.

Then, x is K -sparse if only K coefficients are nonzero. The

procedure can be formulated as follows.

‖x‖0 := |{ℓ : xℓ 6= 0}| = # {ℓ : xℓ 6= 0} ≤ s. (1)

where ‖x‖0 represents the ℓ0-norm of x, which denotes

the number of nonzero elements of x. The ℓp-norm is

defined as

‖x‖p =
(

N
∑

i=1

|xi|p
)1/p

, 1 ≤ p < ∞. (2)

We call a matrix 8 ∈ C
n×N the measurement matrix;

then, the recovery process is to reconstruct x ∈ C
N from the

measurements

y = 8x. (3)

If n ≪ N , this problem is underdetermined and has no

solution. Fortunately, CS theory finds that the solution can be

obtained with extra information that x is s-sparse.

The original recovery method adopts ℓ0-minimization:

min ‖z‖0
subject to 8z = y, (4)

but this is an NP-hard problem. Then, tractable substitutions

are used, e.g., ℓ1-minimization:

min ‖z‖1
subject to 8z = y, (5)

where

‖z‖1 = |z1| + |z2| + . . . + |zN |
for z = (z1, z2, . . . , zN ) ∈ C

N . (6)

Assuring the recovering ability of x in Eq.(4) via

ℓ1-minimization and greedy algorithms is a sufficient con-

dition to establish the RIP (restricted isometry property) of

measurement matrix 8: Given 8 ∈ C
n×N and s < N , the

RIC (restricted isometry constant) δs is defined as the smallest

positive number such that

(1 − δs) ‖x‖22 ≤ ‖8x‖22 ≤ (1 + δs) ‖x‖22
for all x ∈ C

N

with ‖x‖0 ≤ s.

(7)

Eq. (7) demands that at most s columns of 8 are well-

conditioned. 8 is said to satisfy the RIP with order s when

δs is small.

Many recovery methods are effective if the measurement

matrix 8 satisfies the RIP. More accurately, if the measure-

ment matrix 8 follows Eq. (7) with

δκs < δ⋆ (8)

for appropriate constants κ ≥ 1 and δ⋆, then several algo-

rithms can precisely reconstruct any s-sparse signals x from

y = 8x. Furthermore, if x can be approximated by an s sparse

vector, then for noisy observations,

y = 8x+ e, ‖e‖2 ≤ α, (9)

these algorithms can acquire the recovery x̃ that satisfy an

error bound as
∥

∥x − x̃
∥

∥

2
≤ C1

1
√
s
σs(x)1 + C2α, (10)
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where

σs(x)1 = inf
‖z‖0≤s

‖x − z‖1 (11)

represents the error of the best s-term approximation in ℓ1,

and C1,C2 > 0 are constants.

B. SUPER-RESOLUTION BASED ON COMPRESSED

SENSING

The CS theory aims at solving the underdetermined prob-

lems and reconstructing a high-dimensional signal from

fewer measurements than the traditional approach. For the

SR problem, its goal is to recover a high-resolution image

from a low-resolution one in the same scene. These two

problems share a high similarity, so CS theory may be applied

to solve the SR reconstruction problem. An SR problem

may be viewed as the recovery process in the CS frame,

where Y can be considered the low-resolution image acquired

as a measurement of the original high-resolution image X .

Generally, matrix M , which degrades the HR image to an

LR image in the SR problem, is considered the projection

matrix in CS theory. The sparse basis is taken from the

overcomplete dictionary D. In this work we consider only

the case of a single image. Then, the process of solving the

SR problem using CS theory is as follows:

α = argmin‖α‖0
s.t. Yk = MkX = MkDα (12)

However, many factors must be considered, including the

estimation of the degradation matrix, the method of training

overcomplete dictionary D, and the specific reconstruction

algorithm. The essence of applying the CS theory to SR is to

make full use of the sparsity and fully excavate the intrinsic

structural features of an image. SR based on CS theory has

also made significant progress in recent years. The feasibility

of applying CS theory to single-image SR has been proven

in [17]. The mapping relationship between the HR dictionary

and the LR dictionary has been established in [26].

This paper mainly studies how to reconstruct the HR image

by using the sparsity of an image and the nonlocal sim-

ilarity information inside the image. The principle of the

SR algorithm based on the sparse representation is to regu-

larize the image sparsity as a priori information. LR images

are degraded, while the degradation model of HR to LR

images is uncertain. The algorithm assumes that HR and

LR images have similar geometric structures. Their sparse

representations are approximate under a certain transform

basis or redundant dictionary. We ensure the corresponding

relationship between LR dictionary Dl and HR dictionary Dh
atoms while training the dictionaries. Then, the relationship

obtained by learning is applied to the current input image so

that an HR image is reconstructed. This algorithm mainly

includes the dictionary training process and reconstruction

process, which are introduced in detail in Sec. III.

III. PROPOSED METHOD

This paper presents an image SRmethod based on the CS and

nonlocal similarity. Because the difference of image blocks

is not considered when training dictionaries, a dictionary

classification method based on the measurement domain is

proposed in the dictionary training part. Specifically, we use

the linear relationship between images in the measurement

domain and frequency domain to classify image blocks into

smooth, texture and edge feature blocks in the measurement

domain. The dictionaries for different blocks are trained using

different categories. Consequently, an LR image block of

interest may be reconstructed using the most appropriate

dictionary. If one merely learns the prior knowledge from the

external image database, it tends to generate untrue details

of the reconstructed HR image. In our proposed method,

we use the nonlocal similarity of the image itself to tentatively

search for similar blocks in the whole image and present a

joint reconstruction method based on CS and similarity con-

straints. The sparsity and self-similarity of the image blocks

are taken as the constraints.

A. CLASSIFIED DICTIONARY TRAINING

The existing SR methods based on the sparse representation

failed to consider the differences among sample blocks in

the training dictionary. Remarkable differences between the

input LR image and the sample database may lead to the

poor quality of the reconstructed HR image. To overcome this

problem, we propose a dictionary classificationmethod based

on the measurement domain. In our past work [36]–[40],

we have proposed an adaptive ADMM algorithm with sup-

port and a maximum-likelihood dictionary to improve the

ability of the dictionary to represent the signal sparsely.

First, we classify the images in the sample database in the

measurement domain; then, we use them to train different

categories of dictionaries and reconstruct the input image

block using the closest dictionary to improve the definition

of the HR image. In our previous work [41], [42], we theoret-

ically proved the approximately linear relationship between

the cross-covariance matrixes in the measurement domain

and frequency domain, which can be formulated as follows:

Cy ≈
n

m
Cq, (13)

where m and n represent the sample numbers in the measure-

ment domain and frequency domain, respectively. The images

in the frequency domain and pixel domain are also closely

related. Generally, an edge texture block is more sparse than

a smooth block. We propose a classification method in the

measurement domain using covariance matrixes to classify

the image blocks in the training set. Different types of dictio-

naries are trained using different kinds of image blocks. The

overall block diagram of the dictionary classification method

based on the measurement domain is shown in Fig. 1.

We select the brain tissue MRI image as sample for the

experiment to show the performance of classifying image

blocks in the measurements. The images are divided into

25900 VOLUME 7, 2019
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FIGURE 1. Classified dictionary training based on the measurement domain.

FIGURE 2. Block classification result of a brain MRI image.

8 × 8 blocks using the Gaussian matrix as the measurement

matrix. Here, we use T1 = 3 × 106 and T2 = 3 × 107. The

result is shown in Fig. 2.

The experimental result shows that the proposed classi-

fication method in this paper can better classify the image

blocks into smooth blocks, texture blocks, and edge blocks.

The sampling rate determines the amount of data to be sorted

and processed. The lower the sampling rate, the fewer data

there are to calculate. However, when the sampling rate

is extraordinarily low, the measured value vector will be

reduced accordingly. This process fails to contain all informa-

tion of the original image, which leads to a large deviation in

the classification results. The experimental experience value

shows that if the sampling rate is not less than 0.4, better

results can be guaranteed.

B. NONLOCAL SIMILARITY OF AN IMAGE

Natural images should preferably be rich in content and

have certain repeatability in structural features. The repetitive

information of an image has been widely used in image

recovery, image denoising, and other issues. The fundamental

principle of a nonlocal algorithm is to give different weight

coefficients to the similar points of the current pixel using

their linear combination to represent the current pixel. There-

fore, the internal structure of the pixels can be maintained.

Of course, the value of the coefficients dramatically depends

on the similarity of the two pixels. The local phase theory

holds that the similarity points of pixels exist in their adjacent

local regions and that the neighborhood points have a high

degree of approximation with the current point. However,

the nonlocal similarity theory considers the repeatability of

the image structure and holds that two pixels may have a

higher degree of approximation even in the case of a longer

spatial distance. Inspired by the nonlocal features of the

image, this paper applies it to the SR algorithm to improve

the quality of the HR image reconstruction.

Suppose that an image I = {I (i, j)}|(i, j ∈ �) has definition

in � ⊂ N 2, we use the linear combination of other similar

pixel points with different weight coefficients to represent the

current pixel (i0, j0); its weighting value is:

NL(I )(i0, j0) =
∑

(i,j)∈I
w(i, j)I (i, j)

where the value of w(i, j)(i0,j0) is determined by the approx-

imation degree of (i, j) and (i0, j0), which obeys 0 ≤
w(i, j) ≤ 1 and 6w(i, j) = 1. Taking Fig. 3 as an example,

q1 is similar to p in terms of gray value, whereas q2 is

significantly different from p. Therefore, the value of w(q1)

is far greater than that of w(q1).

We define the pixel-centered window as the subset of �:

N = {Ni,j}(i,j)∈�. We define the similarity between two

central pixels by comparing the similarity of two window

regions. Thus, the weight coefficient is proportional to the
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FIGURE 3. The similarity of pixels within an image.

similarity of the two window areas and can be computed as:

w(i, j) =
1

Z (i, j)
exp(−

∥

∥z(Ni0,j0 ) − z(Ni,j)
∥

∥

2

2
/h2)

where Z (i, j) =
∑

i,j

exp(−
∥

∥z(Ni0,j0 ) − z(Ni,j)
∥

∥

2

2
/h2) is the

normalization factor, and h is the decline rate of function.

C. CS AND NONLOCAL SIMILARITY-BASED

RECONSTRUCTION

The previous work has shown that the image blocks may

frequently appear to be more similar in the interior of the

image than in the exterior training database [43].

Compared with the learning of the exterior library, more

useful information can be obtained from the relevant infor-

mation extracted from the interior of the image. However, for

some image blocks, the information learned by themselves

is limited and is not sufficient to reconstruct high-quality

HR image blocks. Therefore, it is also necessary to obtain

prior information through external learning to guide the cur-

rent image block reconstruction. In this paper, we combine

the nonlocal self-similar information of the image with the

external dictionary and propose an SR method based on CS

and self-similarity.

There are many similar blocks in the image and among

different scales. A larger search area yields more similar

blocks. To obtain more information contained within a single

image, a tentative nonlocal search strategy is proposed in this

paper. The adjacent regions of the current image block are

helically squared matching to find similar blocks; for remote

blocks, variable step-size searching is used according to the

effect of similar blocks that have been found. This approach

which may fully mine the similar information in the image

and can be quickly completed.

The reconstruction process in this paper is shown in Fig. 4.

For any image block y of an input LR image, a dictionary pair

(Dh,Dl) of the corresponding category is selected according

to its variance. All of its similar blocks S = {y1, y2, ..., yn} are
found in the whole image. We add the self-similarity as the

constraint, which requires coefficient α to be of high sparsity,

and the HR image block represented by it has high similarity

with its similar block S. The joint solution process using s and

(Dh,Dl) can be expressed as:

min
α,αi

i=1,2,..n

‖Fy− FDlα‖22 +
∑

yi∈S

∥

∥

∥
Fyi − FDlα

i
∥

∥

∥

2

2

+ λ(‖α‖1 +
n
∑

i=1

∥

∥

∥
αi
∥

∥

∥

1
) +

n
∑

i=1

γi

∥

∥

∥
Dhα − Dhα

i
∥

∥

∥

2

2
(14)

where α is the sparsity degree of current image block y, and

αi is the representation coefficient of yi on Dl . The first two

items in the equation are used to guarantee the fidelity of the

input LR image blocks, the twomiddle l1 regularization items

guarantee the sparsity of representation of the LR blocks

on Dl , and the last item ensures the degree of approximation

between the recovered HR image block and the similar block.

The degree of approximation is controlled by γi:

γi =
1

Z
exp{−

∥

∥y− yi
∥

∥

2

2

h2
} (15)

where Z is the normalization parameter.

The second, fourth and fifth items in Equation 14 repre-

sent the nonlocal similarity information of the image blocks.

We obtain coefficient α by solving Equation 14. Then, the

HR image block can be obtained by

x = Dhα (16)

By processing all LR blocks according to these steps,

we recover the HR image X . Then, the IBP algorithm is used

tomore consistently guideX to adjust along the directionwith

the image degradation model so that the final reconstructed

HR image is consistent with the input LR image based on the

image degradation model.

IV. EXPERIMENTAL RESULTS

The experiments are performed on both synthetic and real

brain MRI images with the magnification factors of 2 and 4.

We compare the results with the existing work [7], [10]. Their

methods are denoted as Bicubic, and BSRCNN, respectively,

for convenience.

We adopt the synthetic brain MRI images selected from

Brainweb dataset [44],1 MRT dataset,2 and the real MRI data

from MIDAS dataset3 which acquired with a 3T GE scanner

at Brigham and Women’s Hospital in Boston, MA and con-

tains 10 normal and 10 schizophrenic patients.

A. EVALUATION CRITERION

Generally, the performance of the SR algorithm is evaluated

from the following two perspectives:

• Subjective evaluation. This method is mainly based on

the visual perception of the human eyes to evaluate the

quality of the image. Because individuals have different

perceptions of the same image, this evaluation method

1http://brainweb.bic.mni.mcgill.ca/brainweb/
2https://www.mr-tip.com/
3http://insight-journal.org/midas/collection/view/190
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FIGURE 4. Diagram of the reconstruction process in the proposed method.

TABLE 1. PSNR and SSIM of the recovered HR images with upscaling
factor 2.

is more influenced by subjective factors, which leads to

the existence of individual differences.

• Objective evaluation. Since the LR test image in the

SR algorithm is usually simulated by the degrada-

tion model of the HR image, there exists an original

HR image, which is compared with the reconstructed

image. The objective evaluation method is to determine

the similarity between the recovered image and the orig-

inal image using a calculation method. In this paper,

two important criteria to evaluate the objective quality

of SRmethods are the PSNR (peak signal-to-noise ratio)

and SSIM (structural similarity image measurement).

MSE =
∑M

i=1

∑N
j=1 (Xij − Yij)

2

M × N
(17)

PSNR = 10log10
255 × 255

MSE
(18)

SSIM (X ,Y ) =
(2µXµY + C1)(2δXY + C2)

(µ2
X + µ2

Y + C1)
(

δ2X + δ2Y + C2

) (19)

where X is the original HR image, Y is the recov-

ered HR image, and M and N represent the size of the

image.

TABLE 2. PSNR and SSIM of the recovered HR images with upscaling
factor 3.

TABLE 3. PSNR and SSIM of the recovered HR images with upscaling
factor 4.

B. VISUAL RESULTS

Because the human eye system is sensitive to the luminance

component, we only focus on the luminance Y channel in

the SR reconstruction of color images. The values of the

chroma Cb and Rc channels are directly obtained using Bicu-

bic upsampling. In the experiments, the size of the image

block is 5 × 5, the overlap part is 4 pixels, and the number

of dictionary atoms is 512. The HR images in the test sets

are downsampled by using the fuzzy downsampling matrix,

and the corresponding LR images are generated by simulating

the image degradation model. We use the proposed method

VOLUME 7, 2019 25903



Y. Li et al.: SR of Brain MRI Images Using Overcomplete Dictionaries and Nonlocal Similarity

FIGURE 5. Comparison of visual results with upscaling factor 2 (brain MRI image from Brainweb).

FIGURE 6. Comparison of visual results with upscaling factor 2 (brain MRI image from MRT).

FIGURE 7. Comparison of visual results with upscaling factor 4 (brain MRI image from Brainweb).

and other reference algorithms to perform 2× and 4× SR

reconstructions, respectively.

The visual results obtained using Bicubic, BSRCNN and

the presented method are illustrated in Figs. 5, 6, 7, and 8.

Therefore, we conclude that the reconstructed images

using our proposed method are rich in texture areas,

have more natural outlines, and have no apparent zigzag

effect.

C. OBJECTIVE EVALUATION

In terms of objective quality, our proposal is compared with

Bicubic [7], SROD [30] and BSRCNN [10]. The performance

is measured regarding PSNR and SSIM. We average the

results of ten test images as the PSNR/SSIM value shown

in the following tables. The results in Tabs. 1, 2 and 3 show

that the proposed method has better objective quality than

other algorithms. Both PSNR and SSIM are improved: the

PSNR value is increased by approximately 0.9-5.9dB, and

the SSIM value is increased by approximately 0.02-0.14.

Compared with the result using the magnification factor

of 2, the improvement of 4 times magnification is more

remarkable. Thus, when the magnification factor increases,

we can obtain more significant improvement in HR image

quality.
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FIGURE 8. Comparison of visual results with upscaling factor 4 (brain MRI image from MIDAS).

V. CONCLUSION

In this paper, we have extended the previous work by

paying attention to the nonlocal self-similarity and the

block classification of an LR image. We propose an image

SR algorithm based on compressed sensing and self-

similarity constraint. This proposed method is applied to

solve the brain MRI super-resolution problem, and the sat-

isfactory results may be acquired. Because the difference of

image blocks are not considered when training dictionaries,

a dictionary classification method based on the measurement

domain is proposed in the dictionary training part. Specifi-

cally, we use the linear relationship between images in the

measurement domain and frequency domain to classify the

image blocks into smooth, texture and edge feature blocks

in the measurement domain. The dictionaries for different

blocks are trained using different categories. Consequently,

an LR image block of interest may be reconstructed using

the most appropriate dictionary. If one merely learns the

prior knowledge from the external image database, it tends

to generate untrue details of the reconstructed HR image.

In our proposed method, we use the nonlocal similarity of

the image to tentatively search for similar blocks in the whole

image and present a joint reconstruction method based on the

classified dictionaries and similarity constraints. The spar-

sity and self-similarity of the image blocks are taken as the

constraints.

In summary, a dictionary classification method based on

the measurement domain is presented. Then, the correspond-

ing dictionaries are trained using the classified image blocks.

Equally important, in the reconstruction part, we use the

CS reconstruction method to recover the HR image, consid-

ering both nonlocal similarity and sparsity of an image as the

constraints. This method visually and quantitatively performs

better than some existing methods. To verify the performance

of the proposedmethod, many experiments have been accom-

plished on both the synthetic and real brain MRI images.

The experimental results indicate that the proposal enhances

the quality of the recovered HR brain MRI image, and

our method results in visually and quantitatively superior

performance.
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