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Super Resolution of Light Field Images using

Linear Subspace Projection of Patch-Volumes
Reuben A. Farrugia, Member, IEEE, Christian Galea, Student Member, IEEE and Christine

Guillemot, Fellow, IEEE,

Abstract—Light field imaging has emerged as a very promising
technology in the field of computational photography. Cameras
are becoming commercially available for capturing real-world
light fields. However, capturing high spatial resolution light fields
remains technologically challenging, and the images rendered
from real light fields have today a significantly lower spatial reso-
lution compared to traditional 2D cameras. This paper describes
an example-based super-resolution algorithm for light fields,
which allows the increase of the spatial resolution of the different
views in a consistent manner across all sub-aperture images of
the light field. The algorithm learns linear projections between
subspaces of reduced dimension in which reside patch-volumes
extracted from the light field. The method is extended to cope
with angular super-resolution, where 2D patches of intermediate
sub-aperture images are approximated from neighbouring sub-
aperture images using multivariate ridge regression. Experimen-
tal results show significant quality improvement when compared
to state-of-the-art single-image super-resolution methods applied
on each view separately, as well as when compared to a recent
light field super-resolution techniques based on deep learning.

Index Terms—Light-fields, Super-resolution, Learning, Dimen-
sionality reduction.

I. INTRODUCTION

Light fields are densely sampled high-dimensional signals

containing information about the light rays interacting with the

scene. Compared to classical 2D images, light fields capture

the intensity values along each ray and not only the sum

of intensities of rays reaching each image point. This rich

description of a scene enables advanced creation of images

with a number of functionalities such as refocusing, extended

depth of field, different view point rendering and depth re-

construction which can be very useful for image/video post-

production editing and cinematic virtual reality applications

[1], [2]. Many light fields acquisition devices have been

recently designed, going from arrays of cameras capturing the

scene from slightly different viewpoints [2], to single cameras

mounted on moving gantries and plenoptic cameras.

Plenoptic cameras, now commercially available, use an

array of micro-lenses placed between the sensor and the

main lens, to acquire both spatial and angular information

of light rays from a single capture [1]. However, since the
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sensor resolution is limited, it is difficult to have both a

dense angular and spatial light field sampling. The angular

sampling is related to the number of sensor pixels located

behind each microlens, while the spatial sampling is related

to the number of microlenses. This trade-off between angular

and spatial resolution leads to a significantly lower spatial

resolution compared to traditional 2D cameras [1].

Research effort has already been dedicated to this angular

and spatial resolution trade-off in light field imaging. A

first category of approaches consists in super-resolving the

rendered images, i.e. enhancing spatial super-resolution, as in

[3] where the authors simultaneously estimate a super-resolved

depth map and the all-in-focus image. In the same vein, a light

field reconstruction approach is proposed in [4], where the

de-multiplexed sub-aperture images are first interpolated with

barycentric interpolation to adapt to the hexagonal layout of

the micro-lenses, and then refined using pixels of neighboring

views using ray interpolation. The rendered image is further

enhanced using the dictionary-based super-resolution method

proposed in [5] for 2D images.

A second category of methods directly super-resolve the

light field to enhance both the spatial and angular resolu-

tion. Based on an image formation model of the plenoptic

camera, the authors in [6] cast the high-resolution (HR) light

field estimation in a Bayesian framework assuming a depth-

dependent blurring kernel. A method based on a variational

framework is proposed in [7] to synthesize super-resolved

novel views with the help of disparity information estimated

on the epipolar plane images. A patch-based technique is

proposed in [8] to enhance the spatial resolution of light fields.

The high resolution 4D-patches are estimated using a linear

minimum mean square error (LMMSE) estimator, assuming

a disparity-dependent Gaussian Mixture Model (GMM) for

the patch structure. More recently, the authors in [9] adopt

a deep convolutional neural network (DCNN) to perform

both spatial and angular super-resolution. This method first

employs a spatial DCNN similar to [10] followed by an

angular DCNN which synthesizes intermediate views. A cas-

cade of two DCNNs is used in [11] which exploits disparity

information to synthesize intermediate sub-aperture images. A

sparse representation approach that can be extended for light-

field super-resolution was presented in [12].

In this paper, we propose an example-based spatial super-

resolution technique, which, to maintain consistency across

all sub-aperture images of the light field, operates on 3D

stacks (called patch-volumes) of 2D-patches, extracted from

the different sub-aperture images. The patches forming the 3D
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stack are either co-located patches or best matches across sub-

aperture images. A dictionary of examples is first constructed

by extracting, from a training set of high- and low- resolution

light fields, pairs of high- and low-resolution patch-volumes.

These patch-volumes are of very high dimension (q × q × n),
where n is the number of sub-aperture images and q × q is

the size of each 2D-patch. Nevertheless, they contain a lot

of redundant information, hence actually lie on subspaces of

lower dimension. The low- and high-resolution patch-volumes

of each pair can therefore be projected on their respective low-

and high-resolution subspaces. In the sequel, the projection is

performed using Principal Component Analysis (PCA). The

dictionary of pairs of projected patch-volumes (the examples)

map locally the relation between the high-resolution patch-

volumes and their low-resolution (LR) counterparts. A linear

mapping function is then learned, using Multivariate Ridge

Regression (RR), between the subspaces of the low- and high-

resolution patch-volumes. Each overlapping patch-volume of

the low-resolution light field can then be super-resolved by a

straight application of the learned mapping function.

The above method, which will be referred to as PCA+RR in

the sequel, assumes that the 2D collocated patches extracted

from all sub-aperture images to form a given patch-volume, are

well aligned. This may not be the case when large disparities

exist across sub-aperture images, depending on the depth of the

scene and of the capturing device. For light fields exhibiting

large disparities, the above method is further improved by

using block matching (BM) to form the patch-volumes with the

best-matching patches across all sub-aperture images, instead

of simply taking collocated patches. An iterative procedure

is proposed where a different sub-aperture image is chosen

as anchor at each iteration to form the patch-volumes. This

method will be referred to as BM+PCA+RR.

By exploiting the light field structure, where sub-aperture

images represent different viewpoints from the same scene,

it becomes evident that a global interpolation function to

cater for all views will be sub-optimal. The DCNN scheme

presented in [9] models the angular super-resolution function

based on the available neighbouring sub-aperture images inde-

pendently from the viewpoint being approximated. Instead, we

model the angular super-resolution problem using multi-linear

models, i.e. a linear model for every missing sub-aperture

image to be synthesized. This is done by exploiting the local

neighbouring sub-aperture image and also the angular location

of the sub-aperture image being approximated.

Experimental results with both synthetic light fields (from

the HCI dataset) and real light fields (from the Stanford and the

INRIA datasets) show that the proposed method outperforms

state-of-the-art single-image super-resolution methods [13],

[14], [15] applied on each sub-aperture image separately,

and significantly outperfoms prior light field super-resolution

algorithms for both spatial [8], [9] and angular [9], [11]

super-resolution. Average PSNR gains of 3.7dB, 4.2dB and

2.1dB on the HCI, Stanford and INRIA datasets respectively

were obtained for spatial super-resolution using BM+PCA+RR

compared to the recent DCNN scheme [9] which obtained the

second best results in our experiments. Moreover, subjective

results clearly show that the proposed angular super-resolution

method provides sharper synthesized intermediate sub-aperture

images when compared to those obtained using the DCNN

based schemes [9], [11].

The rest of the paper is organized as follows. After introduc-

ing the notations in Section II, we describe the different steps

of the proposed algorithm in Section III. Section IV discusses

the simulation results with different types of light fields and

provide the final concluding remarks in Section VI.

II. LIGHT FIELDS NOTATION

We consider here the simplified 4D representation of light

fields called 4D light field in [16] and lumigraph in [17],

describing the radiance along rays by a function L(x, y, s, t)
where the pairs (x, y) and (s, t) respectively represent spatial

and angular coordinates respectively. The light field can be

seen as capturing an array of viewpoints (called sub-aperture

images) of the scene with varying angular coordinates (s, t).
The different views will be denoted here by Vs,t ∈ R

X,Y ,

where X and Y represent the vertical and horizontal dimen-

sion of each sub-aperture image. Each sub-aperture image

corresponds to a fixed pair of (s, t).
In the following, the notation Vs,t for the different views (or

sub-aperture images) will be simplified as Vi with a bijection

between (s, t) and i. The complete light field can hence be

represented by a matrix V ∈ R
m,n:

V = [vec(V1) | vec(V2) | · · · | vec(Vn)] (1)

with vec(Vi) being the vectorized representation of the i−th

sub-aperture image, m represents the number of pixels in each

view (m = X × Y ) and n is the number of views in the light

field.

We define here a patch-volume pj ∈ R
q,q,n to be a

volumetric stack of 2D patches of dimension q× q from each

of the n sub-aperture images, where j stands for the patch

index. Let (xcj , ycj ) be the spatial coordinates of the center

pixel of the j−th patch. The patch-volume pj is therefore

made of a stack of 2D-patches extracted from each sub-

aperture image, each 2D-patch including all pixels within the

range
(

[xcj −
q
2
, xcj +

q
2
], [ycj −

q
2
, ycj +

q
2
]
)

. Without loss of

generality, the patch-volume will be assumed to be centered

(by mean removal) in the sequel.

III. PROPOSED METHOD

Let VL be the low-resolution input light field matrix and

VH its high-resolution version which we try to estimate. Given

the observed low-resolution light field VL, this problem can

be formulated in a Banach space as

VL = ΘVH + η (2)

where η is an additive noise matrix and Θ is a bounded

operator composed of a blurring kernel B and a downsampling

operator by a factor α applied on each sub-aperture image.

There are many possible high-resolution light fields VH

which can produce the input low-resolution light field VL via

the acquisition model. Hence, solving this ill-posed inverse

problem requires introducing some priors on VH , which can

be a statistical prior such as a GMM model [8], or priors

learned from training data as in [9] and in our proposed

method.
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⊺

L

Φ
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Ψ
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j p̃H

j

(a) Training Phase (b) Testing Phase

Fig. 1. Schematic diagram of the proposed spatial Light Field Super-Resolution method where (a) shows how the linear projections are learned from a set
of training patch-volumes and (b) how the learned projections are used to restore the Light Field. The black arrows in (b) show the actual projection of
the low-quality patch volume pL

j onto the low-quality sub-space using E
⊺

L
, followed by the projection from the low- to high-quality subspaces using the

projection Φ and then the projection from the high-quality subspace to reconstruct the high-quality patch volume p̃H
j . Note that the projection Ψ is equal to

the product of these linear projection matrices as defined in equation (8).

A. Method overview

Fig. 1 depicts the block diagram of the proposed spatial light

field super-resolution algorithm, which consists of a Training

Phase (Fig. 1 (a)) used to learn the linear projections and a

Testing Phase (Fig. 1 (b)) where the linear projections are

used to restore the light field. The Training phase depicted

in Fig. 1 (a) is explained in more detail in sub-sections III-B

and III-C. This sub-section will explain how the learned linear

projections are used to restore a low-quality light field.

During Testing phase (see Fig. 1 (b)), each sub-aperture

image of the unseen1 low-quality light field VL is first bi-

cubic interpolated, so that both VL and VH have the same

dimensions, and then divided into a set of overlapping patches

of size q × q with an overlap of γ which, without loss of

generality, was set to
⌊

q
3

⌋

. While the authors of the previous

patch-based approach for super-resolving light fields [8] use

a LMMSE approach with a GMM prior to estimate the 4D

high-resolution patches, we instead propose an example-based

method operating on 3D stacks of 2D-patches extracted from

the different sub-aperture images. The stack of 2D-patches is

called a patch-volume which is of dimension z = q × q × n.

To form the stack of 2D-patches, in the sequel, we consider

two cases: i)-stacking the 2D-patches which are at the same

spatial location in all sub-aperture images, and ii)-stacking best

matching 2D-patches across all sub-aperture images.

Example-based super-resolution methods for 2D images

often rely on the assumption that the low-resolution (and

respectively high-resolution 2D patches) lie on (or close to) a

1Patches from the low-quality light field are not included in the coupled
dictionaries L and H.

manifold. Neighbour embedding techniques, as in [18], [19],

[20], were proposed for single image super-resolution. They

aim at capturing the local geometry of a manifold on which

the low-resolution patches are supposed to lay, by computing

linear combination weights to approximate a given 2D patch

from its neighbours on the manifold. The same weights are

then used to reconstruct the high-resolution 2D patch. More

recently, the authors in [21], [22] partition the dictionaries

into multiple clusters and use a local linear mapping for each

cluster to compute the weights. All these methods assume that

both low- and high-resolution patches lie on two manifolds

having similar geometrical structures, hence on which the

patch neighborhood is preserved. In order to enforce the

assumption of manifold similarity between the two distinct

spaces represented by the LR and HR patches, the authors

in [23] compute the weights in a subspace common to the

LR and HR patches, assuming the existence of a common

low-dimensional space that preserves some meaningful patch

characteristics. However, the authors in [24] have shown that

this assumption does not hold well because the one-to-many

mapping from low- and high-resolution manifolds distort the

structure of the low-resolution manifold, which negatively

affects the neighbour preservation.

Here, we consider a different patch reconstruction approach,

similar to the work in [15], [25], [26] which consists in

learning a mapping function between the low- and high-

resolution sub-spaces. Nevertheless, these existing methods

are designed for single-image super-resolution and do not

exploit the light field structure to restore the light field.

Moreover, learning the mapping relation for patch-volumes is

not a trivial task since each patch-volume has a considerably
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large dimension z which can be of the order of thousands

of pixels. As the sub-aperture images correspond to different

representations of the same scene captured from different

viewpoints, these patch-volumes contain a lot of redundant

information that can be exploited to reduce the dimension

of the patch-volumes and therefore making the learning of

the mapping between low- and high-resolution patch-volumes

easier. Dimensionality reduction techniques can be used to

project the low- and high- resolution patch-volumes onto their

corresponding low-dimensional subspaces, and the learning of

the mapping function can be performed between projected

training patch-volumes.

In summary, in order to learn this mapping function, we

first construct coupled dictionaries L and H of dimension

R
z,M which respectively contain low- and high-resolution

patch-volumes to be used for training. These dictionaries

are not learned and are constructed by choosing M random

patch-volumes from a set of light fields captured using the

same camera model. The low-resolution patch-volumes are

first projected onto the low-resolution subspace using the

projection matrix EL ∈ R
z,dl (dl ≪ z is the dimension of the

low-resolution subspace), and then projected onto the high-

resolution subspace using a projection matrix Φ ∈ R
dh,dl

(dh ≪ z is the dimension of the high-quality subspace), and

then projected back to the pixel domain using the projection

matrix EH ∈ R
z,dh . In the next sections we detail the subspace

projection, the mapping function learning steps and how this

scheme can be extended to perform angular super-resolution

B. Projection on patch-volume subspaces

The vectorized input low-resolution patch-volume pL
j and

the vectorized high-resolution patch-volume pH
j have a di-

mension z of the order of thousands of pixels. In order to

reduce the dimension of the patch-volumes, PCA is adopted

to compute the projection matrices for both low- and high-

resolution patch-volume subspaces. The low-resolution patch-

volume dictionary L and the high-resolution patch-volume dic-

tionary H are used to compute respectively the low- and high-

resolution patch-volume subspaces. The first step involves the

computation of the respective covariance matrices

CL = LL⊺ CH = HH⊺ (3)

The low-resolution patch-volume subspace projection matrix

EL and the corresponding high-resolution patch-volume sub-

space projection matrix EH are respectively derived using the

eigen-decomposition of the corresponding covariance matrices

CL and CH . Both low- and high-resolution patch-volumes

can be projected on their corresponding subspaces whose

dimension is significantly lower than the size z of the patch-

volume while still keeping the most relevant information. One

appealing property of these projections computed using PCA

is that both projection matrices EL and EH are orthogonal

and therefore one can project a patch-volume to and from

the subspace without loosing any information i.e. ELE
⊺

L =
E

⊺

LEL = I and EHE
⊺

H = E
⊺

HEH = I, where I is the identity

matrix. Nevertheless, we use PCA to reduce the dimension

of the patch-volumes and therefore we only use the first dL

column vectors from EL, and the first dH column vectors from

EH based on the largest eigen-values. Reducing the number

of column vectors from the projection matrices has the benefit

of reducing the dimension of the patch-volume sub-spaces at

the expense of loosing some information which may not be

significant. Nevertheless, reducing the dimensionality of the

problem will facilitate the learning of the mapping function

between the low- and high-resolution patch-volume subspaces.

C. Linear mapping between LR and HR subspaces

Patch-volume based super-resolution can be viewed as a

regression problem i.e. finding a mapping function Ψ ∈ R
z,z

from the low-resolution patch-volume to the target high-

resolution patch-volume. However, given that the dimension

of the patch-volume z is generally very large, the regression

learning process needs a huge amount of data (M ≫ z) in

order to learn a suitable regression model. For example, the

authors in [9] employed between 1−2 million patches to train

their DCNN which takes a huge amount of time to train.

Instead, we try to learn the projection between the low- and

high-resolution patch-volume subspaces. The major advantage

of this approach is that the low- and high-resolution patch-

volume subspaces have a dimension of dL and dH respectively,

where both of them are significantly lower than z and therefore

a smaller number of training patch-volume samples are needed.

We therefore use the low- and high-resolution patch-

volumes in the coupled dictionaries, L and H, which are

projected respectively onto the low- and high-resolution patch-

volume subspaces using

Ls = E
⊺

LL Hs = E
⊺

HH (4)

yielding the projected coupled dictionaries Ls and Hs (see

Fig. 1 (a)). The mapping function is then learned by minimiz-

ing the empirical fitting error between all the pairs of examples

on the two subspaces. We consider a linear mapping function,

i.e. we search for the projection matrix Φ which minimizes

the following l2− norm regularized least squares problem

Φ = arg minΦ||Hs −ΦLs||
2

2
+ λ||Φ||2

2
(5)

where λ is a regularization parameter which was set to 10−6

in all our experiments. The regularization term is a Tikhonov

regularization added to prevent singular values and provide a

more stable solution than ordinary least squares. The problem

is solved using multivariate ridge regression, and the solution

can be written in closed form as

Φ = HsL
⊺

s (LsL
⊺

s + λI)
−1

(6)

where I is the identity matrix. The high-resolution patch-

volume can therefore be approximated using

p̃H
j = ΨpL

j (7)

where Ψ is a projection matrix that can be pre-computed using

Ψ = EHΦE
⊺

L (8)
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The restored patch-volume p̃H
j is de-multiplexed to restore

the collocated patches within each sub-aperture image simul-

taneously. Overlapping regions within the patch-volume are

averaged to minimize blocking artefacts.

The complexity to restore a patch-volume is of the or-

der O(z2). In terms of execution, the proposed PCA+RR

takes 158-seconds to restore the INRIA light fields while

the SRCNN+LF [9] method 2 and the method of Mitra [8]

are computed in 96- and 509-seconds respectively. The other

methods take more than 15-minutes to restore a single INRIA

light field.

D. Patch-Volume Alignment

The PCA+RR method discussed above assumes that the

stack of 2D collocated patches from all sub-aperture images,

which are part of the same patch-volume, are well aligned.

However, this may not always be the case, especially when

filmed using arrays of cameras capturing the scene from

different viewpoints. In such systems, large disparities will

exist across collocated 2D patches forming the patch-volume.

To characterize this problem we derive a variance map Σ

which is computed as

Σ =
1

n− 1

n
∑

i=1

(

V L
i − µi

)2

(9)

where

µi =
1

n

n
∑

i=1

V L
i (10)

The variance map Σ measures the variance across the n sub-

aperture images. Fig. 2 shows an analysis conducted on the

Buddha synthetic light field from the HCI dataset. It can be

seen that the proposed PCA+RR method performs well when

the pixel-variance is sufficiently low (first two rows in Fig. 2).

On the other hand, the reconstructed image contains severe

distortions in regions having large pixel-variance (bottom two

rows in Fig. 2). Therefore, the objective here is to develop a

method which reduces the variance within each patch-volume.

In this work, we proposed an iterative procedure where

a different sub-aperture image is chosen as anchor at each

iteration. The anchor sub-aperture image is used to extract

overlapping 2D anchor patches. The block matching algorithm

(BMA) is then used to search within a search window for the

2D patch from the other sub-aperture images which minimizes

the mean square error. Therefore, the BMA method will derive

those patches which are best aligned and therefore is expected

to reduce the variance within the patch-volume.

At each iteration, all pixels within the anchor sub-aperture

image are restored. However, the remaining sub-aperture im-

ages will contain pixels which have not been super-resolved

(not considered when forming the patch-volumes by the block

matching search). The sub-aperture image with the largest

number of unprocessed pixels (holes) is selected as the new

anchor sub-aperture image for the next iteration. This process

2The SRCNN+LF method was implemented using Caffe.

0 1

(a) (b) (c) (d)

Fig. 2. Analysing different sub-aperture images from the center view of the
Buddha light field (a) low-quality sub-aperture image, (b) variance map Σ, and
images super-resolved with the proposed (c) PCA+RR and (d) BM+PCA+RR
methods (see Algorithm 1)

terminates once all pixels within the light field have been

processed. The BM+PCA+RR algorithm is summarized in al-

gorithm 1 and a demo will be made available upon publication.

In order to characterize the variance within each patch-

volume, we define the patch-volume variance σj which is

computed using

σj =
1

q2

∑

j

Σj (11)

which is the average variance within the j−th q × q patch

from Σ. Fig. 3 shows the distribution of σj with and without

block matching for the Buddha and Still Life light fields. It

can be immediately noticed that block matching manages to

significantly reduce the patch-volume variance. It can also be

seen from the last two columns of Fig. 2 that reducing the

patch-volume variance significantly improves the quality of

the super-resolved light field, especially in regions with high

disparity.

E. Angular Super-Resolution

A simple way to produce a novel view between two neigh-

bouring sub-aperture images is to apply bilinear interpolation.

However, such approach loses high frequency information and

produces sub-aperture images that are blurred. On the other

hand, the authors in [7] assume that accurate depth maps are

used as a geometric guidance to perform angular SR. However,

as shown in [9], this method fails in practice because obtaining

reliable depth-maps from a light field is prone to errors which

significantly reduces its performance.

The DCNN based scheme in [9] exploits the local neigh-

bourhood, but tries to approximate a global model for all
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Fig. 3. Probability distribution of the patch-volume variance σj for the (a) Buddha and (b) Stilllife light fields.

Algorithm 1: The BM+PCA+RR Light field super-

resolution algorithm

1 Ṽ
H

= function bm pca rr LFSR (V L,Ψ);
Initialize: Set the center view as the anchor sub-aperture

image i.e. iA = ⌈n
2
⌉, where n is the number

of sub-aperture images

2 while not all pixels of the light field are reconstructed do

3 for j = 1 : P do

4 Choose the j−th 2D patch, denoted by pL
iA,j ,

from the anchor sub-aperture image and put it

as the iA−th patch in the patch-volume pL
j .

5 for i = 1 : N do

6 if i 6= iA then

7 Use the block-matching algorithm to find

the patch within the i−th sub-aperture

image which is closest to pL
iA,j in terms

of mean square error and put it as the

i−th patch in the patch-volume pL
j .

8 end

9 end

10 Project the low-quality patch-volume pL
j using (7)

to synthesize the high-quality patch-volume p̃H
j .

11 Demultiplex the reconstructed patch-volumes to

reconstruct the high quality light field, where

overlapping pixels are averaged.
12 end

13 Compute the number of holes (pixels which have not

been selected by BMA) in each sub-aperture image

and set the image with the largest number of holes

as the new anchor sub-aperture image.
14 end

angular viewpoints. However, deriving the angular super-

resolution of a light field using one global function generally

provides poor performance. This can be explained by the

fact that each sub-aperture image represents the same scene

from different viewpoints, and therefore a global interpolation

function suitable for all different angular displacements will

provide sub-optimal performance. Instead, we employ a new

method where a linear interpolation function for each missing

sub-aperture image is learned as shown in Fig. 4. Similar to

Fig. 4. Schematic diagram of the proposed Angular Light Field Super-
Resolution method.The green boxes represent case 1), red boxes represent case
2) and blue boxes represent case 3). Note that the green, red and blue boxes
are empty during testing phase, but these sub-aperture images are available
in H during training

the work of Yoon et. al. [9], our approach is a data driven

supervised learning method. However, in our case we use

multivariate ridge regression to learn the interpolation function

for each unknown view-point (s, t). Moreover, while one

interpolation function is learned for every missing sub-aperture

image, the proposed angular super-resolution algorithm is still

a learning patch-based strategy. We here define three cases to

learn a mapping function:

1) The case where sub-aperture images at locations (s −
1, t) and (s+ 1, t) are available. In this case we extract

the 2D patches at locations (s−1, t), (s, t) and (s+1, t)
from the patch-volumes contained in the high-quality

dictionary H. All the 2D patches at location (s − 1, t)
and (s + 1, t) are concatenated to form the dictionary

of the known part Hk
i while the dictionary of unknown

part Hu
i is formed using all 2D patches at location (s, t).

2) The case where sub-aperture images at locations (s, t−
1) and (s, t + 1) are available is very similar to the

above case. This time the 2D patches from H at location

(s, t − 1) and (s, t + 1) are concatenated to form the

dictionary of known part Hk
i while the 2D patches at

location (s, t) are used to construct the dictionary of

unknown part Hu
i .

3) The case where the neighbouring horizontal and vertical

sub-aperture images are missing. In this case, the 2D

patches from H at locations (s − 1, t − 1), (s − 1, t +
1),(s + 1, t − 1) and (s + 1, t + 1) are concatenated to

construct the dictionary of the known part Hk
i while the
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2D patches at location (s, t) are used to construct the

dictionary of unknown part Hu
i .

The projection matrix βi is computed for every unknown

sub-aperture image i, and is used to estimate those sub-

aperture images which need to be interpolated. Therefore,

for a 5 × 5 matrix of sub-aperture images, we need 56

βi projection matrices (one for every missing sub-aperture

image) to approximate the missing sub-aperture images to

increase the angular resolution to 9 × 9. Therefore, unlike

the DCNN scheme, our method models the angular super-

resolution problem using multi-linear models, one for every

missing view. The projection matrix is approximated using

multivariate ridge regression using its closed form solution

βi = Hu
i H

k
i

⊺

(Hu
i H

u
i
⊺ + λI)

−1
(12)

where λ is a regularization parameter set to 10−6, and βi is

the interpolation matrix for the i−th unknown sub-aperture

image. The projection matrix for each unknown sub-aperture

image βi can be pre-computed.

During the testing phase, the input light field is first up-

scaled in the angular dimension by inserting empty sub-

aperture images that need to be restored using the proposed

method. Therefore, each patch-volume pj contains a number

of empty 2D patches which need to be approximated. The

neighbourhood of the empty 2D patches pj(s, t) within the

patch-volume are used to determine which of the above

mentioned cases will be used to construct the vector Γj . In

case the horizontal neighbours are available, Γj is constructed

by concatenating the vectorized representations of the 2D

patches pj(s−1, t) and pj(s+1, t). Otherwise, if the vertical

neighbours are available, Γj is constructed by concatenating

the vectorized representations of the 2D patches pj(s, t − 1)
and pj(s, t+ 1). The last case is when neither of the vertical

and horizontal neighbours are available, in which case the

vectorized representation of pj(s− 1, t− 1), pj(s− 1, t+1),
pj(s+1, t−1) and pj(s+1, t+1) are concatenated to construct

Γj . The unknown patch is then approximated using

p̃j(s, t) = βiΓj (13)

In this work we only consider collocated patches since only

local neighbouring 2D patches are used, where the disparities

are expected to be relatively low.

IV. EXPERIMENTAL RESULTS

The experiments conducted in this paper use both synthetic

and real-world light fields from publicly available datasets.

Here we use the synthetic light fields of HCI3 for parameter

selection and also to get a better understanding of the perfor-

mance of the proposed method. It was also tested on two real-

world light fields captured using different technologies: i) the

Stanford dataset4 captured using a moving camera mounted

on a gantry, where the captured light fields generally have

larger disparities across sub-aperture images and ii) the INRIA

3HCI dataset: https://hci.iwr.uni-heidelberg.de/hci/softwares/light field
analysis

4Stanford dataset: http://lightfield.stanford.edu/

dataset5 which was captured using micro-lens technology (a

Lytro Illum camera) with lower disparities across sup-aperture

images. While the sub-aperture images of the Stanford data set

are available, the light fields from the INRIA database were

decoded using the method in [27] as mentioned in the website.

In all the experiments we considered a 9 × 9 array of

sub-aperture images from each dataset. For computational

purposes, the high resolution images of the synthetic HCI light

fields were downscaled to 384× 384 per sub-aperture image.

The Stanford light fields have different resolutions, but the

high resolution sub-aperture images were scaled such that the

lowest dimension was set to 400 pixels while maintaining the

original aspect ratio. On the other hand, the original light field

resolutions were used for the INRIA dataset i.e. 625 × 434.

In all the experiments involving spatial super-resolution, each

sub-aperture image was blurred using a Gaussian filter of size

7× 7 with standard deviation of 1.6 followed by downscaling

by a factor of α, where unless otherwise specified is set to

α = 2.

In every experiment we use a leave-one out methodology

to train the projection matrix Ψ for every dataset considered

i.e. if we take the Buddha light field from the HCI dataset

as an example, we extract 2000 patch-volumes from all the

other light fields of the same dataset except for the Buddha.

This was done to learn the mapping function Ψ for the

specific camera model, without of course biasing the results

by including patch-volumes from the light field under test.

The total number of patch-volumes varied depending on the

number of light fields considered for each dataset: i) 16K for

the HCI dataset ii) 22K for the Stanford dataset iii) 14K for

the INRIA dataset. While we observed that better performance

can be achieved using a larger set of training patch-volumes,

it did not significantly improve when using dictionaries larger

than the above mentioned sizes.

The performance of the proposed method was compared

to the single-image super-resolution schemes [13], [14], [15],

where these methods are applied on every sub-aperture image.

It was also compared against two light-field super-resolution

methods including the work of Mitra et. al. [8] and the

DCNN based scheme [9]. The angular super-resolution method

was also compared against the recent view synthesis method

published in [11]. In all the experiments we used the code

and pre-trained models provided by the authors or are publicly

available on-line.

A. Parameter Selection

The method presented in this paper has four parameters that

have to be tuned: i) the dimension of the low-resolution patch-

volume subspace dl, ii) the dimension of the high-resolution

patch-volume subspace dh, and iii) the patch size q and iv)

the number of patch-volumes. Fig. 5 shows the performance in

terms of PSNR using the PCA+RR method obtained by fixing

the patch size q and varying the dimension of the subspaces.

Similar plots were obtained using different light fields and

different patch sizes but due to space constraints could not be

5INRIA dataset: http://www.irisa.fr/temics/demos/lightField/CLIM/
DataSoftware.html
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Fig. 5. PSNR analysis computed by setting using different light fields from
the HCI dataset and different patch sizes.

included in this paper. It can be seen that for different patch

sizes and light fields the graphs seem to saturate and that good

performance is achieved when setting dl = dh = 500.

The optimal patch size q is derived using the PSNR analysis

illustrated in Fig. 6 (a) where we set dl = dh = 500 and use

nine light fields from the HCI dataset. It can be seen that the

performance starts increasing with increasing patch sizes and

it saturates (or starts degrading) at q > 10. Therefore setting

q = 10 seems to be an optimal parameter for the synthetic light

fields. Unless otherwise specified, we will use these parameters

for the following simulations. In order to assess the effect of

the number of training patch-volumes we super-resolve four

INRIA light fields with a magnification factor of 2. The results

in Fig. 6 (b) show that higher PSNR is achieved when using

more training patch-volumes. Nevertheless, the performance

does not significantly improve when using more than 14K

patch-volumes for training.
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Fig. 6. PSNR analysis as a function of (a) patch size and (b) number of
training patch-volumes for different light fields

B. Spatial Super-Resolution of Synthetic Light Fields

In this section we analyse the performance of the proposed

method using the synthetic light fields of the HCI dataset.

In these experiments we set the magnification factor α = 2
and compare our approach to state-of-the-art methods in the

area of single-image super-resolution [13], [14], [15] and light

field super-resolution [8], [9]. The results in Table I and Fig.

7 clearly show the superiority of the proposed method where

it achieves PSNR gains of up to 4dB over the second best

algorithm. It can be seen, especially from the images in Fig.

7, that single-image super-resolution schemes and bi-cubic

interpolation generally provide blurred sub-aperture images.

On the other hand, both the recent deep learning based scheme

and our proposed method generate images which are sharper,

with our proposed BM+PCA+RR providing the sharpest and

most accurate results. Unlike existing schemes, our proposed

method exploits the redundant information present within the

light-field structure through the use of patch-volumes and

low-dimensional sub-space projections. Moreover, this gain
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TABLE I
PSNR ANALYSIS OF SPATIAL SUPER-RESOLUTION ON THE HCI DATASET

Light Field Name Bicubic Dong [14] Peleg [13] Zhang [15] Mitra [8] SRCNN+LF [9] PCA+RR BM PCA+RR

Buddha 27.2387 27.1295 27.5482 27.6509 22.2204 27.3565 29.9276 31.1277

Butterfly 29.7868 29.5468 30.0613 30.1555 28.8319 29.2139 33.7600 33.5527
Cone Head 34.2545 34.1121 34.3921 34.5577 29.5444 31.3876 35.3642 36.6109

Horses 24.5134 24.6663 24.8337 24.8801 23.9871 24.6014 27.9206 27.5649
Medieval 29.1129 29.0211 29.2461 29.3695 28.3404 28.6737 31.1431 31.0744
Monas Room 27.3276 27.1595 27.6295 27.7423 23.5765 27.1786 30.2960 30.7295

Elephant 24.4555 24.5238 24.7661 24.7881 22.8509 24.1461 29.5462 28.3563
Watch 25.9329 25.6987 26.2238 26.2930 23.9491 25.5008 30.9749 29.9094
StillLife 24.2778 24.0777 24.4509 24.5284 21.4812 23.8061 26.0804 26.1894

TABLE II
PSNR ANALYSIS OF SPATIAL SUPER-RESOLUTION (MAGNIFICATION FACTOR ×2) USING THE STANFORD LIGHT FIELD IMAGES

Light Field Name Bicubic Dong [14] Peleg [13] Zhang [15] Mitra [8] SRCNN+LF [9] PCA+RR BM PCA+RR

Amethyst 30.0753 29.8729 30.3426 30.4042 27.5084 30.1516 33.2770 33.3482

Bracelet 26.2049 26.1827 26.5485 26.5931 19.0219 25.4509 25.1423 28.4921

Bunny 31.2884 30.8454 31.5553 31.6312 27.4327 29.4336 34.8505 36.8623

Chess 29.8041 29.4868 30.1000 30.1758 24.8064 29.0012 32.9157 33.4924

Eucalyptus Flowers 30.4913 30.3423 30.7207 30.7922 29.1275 30.5894 33.0552 33.1837

Jelly Beens 40.2994 39.2555 40.4947 40.6129 26.9460 29.7700 40.5246 38.8378
Lego Bulldozer 26.0729 25.8941 26.4372 26.4999 20.2748 26.4719 26.8637 29.0056

Lego Gantry Self Portrait 27.1717 27.0497 27.5291 27.6457 20.3284 27.4146 28.5695 28.8770

Lego Knights 26.8735 26.7013 27.2120 27.2896 19.7672 26.0193 28.0270 29.6041

Lego Truck 30.4957 30.3576 30.7638 30.8524 28.6439 30.8273 33.6306 33.5345
Treasure 25.8466 25.7149 26.0605 26.1300 21.8995 26.4346 27.6640 28.2319

over DCNN is achieves using a significantly smaller amount

of training data which can be efficiently trained and pre-

computed using a normal computer without the need of GPUs

to speed up the learning process. These results also show

that PCA+RR performs best with light fields like Watch

and Butterfly which have low disparity while BM+PCA+RR

performs better with light fields having larger disparities such

as Buddha and Stilllife. Moreover, unlike existing schemes,

our method ensures that the reconstructed sub-aperture images

are coherent across all sub-aperture images by using of patch-

volumes and therefore exploiting the light field structure.

C. Spatial Super-Resolution of Real World Light Fields

In this experiment we use the light field images provided

by Stanford which are captured using a camera mounted on a

gantry. The results in Table II clearly show that most of the

time it is the BM+PCA+RR method which outperforms all

other schemes including PCA+RR. This is mainly attributed

to the fact that some of the Stanford light fields have large

disparities, and the alignment using block-matching improves

the performance of the reconstructed light fields by reducing

the inter-patch variance.

Table III shows the average PSNR of the INRIA light

fields using different super-resolution techniques. It can be

seen that the proposed methods again outperform all the state-

of-the-art methods considered in this work with PCA+RR

having the best overall performance. This might be attributed

to the fact that the light fields captured with the micro-lens

technology have smaller disparities and therefore alignment

of the patch-volumes does not improve performance. It can be

mentioned at this stage that the performance of Mitra et. al

[8], is significantly lower than the bi-cubic interpolated light

fields. This confirms the results presented in [9] where similar

poor performance were shown for both methods in [7], [8]

which exploit depth information to perform light field super-

resolution. The results in Table IV further demonstrate the

performance of both proposed schemes at larger magnification

factors (×3,×4).

The subjective evaluation in Fig. 8 shows the results on

real-world light fields. In this experiment we converted each

image into the Y CbCr colorspace, where the luminance com-

ponent is restored using the following algorithms while the

chrominance channels were up-scaled using bicubic interpo-

lation. Similar to the above results, the method of Peleg et.

al. [13] provides blurred sub-aperture images. The DCNN

based method in [9] gives improved performance over single

image super-resolution techniques. Nevertheless, our proposed

BM+PCA+RR method yields sub-aperture images with better

texture detail.

D. Angular Super-Resolution

In these experiments we reduce the angular resolution by

removing even column and row sub-aperture images, resulting

in a matrix of 5 × 5 high-resolution and undistorted sub-

aperture images. Angular super-resolution methods try to

approximate novel sub-aperture images to increase the angular

resolution of the light field. We compare our proposed angular

super-resolution method with bilinear interpolation between

neighbouring sub-aperture images, the SRCNN+LF method

in [9] and the view synthesis method presented in [11].
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Original Bicubic Peleg [13] Zhang [15] SRCNN+LF [9] PCA+RR BM+PCA+RR

(a) Still Life Light field

(b) Watch Light field

(c) Monas Room Light field

(d) Butterfly Light field

Fig. 7. Cropped regions of the central view obtained using different spatial super-resolution techniques obtained using the synthetic HCI dataset

TABLE III
PSNR ANALYSIS OF SPATIAL SUPER-RESOLUTION (MAGNIFICATION FACTOR ×2) USING THE INRIA LIGHT FIELD IMAGES

Light Field Name Bicubic Dong [14] Peleg [13] Zhang [15] Mitra [8] SRCNN+LF [9] PCA+RR BM+PCA+RR

Bee2 30.5666 30.3450 30.9149 30.3152 25.1065 29.8795 34.6064 33.5067
Bumblebee 26.6509 26.4444 27.0462 26.4769 17.5138 27.6928 26.7346 28.7119

DistantChurch 24.3331 24.3298 24.5979 24.4754 24.3143 25.1071 26.4316 26.4920

Duck 23.5316 23.5510 23.8874 23.7356 21.4510 24.8502 27.0484 26.3975
Framed 27.5230 27.3720 27.9161 27.7436 25.4695 27.9237 30.8640 30.4825
Fruits 28.4813 28.4310 28.8230 28.6050 22.7371 29.5817 31.6108 32.0372

Mini 27.6342 27.6546 27.9222 27.7356 25.8211 28.2645 30.8350 30.2396
Rose 33.6350 33.6134 33.8568 33.8966 28.8269 34.4949 37.4667 36.9080

The angularly super-resolved views (6, 6) are shown in Fig.

9, which corresponds to case 3 described in Section III-E.

It can be noticed that the images produced using simple

bilinear interpolation are generally blurred, especially when

considering the synthetic light fields and the light fields

provided by Stanford which have larger disparities and thus

harder to approximate using this simple method. The view

synthesis method presented in [11] manages to restore the

light fields captured by the Illum camera relatively well,

however it fails to restore the other light fields (HCI and

Stanford), mainly because the model has been learned on Illum

light fields and should be retrained to test the method on

other types of light fields. The other deep learning method

of Yoon et. al. [9] manages to recover some texture detail.

However, the reconstructed interpolated sub-aperture images

are generally noisy. Our proposed angular super-resolution

approach provides sharper images closer to the ground truth

and these improvements are more visible in synthetic and on

images obtained from the Stanford dataset.

V. SPATIAL-ANGULAR SUPER-RESOLUTION

In the final experiment we analyse the combined spatial

and angular super-resolution and compare it with the deep

learning method presented in [9]. The 9 × 9 matrix of sub-

aperture images is first angularly down-sampled by removing

even rows and columns and then down-scaled by a factor

of 2. Fig. 10 compares subjectively the results obtained

using the state-of-the-art deep learning based method proposed

in [9] with our combined scheme (spatial super-resolution

using BM+PCA+RR and using the proposed angular super-

resolution (Section III-E) method to restore the original an-

gular resolution). One can notice that our proposed method

manages to restore higher quality sub-aperture images both

spatially (at angular resolution (5,5) which is available in the

5 × 5 matrix) and angularly (6,6) (which is angularly super-

resolved). These results, and all results presented in the previ-

ous sections demonstrate that by properly exploiting the light

field structure, linear models can effectively outperform more

complicated deep learning based approaches for both angular
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TABLE IV
PSNR ANALYSIS OF SPATIAL SUPER-RESOLUTION USING THE INRIA LIGHT FIELD IMAGES AT DIFFERENT MAGNIFICATION FACTORS

Light Field Name
×3 ×4

Bicubic ANR [28] NCSR [29] PCA+RR BM+PCA+RR Bicubic ANR [28] NCSR [29] PCA+RR BM+PCA+RR

Bee2 29.6867 30.6162 30.5056 31.7366 31.2349 28.4433 29.2275 28.3437 29.1141 28.9283
Bumblebee 25.5401 26.4189 24.7068 22.8932 26.4321 24.1508 24.7748 21.7147 20.4922 24.0889
DistantChurch 23.7253 24.1354 24.2603 24.5221 24.5621 22.9630 23.1522 22.5218 23.1835 23.1028
Duck 23.0798 23.7197 23.6979 24.1611 23.9780 22.1628 22.5774 20.4905 22.0103 21.9914
Framed 26.7072 27.4263 27.3974 28.1060 28.1600 25.5819 26.0354 25.8239 26.1740 26.1741

Fruits 27.7360 28.4712 27.9654 28.6624 29.3045 26.6765 27.1361 25.5000 26.3563 26.9609
Mini 26.9273 27.4880 27.0742 28.8523 28.4511 26.0561 26.3788 26.4890 27.1800 26.8443
Rose 32.6970 33.3592 33.0670 34.8321 34.5860 31.538 31.8898 31.0761 32.6694 32.5134

and spatial super-resolution. Supplementary multimedia files

uploaded on ScholarOne show that the super-resolved light

fields (spatial and angular SR) using our proposed method

are more coherent across sub-aperture images for real-world

light fields (less flickering across sub-aperture images) and

provides superior re-focused images when compared to the

DCNN scheme presented in [9].

VI. CONCLUSION

In this paper, we have proposed a novel super-resolution

algorithm for light fields. The method is shown to outper-

form recent techniques based on deep convolutional neural

networks for both spatial and angular super-resolution. In

addition, the approach is simple, and does not require millions

of training samples to learn the projections between high-

and low-resolution subspaces and to increase the angular

resolution in contrast to prior solutions based on deep con-

volutional networks. Experimental results show significant

improvement over the state-of-the-art spatial super-resolution

schemes, achieving average PSNR gains of 3.7dB, 4.2dB and

2.1dB on the HCI, Stanford and INRIA datasets respectively.

Moreover, subjective results clearly demonstrate that the pro-

posed spatial and angular super-resolution method outperforms

more complex schemes based on deep learning. Future work

will involve to learn dictionaries of patch-volumes that are

more representative and to learn multiple linear mappings.
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