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Abstract In this paper we propose a novel super-reso-

lution based algorithm for the pansharpening of multi-
spectral images. Within the Bayesian formulation, the

proposed methodology incorporates prior knowledge on
the expected characteristics of multispectral images;
that is, it imposes smoothness within each band by
means of the energy associated with the ℓ1 norm of

vertical and horizontal first order differences of image
pixel values and also takes into account the correla-
tion among the bands of the multispectral image. The

observation process is modeled using the sensor char-
acteristics of both panchromatic and multispectral im-
ages. The method is tested on real and synthetic images,
compared with other pansharpening methods, and the

quality of the results assessed both qualitatively and

quantitatively.
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1 Introduction

Nowadays most remote sensing systems include sensors
able to capture, simultaneously, several low spatial reso-

lution images of the same area on different wavelengths,
forming a multispectral image, along with a high spa-
tial resolution panchromatic image, a single band image

covering a wide spectral range. The main advantage of

the multispectral image over the panchromatic one is

that it allows for a better land type and use recogni-

tion. However, due to its lower spatial resolution, infor-

mation on the objects shape and texture may be lost.
In contrast, the panchromatic image allows for a better
recognition of the objects in the scene and their tex-

tures but provides no information about their spectral

properties.

Super resolution of multispectral images, also called

pansharpening, is an approach that jointly processes

the multispectral and panchromatic images in order to

obtain a new multispectral image that, ideally, exhibits

the spectral characteristics of the observed multispec-

tral image and the spatial resolution of the panchro-

matic one. A number of pansharpening methods have

been proposed in the literature following different ap-

proaches. Nuñez et al. [12] and Otazu et al.[13] used
a wavelet decomposition of the panchromatic image to

add the details of the panchromatic image, either to

each band of the multispectral image, or to an intensity

image obtained from the multispectral image. Based on

the same principle, the contourlet transform has been

used in [10] and this transform was combined with prin-

cipal component analysis in [15]. Another multiresolu-
tion approach, using the generalized Laplacian pyra-
mid, was presented in [2] in which the high-pass details

of the panchromatic image are weighted locally before

being injected into the resampled multispectral bands.
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Khan et al. [7] proposed to add, to the upsampled mul-

tispectral bands, the details from the panchromatic im-
age weighted by a factor calculated to minimize a com-
plex index that takes into account the change in mean

and variance of the multispectral bands as well as the

correlation of the panchromatic image and each mul-

tispectral band. Price [14] formulated the relation-

ship between the panchromatic and multispectral im-
ages and estimated each pixel of the pansharpened im-
age from the panchromatic and multispectral values

weighted by a value obtained from a 3× 3 array of low-

resolution data values centered on each low-resolution

pixel. Recently, super-resolution techniques have also

been applied to the pansharpening problem [11] with

improved results. Such approaches model the relation-

ship between the panchromatic and multispectral im-

ages, similarly to the Price method, but also impose re-

strictions on the reconstruction process to control noise

and provide more natural, distortion free, images. A

description of classical approaches can be found in [17]

and a comparison of some algorithms for pansharpening

was carried out in [3].

In this paper we propose a super-resolution based

pansharpening approach, within the Bayesian formula-
tion. It uses an image model which imposes smoothness

over each band of the pansharpened multispectral im-
age by mean of the ℓ1 norm of vertical and horizontal

first order differences of image pixel values and takes

into account the correlation among the bands of the

multispectral image. Note that some authors have con-

sidered the correlation between the multispectral bands

and the panchromatic image (see [7] for instance) to

control the amount of information to be injected from

the panchromatic image into the multispectral high res-

olution image by the pansharpening process. However,

the approach we propose here is different since we are

considering the correlation between the multispectral

bands themselves, that is, the similarity of a pixel to

those located at the same position in the other bands.

To the best of our knowledge, this is the first time

that this correlation is explicitly incorporated into the

modeling of the pansharpening problem. Notice also

that one of the weakness of many pansharpening meth-

ods is that they introduce detail information from the

panchromatic image in bands that are not covered by

this panchromatic image. Other methods, see for in-
stance [13,11,7], introduce details depending on factors
as the correlation between the panchromatic image and

the multispectral band or the relative spectral response

of the panchromatic and multispectral sensors. How-

ever, these methods may not successfully pansharpen

spectral bands that are only partially covered by the

panchromatic image. By taking into account the corre-

lation among the different spectral bands, the proposed

method will better pansharpen in spectral bands that
are partially covered by the panchromatic image.

The paper is organized as follows. In section 2 the

Bayesian modeling and inference for super-resolution
reconstruction of multispectral images is presented. Sec-

tion 3 describes the variational approximation of the

posterior distribution of the high spatial resolution mul-

tispectral image and how inference is performed. Sec-

tion 4 presents experimental results and section 5 con-

cludes the paper.

2 Bayesian Modeling and Inference

Let us assume that y, the unknown high spatial reso-

lution multispectral image we would have observed un-
der ideal conditions, has B bands yb, b = 1, . . . , B, each

withm rows and n columns, that is, y = [yt
1,y

t
2, . . . ,y

t
B ]

t,

where each band of this image is expressed as a p × 1

column vector, with p = m×n, by lexicographically or-

dering the pixels in the band, and t denotes the trans-

pose of a vector or matrix.

The observed low spatial resolution multispectral

image Y, that is, the multispectral image captured by
the sensor, has B bands Yb, b = 1, . . . , B, each one

of M rows by N columns, with M < m and N < n.

For instance, in LandSat 7 ETM+ imaginery (http:

//landsat.gsfc.nasa.gov/) the multispectral sensor

provides a multispectral image with six bands (three
bands in the visible spectrum plus three bands in the

infrared) with a spatial resolution of 30 meters per
pixel, plus a thermal band with a spatial resolution of
60 meters per pixel.These bands are also stacked into
the vector Y = [Yt

1,Y
t
2, . . . ,Y

t
B ]

t, where each band of

this image is also expressed as a P × 1 column vector,

P = M ×N , by lexicographically ordering the pixels in

the band.

The sensor also provides us with a panchromatic

image x of size p = m × n, a single band image that

covers a wide spectral area. In the case of a Landsat 7
ETM+ image, the panchromatic image, with a spatial
resolution of 15 meters per pixel, covers a large zone
on the visible spectrum and the near infrared. Figure 1

shows the spectral response covered by the observed low

spatial resolution and panchromatic Landsat 7 ETM+

bands (except the thermal band). While the multispec-

tral image is able to capture the spectral information
of the scene, the panchromatic image does not provide
spectral information but its spatial resolution is higher

than that of the multispectral image.

The objective of the super-resolution reconstruction

of multispectral images is to obtain an estimate of the
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Fig. 1 Landsat 7 ETM+ band spectral responses normalized to
one. Curve in black represents the response of the panchromatic
sensor.

unknown high spatial resolution multispectral image y

given the panchromatic high spatial resolution obser-

vation x and the low spatial resolution multispectral

observation Y.

The Bayesian formulation of this problem requires

the definition of the joint distribution of the high spatial

resolution multispectral, the low spatial resolution mul-

tispectral and panchromatic images, p(y,Y,x). This

joint distribution is defined as

p(y,Y,x) = p(y)p(Y,x|y). (1)

Inference is based on the distribution p(y|Y,x). Let us

now describe those probability distributions.

2.1 Image prior model

In this paper we propose a prior model based on the ℓ1

norm [16] to take into account the smoothness within

each band plus an auto-regressive model to exploit the

correlation among image bands. Thus, we propose the

multispectral image prior

p(y) ∝ c(y)
B
∏

b=1

s(yb) . (2)

The smoothness within each multispectral band is

modeled by the terms, s(yb), b = 1, ..., B, which are ℓ1

based priors defined as

s(yb) = exp

{

−
p

∑

i=1

[

αh
b‖ ∆h

i (yb)‖1+αv
b‖ ∆v

i (yb)‖1
]

}

,(3)

where ∆h
i (yb) and ∆v

i (yb) represent the horizontal and
vertical first order differences at pixel i, respectively,

and αh
b and αv

b are the horizontal and vertical model pa-

rameters of the band b. The idea behind this model is to

consider the image as a set of relatively smooth objects

or regions separated by strong edges. This knowledge

is common in practically all the satellite and natural

images. This model enforces smoothness within the ob-
jects in each image band while preserving their edges.

The term c(y), which takes into account the corre-
lations among different high resolution bands, is given
by

c(y) = exp

{

−
B
∑

b=1

B
∑

b′>b

νbb′

2
‖yb − yb′‖2

}

, (4)

with νbb′ ≥ 0 for b′ > b, thus enforcing similarity among

the pixels at the same position in the different bands,

where {νbb′} are the parameters that control the simi-

larity between band b and band b′. Note that this prior

assumes that the contents of the bands are similar, that
is, each spectral band is rather narrow and the cen-

ter frequencies of such bands are not very far apart.
This is true in most multispectral imaging systems. Of
course, as the wavelengths of the bands become more

different, the difference in the content of the bands will

increase and their correlation will decrease. This situ-

ation is handled well by our model, since it allows for

setting a high value of νbb′ for bands b and b′ with a

high correlation and a value of νbb′ close or equal to

zero for bands b and b′ without similar values for pix-

els at the same position. Note that different spectral

bands may have different range of values and different

energy, either because of the contribution of the real

scene to that specific band or because they have been

captured with different gains. In this case, this prior
will introduce flux variations in the bands which is an
undesirable effect since it modifies the spectral signa-

ture of the objects in the scene. In order to maintain

the flux in each band and, hence, preserve the spectral

properties of the multispectral image, prior to any pro-

cessing we normalize the flux in each band to one so

all the bands have equal flux. After pansharpening we
rescale the flux in each band.

2.2 Degradation model

Since the observed panchromatic and low resolution

multispectral images are independent given the real high

resolution multispectral image to be estimated, we can

write

p(Y,x|y) = p(Y|y)p(x|y) . (5)

For each low resolution multispectral image band, we

consider the model

Yb = Hyb + nb, b = 1, . . . , B,

where the degradation matrix H can be written as H =

DB, with B a p × p blurring matrix which takes into

account the sensor integration function and any other

blur that may degrade the image and D a P × p dec-

imation operator, and nb the noise term assumed to
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be independent white Gaussian of known variance β−1
b .

The conditional distribution of the observed image Y

given y is given by

p(Y|y) =
B
∏

b=1

p(Yb|yb)

∝
B
∏

b=1

exp

{

−1

2
βb ‖ Yb −Hyb ‖2

}

. (6)

The panchromatic image x is modeled as [11]

x =

B
∑

b=1

λbyb + v, (7)

where λb ≥ 0, b = 1, 2, . . . , B, are known quantities that

can be obtained from the sensor spectral characteristics,

and v is the capture noise that is assumed to be Gaus-

sian with zero mean and known variance γ−1. The role

of λb, b = 1, 2, . . . , B, is to weight the contribution of
each high spatial resolution multispectral band yb to

the panchromatic image. The values can be calculated,

as we will see later, from the spectral response of the

sensor. Note that if any of the bands of the multispec-

tral image is not covered by the panchromatic image,

its contribution will be zero. Note also that the incor-

poration of the sensor spectral response has also been

applied to other methods such as the wavelet based

method called Wisper [13]. Based on this model, the
distribution of the panchromatic image x given y, is

given by

p(x|y) ∝ exp

{

−1

2
γ ‖ x−

B
∑

b=1

λbyb ‖2
}

. (8)

3 Bayesian Inference and Variational

Approximation of the Posterior Distribution

In this paper we assume that all model parameters

are known or previously estimated. Then, the Bayesian

paradigm dictates that inference on y should be based

on

p(y|Y,x) =
p(y,Y,x)

p(Y,x)
=

p(y)p(Y,x|y)
p(Y,x)

,

where p(y,Y,x) has been defined in Eq. (1), and p(y),

p(Y,x|y) have been defined in Eqs. (2) and (5), respec-

tively.

Since p(y|Y,x) can not be found in closed form, we

apply variational methods to approximate this distri-
bution by a distribution q(y). The variational criterion

used to find q(y) is the minimization of the Kullback-

Leibler (KL) divergence, given by [8]

CKL(q(y)||p(y|Y,x))

=

∫

q(y) log

(

q(y)

p(y|Y,x)

)

dy

=

∫

q(y) log

(

q(y)

p(y,Y,x)

)

dy + const

= M(q(y),Y,x) + const , (9)

which is always non negative and equal to zero only

when q(y) = p(y|Y,x).

Unfortunately, due to the form of the ℓ1 prior, the

above integral can not be evaluated. However, we can

rewrite s(yb) in Eq. (3) in the more convenient form as

s(yb) = exp

{

−
p

∑

i=1

[

αh
b

√

(∆h
i (yb))2

]

−
p

∑

i=1

[

αv
b

√

(∆v
i (yb))2

]

}

, (10)

where the ℓ1 norm can be majorized by a function which

renders the integral easier to calculate.

Let us consider the following inequality, also used in

[4], which states that, for any w ≥ 0 and z > 0

√
w ≤ w + z

2
√
z

. (11)

Using this inequality in Eq. (10), we define the func-

tional

M(yb,u
h
b ,u

v
b ) = exp







−
p

∑

i=1



αh
b

(∆h
i (yb))

2 + uh
b (i)

2
√

uh
b (i)





−
p

∑

i=1

[

αv
b

(∆v
i (yb))

2 + uv
b (i)

2
√

uv
b (i)

]}

, (12)

where we used w = (∆h
i (yb))

2 or w = (∆v
i (yb))

2 and

z = uh
b (i) or z = uv

b (i), depending on the direction
h or v we are considering, where uh

b ∈ (R+)p, uv
b ∈

(R+)p are p-dimensional vectors with components uh
b (i)

and uv
b (i), i = 1, . . . , p, that need to be computed and

have, as will be shown later, an intuitive interpretation

related to the unknown images yb.
Comparing Eq. (12) to Eq. (10), we obtain

s(yb) ≥ const ·M(yb,u
h
b ,u

v
b ).

This leads to the following lower bound for the joint

probability distribution

p(y,Y,x) ≥ const · p(Y|y)p(x|y)c(y)
B
∏

b=1

M(yb,u
h
b ,u

v
b )

= F(y,Y,x,uh,uv) , (13)

where ud = [ud
1
t
,ud

2
t
, . . . ,ud

B

t
]
t
for d = h, v.

Hence, by defining

M̃(q(y),Y,x,uh,uv) =
∫

q(y) log

(

q(y)

F(y,Y,x,uh,uv)

)

dy,
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and using Eq. (13), we obtain

M(q(y),Y,x) ≤ min
uh,uv

M̃(q(y),Y,x,uh,uv) ,

where M(q(y),Y,x) was defined in Eq. (9).

Therefore, by finding a sequence of distributions
{qk(y)}, k = 1, 2, . . ., that monotonically decreases the

functional M̃(q(y),Y,x,uh,uv) for fixed uh and uv,

we also obtain a sequence of an ever decreasing upper

bound of CKL(q(y)||p(y|Y,x)) due to Eq. (9). Even

more, minimizing M̃(q(y),Y,x,uh,uv) with respect to

uh and uv, also generates vector sequences {uhk} and

{uvk} that tighten the upper-bound for each distribu-
tion qk(y). Therefore, the sequence {qk(y)} is coupled

with the sequences {uhk} and {uvk}. We develop the
following iterative algorithm to find such sequences. We

note that the process to find the best posterior distribu-
tion approximation of the image in combination with uh

and uv is a very natural extension of the Majorization-

Minimization approach to function optimization [9].

Algorithm 1 Posterior image distribution estimation.

Given uh1 ∈ (R+)Bp and uv1 ∈ (R+)Bp;

for k = 1, 2, . . . until a stopping criterion is met:

1. Find

qk(y) = argmin
q(y)

M̃(q(y),Y,x,uhk,uvk) . (14)

2. Find

{uhk+1
,uvk+1} =

argmin{uh,uv} M̃(qk(y),Y,x,uh,uv) . (15)

Set q(y) = limk→∞ qk(y).

To calculate {uhk+1
,uvk+1}, for b = 1, . . . , B, in

Eq. (15) we have that (see Eq. 12)

uh
b

k+1
= argmin

u
h

b

P
∑

i=1

Eqk(y)

[

(∆h
i (yb))

2
]

+ uh
b (i)

√

uh
b (i)

,

and

uv
b
k+1 = argmin

u
v

b

P
∑

i=1

Eqk(y)

[

(∆v
i (yb))

2
]

+ uv
b (i)

√

uv
b (i)

,

and consequently

uh
b

k+1
(i) = Eqk(y)

[

∆h
i (yb))

2
]

, (16)

and

uv
b
k+1(i) = Eqk(y)

[

∆v
i (yb))

2
]

, (17)

for i = 1, . . . , p and b = 1, . . . , B.

It is clear from Eqs. (16) and (17) that the vectors

uh
b

k+1
and uv

b
k+1 are, respectively, functions of the spa-

tial first order horizontal and vertical differences of the

unknown image y under the distribution qk(y) and rep-

resent the local spatial activity of y. This means that
for pixels in zones with low local spatial activity, the

values of uh
b (i) and uv

b (i) will be small and, hence, the

quadratic term in Eq. (12) will keep the region smooth,

controlling any noise amplification. However, for pix-

els in regions with high spatial activity such as edges

or highly detailed zones, uh
b (i) or uv

b (i), or both, will
be high thus preventing the prior model to smooth the

edge or the details.

To calculate qk(y), we observe that differentiating

the integral on the right-hand side of Eq. (14) with

respect to q(y) and setting it equal to zero, we obtain

that

qk(y) = N
(

y | Eqk(y)[y], covqk(y)[y]
)

,

with

covqk(y)[y] = A−1(uhk,uvk) ,

and

Eqk(y)[y] = covqk(y)[y]φ
k ,

where φk is the (B × p)× 1 vector

φk =
(

diag(β)⊗Ht
)

Y + γ (λ⊗ x) ,

where⊗ is the Kronecker product, β = (β1, β2, . . . , βB)
t,

λ = (λ1, λ2, . . . , λB)
t, and

A(uhk,uvk) = diag(β)⊗HtH+ γ(λλt)⊗ Ip

+













G(uh
1
k
,uv

1
k) 0p . . . 0p

0p G(uh
2
k
,uv

2
k) . . . 0p

...
...

. . .
...

0p 0p . . . G(uh
B

k
,uv

B
k)













+













∑B

b=1 µ1b −µ12 . . . −µ1B

−µ21

∑B

b=1 µ2b . . . −µ2B

...
...

. . .
...

−µB1 −µB2 . . .
∑B

b=1 µBb













⊗Ip ,

where µbb = 0, ∀b, µbb′ = νbb′ , b
′ > b and µb′b = µbb′ ,

G(uh
b

k
,uv

b
k) = αh

b∆
htW (uh

b

k
)∆h + αv

b∆
vtW (uv

b
k)∆v,

for b = 1, . . . , B, where ∆h and ∆v represent p× p con-

volution matrices associated with the first order hori-

zontal and vertical differences, respectively, andW (uh
b

k
)

and W (uv
b
k) are p × p diagonal matrices of the form

W (ud
b

k
) = diag

(

ud
b

k
(i)

− 1

2

)

, for i = 1, . . . , p, d = h, v.

These matrices can be interpreted as spatial adaptivity

matrices since they control the amount of smoothing

at each pixel location depending on the strength of the

intensity variation at that pixel, as expressed by the

horizontal and vertical intensity gradients, respectively.
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That is, for pixels with high spatial activity in the hor-

izontal (vertical) direction, the corresponding entries of

W (uh
b

k
) (W (uv

b
k)) are very small, which means that no

smoothness is enforced in this direction, while for areas

where pixels have similar values in the horizontal or ver-

tical direction the corresponding entries of W (uh
b

k
) or

W (uv
b
k), respectively, are very large, which means that

smoothness is enforced in the corresponding direction.

4 Experimental Results

In order to assess the quality of the proposed approach,

we report results on a synthetic color image, that helps
us illustrate the usefulness of the term that takes into
account the correlation between image bands in the

prior model (see Eq. (4)), and a Landsat ETM+ and a

IKONOS multispectral images.

The proposed method, that we name ℓ1cor, is com-

pared with the method without considering the corre-

lation between the bands (henceforth ℓ1), obtained by

setting νb,b′ = 0, ∀b, b′ = 1, . . . , B. Also we compare

it with the Bayesian method in [11] (henceforth SAR),

which utilizes a simultaneous auto-regressive prior model,

bicubic interpolation (henceforth BIC), the IHS method

in [5], and the additive wavelet pansharpening method

(AWL) in [12]. In addition, results for the method in

[14] (henceforth PRI) are reported when a downsam-

pling factor of two is used.

To assess numerically the quality of the reconstructed

multispectral images both spatial and spectral mea-

sures have to be considered. Spatial improvement was

assessed by means of the correlation of the high fre-

quency components (COR) [17] which measures the

spatial similarity between each reconstructed multispec-

tral image band and the panchromatic image. The COR

index takes values between 0 and 1 (the higher the value

the better the quality of the reconstruction). Spectral

fidelity was assessed by means of the peak signal-to-

noise ratio (PSNR) and structural similarity (SSIM)

index [19], a perceptual quality measure that takes into

account the luminance, contrast and structure differ-
ences, between each band of the reconstructed and orig-
inal multispectral images. The SSIM index takes values
between -1 and 1. The closer the SSIM index to one the

better the reconstruction, with 1 only being reachable

when the two images are identical. The mean value for

COR, PSNR and SSIM act as global fidelity measures

for the reconstructed multispectral image, as well as
the standard ERGAS (from the French Erreur Relative
Globale Adimensionalle de Synthése) index [18], a di-
mensionless global criterion which considers the ratio

of the root mean squared error (RMSE) and the band-

wise mean. The lower the value of this index, especially

a value lower than the number of bands B, the higher

the quality of the multispectral image.

Our first experiment was conducted on the 120×120

color image whose detail is displayed in Fig. 2(a). Fol-

lowing [1], we simulate the spatially degraded data us-

ing the Modulation Transfer Function (MTF) of the

satellite imaging system. This MTF “is generally bell

shaped, and its magnitude value at the cutoff Nyquist

frequency is far lower than 0.5, to prevent aliasing.

. . . As a tradeoff between maximum spatial resolution

and minimum aliasing of the sampled signal, the Nyquist

frequency is usually chosen such that the corresponding

magnitude value is around 0.2” [1]. Hence, to obtain a

low resolution color image, each band of the original

image was first blurred using a Gaussian blur with a

magnitude value of 0.2 at Nyquist frequency, that sim-

ulate the MTF of the satellite, and then downsampled
by a factor of two by discarding every other pixel in each
direction. Finally, zero mean Gaussian noise was added

to each band to obtain two observed multispectral im-

ages with a signal-to-noise ratio (SNR) of 20 dB and

30 dB. The panchromatic image was obtained from the

original high resolution color image using the model in

Eq. (7), with λ = [0.3, 0.6, 0.1]t, and adding zero mean
Gaussian noise with an SNR of 20 dB and 30 dB. Details

of the 30 dB observed multispectral and panchromatic

images are depicted in Figs. 2(b) and 2(c), respectively.

We run the proposed algorithm until the criterion
‖Eqk(y)[y]−Eqk−1(y)[y]‖2/‖Eqk−1(y)[y]‖2 < 5 10−4 was

satisfied. The values of the noise parameters are known
to be β = (0.053, 0.061, 0.07)t and γ = 0.053 for the

20dB SNR image. The values for αd, d = h, v, are

determined as αd = Cα/
∑P

i=1 ‖∆d
i (Yb))‖2, where Cα

was manually selected to maximize the mean PSNR of

the reconstruction. Once these values are fixed, the val-

ues for νi,j are determined as νi,j = Cν/‖Yi − Yj‖2,
where Cν was manually selected to maximize the mean
PSNR of the obtained reconstruction. Following this

procedure we obtained αh = (3.9, 3.9, 3.8)t × 10−2,

αv = (3.2, 3.2, 3.1)t × 10−2, and ν = (ν1,2, ν1,3, ν2,3) =

(55, 9.8, 24)× 10−4. For the 30dB SNR image the noise

parameter are known to be β = (0.53, 0.61, 0.73)t and

γ = 0.53, and the other parameters were αh = (3.9, 3.9,
3.8)t × 10−3, αv = (3.2, 3.2, 3.1)t ×10−3, and ν = (ν1,2,

ν1,3, ν2,3) = (55, 8.1, 20)× 10−4.

Figure 2 displays the resulting images for the pro-

posed method as well as the methods we are compar-
ing against. From the images it is clear that the pro-

posed method (Fig. 2(i)) obtains sharper edges than

the method in [11], with more detailed elements (ob-

serve, for example, the fence and the banister above it)

and achieves higher similarity to the colors of the orig-



7

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 (a) Original RGB image; (b) Observed LR multispectral image; (c) Observed panchromatic image; (d) Reconstruction using

PRI; (e) Reconstruction using IHS; (f) Reconstruction using AWL; (g) Reconstruction using SAR; (h) Reconstruction using ℓ1; (i)
Reconstruction using ℓ1cor.

(a) (b)

Fig. 3 Representation of ud

b

−

1

2 , for b = 1, 2, 3 represented as R,

G and B bands, respectively, of the image displayed in Fig. 2, a)
for d = h, b) for d = v.

inal image than the ℓ1 method, reducing the greenish

appearance of the white strip under the dome and the

color bleeding in the fence. The results are visually very

similar to IHS and AWL although a detailed inspection

can show that the proposed method reduced a bit more

the noise in the image.

Numerical results, presented in Table 1, also sup-

port the use of the proposed model. Its figures of merit

are, in general, better than the ones provided by all

other methods except for the band 3 of the 20 dB SNR

image where the COR and PSNR values are smaller

than the ones obtained by the IHS and AWL. The
high values for IHS and AWL were expected since the
panchromatic image is a perfect realization of the in-

tensity band of IHS transform. Note however that the

proposed method provides a much better reconstruc-

tion for bands 1 and 2 and better SSIM for all the bands

and a much lower ERGAS value and better mean val-

ues. For the image with 30dB SNR the method provides
the best results, increasing all the quality indices and
obtaining a lower ERGAS. It is interesting to see how

the proposed method increases the quality of the re-

sults over the ℓ1 method, which clearly demonstrates
the benefits of introducing the correlation between the

multispectral image bands.

Figure 3 depicts the value of uh
b (i)

− 1

2 and uv
b (i)

− 1

2 ,

b = 1, 2, 3, at convergence of the algorithm for the image

in Fig. 2(i). In the figure, the spatial adaptivity values

for band 1 are represented in red, the values for band
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Table 1 Values of PSNR, COR and SSIM for the different bands and in mean, and ERGAS value for the synthetic color image.

PSNR COR SSIM ERGAS

SNR Method 1 2 3 mean 1 2 3 mean 1 2 3 mean

BIC 25.4 25.5 25.5 25.5 0.39 0.40 0.40 0.40 0.63 0.64 0.64 0.64 6.84
PRI 26.2 26.4 26.2 26.2 0.63 0.65 0.64 0.63 0.63 0.64 0.66 0.64 6.24

IHS 31.5 31.9 31.3 31.3 0.98 0.98 0.97 0.98 0.86 0.86 0.86 0.86 3.38
20 dB AWL 31.6 32.3 31.6 31.5 0.99 0.99 0.99 0.99 0.85 0.86 0.86 0.86 3.28

SAR 30.3 34.0 27.4 30.6 0.92 0.99 0.63 0.85 0.82 0.89 0.71 0.81 4.04

ℓ1 30.9 33.8 27.5 30,7 0.88 0.96 0.60 0,81 0.86 0.92 0.75 0.84 3.95
ℓ1cor 32.7 37.1 30.7 33.5 0.99 0.97 0.88 0.95 0.92 0.96 0.89 0.92 2.88

BIC 25.7 25.7 25.7 25.7 0.43 0.44 0.43 0.43 0.68 0.68 0.68 0.68 6.65
PRI 27.1 27.1 26.9 27.0 0.73 0.73 0.71 0.72 0.75 0.76 0.76 0.76 5.69

IHS 34.5 35.0 33.7 34.4 0.99 0.99 0.98 0.99 0.96 0.97 0.96 0.96 2.44
30 dB AWL 35.8 37.1 34.9 35.9 1.00 1.00 0.99 1.00 0.97 0.98 0.97 0.97 2.06

SAR 33.5 36.7 28.9 33.0 0.97 1.00 0.71 0.89 0.91 0.96 0.79 0.89 3.15

ℓ1 34.4 35.9 28.3 32.9 0.98 0.99 0.71 0.89 0.95 0.97 0.81 0.91 3.25
ℓ1cor 40.0 43.6 37.0 40.2 1.00 1.00 0.99 1.00 0.98 0.98 0.95 0.97 1.34

2 are represented in green and for band 3, in blue. For

a better visualization, the images have been contrast

stretched so that a total of 1% of the values are satu-

rated at low and high intensities. Notice that the main

features in the image are represented in the images with

lower values of ud
b(i)

− 1

2 , d = {h, v}, and that the same
features are detected in most of the bands.

In a second experiment, the method was tested on a
real Landsat ETM+ image. Figure 4(a) depicts a 128×
128 RGB color region of interest composed of bands
3, 2, and 1 of a Landsat ETM+ multispectral image.
According to the ETM+ sensor spectral response (see
Fig. 1), the panchromatic image covers only the spec-

trum of part of the first four bands of the multispectral

image although the sensor sensibility is not constant

over the whole range. Hence, we apply the proposed

method with B = 4. The values of λb, b = 1, 2, 3, 4, were
calculated from the spectral response of the ETM+

sensor, by summing up the spectral response of the

panchromatic sensor weighted by the response of the

sensor for each multispectral band. The obtained val-

ues were then normalized so that their sum equals one,

thus producing values equal to 0.0078, 0.242, 0.2239,

and 0.5263, for bands one to four, respectively.

Note that in this experiment we do not have access

to the original high resolution multispectral image to

numerically evaluate the quality of the different recon-

structions. In order to obtain a numerical comparison

and to overcome the lack of an exact HR multispectral

image to compare with, an intermediate step has been

performed in which a simulated multispectral image of

size 64 × 64 pixels, whose RGB channels are shown in

Fig. 4(b), was obtained from the observed 128×128 pix-

els multispectral image by applying a Gaussian MTF

blur with a 0.2 magnitude value at Nyquist frequency,

and downsampling the resulting image by a factor of

two in each direction. The panchromatic observation of

size 128× 128 pixels, shown in Fig. 4(c), was also gen-

erated using the model in Eq. (7) with λ1 = 0.0078,

λ2 = 0.242, λ3 = 0.2239, and λ4 = 0.5263.

The proposed algorithm was run until convergence

using the noise parameter values β = (3.0, 4.0, 5.1, 2.9)t

and γ = 3.48. We selected these low noise values, be-

cause the results are compared with the originally ob-

served image which, to the effects of this experiment,

are considered noiseless. The rest of the parameters

were experimentally determined to have the following

values αh = (3.5, 3, 4, 2.2, 1.6)t × 10−2, αv = (3.7, 3.5,

2.4, 1.6)t×10−2, and ν = (ν1,2, ν1,3, ν1,4, ν2,3, ν2,4, ν3,4)
t

= (5, 2, 4, 13, 2, 1)t × 10−6.

A numerical comparison between the different 128×
128 reconstructions and the observed 128 × 128 mul-

tispectral image is presented in Table 2. The recon-

structed RGB color images are displayed in Fig. 4. The

images show that PRI (Fig. 4(d)) produced a blurred

image, IHS (Fig. 4(e)) and AWL (Fig. 4(f)) introduced

a high amount of details (see the high COR values in

Table 2) but also introduced a high chromatic distortion

and SAR (Fig. 4(g)) smoothed out sharp edges. The ℓ1

method (Fig. 4(h)) produced crisper edges but did not

reconstruct well the colors near some edges. However,

the proposed method (Fig. 4(i)) successfully included

the details of the panchromatic image, producing sharp

edges and maintaining the small details while preserv-

ing the spectral quality of the image.

Finally, in a third experiment, we used the IKONOS

multispectral image of size 128 × 128, whose bands 3,

2 and 1 (R,G, and B, respectively) are depicted in

Fig. 5(a), and bands 4, 3 and 2, utilizing false RGB

colors, in Fig. 6(a). As in the previous experiment, a
low resolution multispectral image was obtained (see
Figs. 5(b) and 6(b)) by blurring the original multispec-
tral image with a Gaussian MTF blur with a magnitude

value of 0.28 at Nyquist frequency, which is a magnitude



9

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 (a) Original RGB Landsat multispectral image; (b) Observed LR multispectral image; (c) Observed panchromatic image;
(d) Reconstruction using PRI; (e) Reconstruction using IHS; (f) Reconstruction using AWL; (g) Reconstruction using SAR; (h)
Reconstruction using ℓ1; (i) Reconstruction using the proposed ℓ1cor method.

value consistent with the IKONOS multispectral sen-

sor technical characteristics (see [6]), and then down-

sampling it by a factor of four in each direction. The

panchromatic image (Fig. 5(c)) was generated using the

model in Eq. (7) with λ1 = 0.1071, λ2 = 0.2646, λ3 =
0.2696, and λ4 = 0.3587.

The proposed algorithm was run until convergence
with the parameter values β = (0.90, 0.82, 1.10, 0.47)t,

γ = 0.69, αh = (1, 5, 1.0, 0.9, 0.4)t×10−3, αv = (1, 6, 1.0,

1.0, 0.4)t×10−3 and ν = (30, 10, 0.3, 5, 0.4, 0.25)×10−6.

A numerical comparison between the different recon-

structions and the observed multispectral image is pre-

sented in Table 3. The reconstructions obtained apply-

ing the different methods to bands 3, 2 and 1 (RGB)

are depicted in Fig. 5, and in Fig. 6 for bands 4, 3

and 2, utilizing false RGB colors. The numerical com-

parison between the different methods favors the three

Bayesian Methods, which obtain much better PSNR

and SSIM values than the IHS and AWL with a similar
COR value. ℓ1 gives results better than SAR, and the

introduction of the correlations between bands in the
proposed method ℓ1cor is more relevant for the bands

with a minor weight in the panchromatic, that is the
blue band. The visual comparison of the images shown
in Figs. 5 and 6 reveals the same progression, as the

numerical one, between the three Bayesian methods.
The two images corresponding to the AWL method,
Figs. 5(f) and 6(f) are rich in details but, like the cor-
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Table 2 Values of PSNR, COR and SSIM for the different bands and in mean, and ERGAS value for the Landsat image in Fig. 4.

PSNR COR SSIM ERGAS

Method 1 2 3 4 mean 1 2 3 4 mean 1 2 3 4 mean

BIC 39.7 37.3 33.1 30.9 35.2 0.83 0.83 0.82 0.85 0.83 0.93 0.91 0.86 0.79 0.88 3.81
PRI 39.8 37.8 33.7 31.7 35.7 0.84 0.85 0.80 0.88 0.84 0.93 0.92 0.87 0.84 0.89 3.55
IHS 37.3 37.1 33.6 32.5 35.8 0.94 0.95 0.95 0.95 0.95 0.91 0.92 0.87 0.89 0.90 3.60
AWL 35.4 36.1 33.6 35.4 35.1 0.99 0.99 0.97 0.99 0.98 0.86 0.89 0.85 0.93 0.88 3.56
SAR 41.3 40.5 36.8 40.1 39.7 0.84 0.90 0.92 0.98 0.91 0.95 0.95 0.93 0.97 0.95 2.27
ℓ1 41.6 41.7 38.1 41.4 40.7 0.84 0.90 0.90 0.97 0.90 0.95 0.96 0.94 0.97 0.96 1.98
ℓ1cor 41.7 41.9 37.9 41.4 40.7 0.85 0.91 0.91 0.98 0.91 0.95 0.96 0.94 0.97 0.95 2.00

(a) (b)

Fig. 7 Representation of ud

b

−

1

2 , for b = 1, 2, 3 represented as R,
G and B bands, respectively, of the image displayed in Fig. 2, a)

for d = h, b) for d = v.

responding to the IHS method images in Figs. 5(e) and
6(e), exhibit color distortions not present in the three
Bayesian methods Figs. 5(h–j) and 6(h–j). These color

distortions are more appreciable in the images corre-

sponding to the visible spectrum of Fig. 5 than in the

green, red and near-infrared ones of Fig. 6. The qual-

ity improvement with respect to the previous methods

have, however, a cost in computational burden. While

BIC, PRI, IHS and AWL methods take less than a sec-

ond, the proposed method took around 24 seconds to
reconstruct the image, a time similar to the needed by
ℓ1 and less than the time needed by the SAR method.

Figure 7 depicts the spatial activity factors for the

proposed method for the image shown in Fig. 5(j). In
the figure, the spatial adaptivity values for band 3 are
represented in red, the values for band 2 are represented

in green and the values for band 1 are represented in
blue. The method captures the structure of the im-
age, assigning a lower value of uh

b (i) or uv
b (i) to the

edges of the objects, although in this case the images

present more different colors meaning that some fea-

tures present in some bands did not appear or appear

with much less strength in other bands.

5 Conclusions

We have presented a new method for the pansharp-

ening of multispectral images using a super resolution

approach which takes into account the sensor charac-

teristics in the image formation model and incorporates

prior knowledge on the expected characteristics of mul-

tispectral images by imposing smoothness within each

band and by taking into account the correlation among

pixels in the same position in different bands of the

multispectral image. This correlation is, to the best of

our knowledge, the first time that it is explicitly used in

pansharpening. We have used the variational approach

to approximate the posterior distribution of the pan-
sharpened multispectral image. Based on the presented
experimental results, the proposed method successfully

incorporates the high frequencies of the panchromatic

image into the reconstructed image while preserving the

spectral quality of the image.
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(d) Reconstruction using BIC; (e) Reconstruction using IHS; (f) Reconstruction using AWL; (g) Reconstruction using SAR; (h)
Reconstruction using ℓ1; (i) Reconstruction using the proposed ℓ1cor method.

10. M. Lillo-Saavedra and C. Gonzalo. Multispectral images
fusion by a joint multidirectional and multiresolution rep-
resentation. International Journal of Remote Sensing,

28(18):4065–4079, 2007.

11. R. Molina, M. Vega, J. Mateos, and A.K. Katsaggelos. Varia-
tional posterior distribution approximation in Bayesian super
resolution reconstruction of multispectral images. Applied
and Computat. Harmonic Analysis, 24(2):251–267, 2008.
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(a) (b) (c)
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(g) (h) (i)

Fig. 6 (a) Original NIRRG IKONOS multispectral image; (b) Observed LR multispectral image; (c) Observed panchromatic image;
(d) Reconstruction using the PRI; (e) Reconstruction using IHS; (f) Reconstruction using AWL; (g) Reconstruction using SAR; (h)
Reconstruction using ℓ1; (i) Reconstruction using the proposed ℓ1cor method.

Table 3 Values of PSNR, COR and SSIM for the different bands and in mean, and ERGAS values for the IKONOS image in Fig. 5.

PSNR COR SSIM ERGAS

Method 1 2 3 4 mean 1 2 3 4 mean 1 2 3 4 mean

BIC 17.6 14.1 13.6 7.6 13.2 0.65 0.65 0.64 0.65 0.65 0.35 0.25 0.24 0.21 0.26 9.05
IHS 17.4 15.5 14.9 9.2 14.2 0.97 0.96 0.98 0.87 0.94 0.53 0.58 0.52 0.49 0.53 7.83
AWL 17.8 16.7 15.8 9.6 15.0 0.99 0.99 0.97 0.97 0.98 0.51 0.62 0.56 0.61 0.57 7.20
SAR 20.5 18.9 18.3 14.0 17.9 0.73 0.93 0.96 0.98 0.90 0.60 0.70 0.67 0.84 0.70 5.13
ℓ1 21.7 19.6 18.7 14.8 18.7 0.83 0.99 0.97 0.99 0.94 0.67 0.72 0.67 0.83 0.72 4.76
ℓ1cor 22.3 19.8 18.7 14.8 18.9 0.93 0.99 0.98 0.99 0.97 0.68 0.72 0.67 0.83 0.72 4.68


