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Super-Resolution of Remotely Sensed Images With
Variable-Pixel Linear Reconstruction

Maria Teresa Merino and Jorge Núñez

Abstract—This paper describes the development and applica-
tions of a super-resolution method, known as Super-Resolution
Variable-Pixel Linear Reconstruction. The algorithm works com-
bining different lower resolution images in order to obtain, as
a result, a higher resolution image. We show that it can make
significant spatial resolution improvements to satellite images of
the Earth’s surface allowing recognition of objects with size ap-
proaching the limiting spatial resolution of the lower resolution
images. The algorithm is based on the Variable-Pixel Linear
Reconstruction algorithm developed by Fruchter and Hook, a
well-known method in astronomy but never used for Earth remote
sensing purposes. The algorithm preserves photometry, can weight
input images according to the statistical significance of each pixel,
and removes the effect of geometric distortion on both image shape
and photometry. In this paper, we describe its development for
remote sensing purposes, show the usefulness of the algorithm
working with images as different to the astronomical images as the
remote sensing ones, and show applications to: 1) a set of simulated
multispectral images obtained from a real Quickbird image; and
2) a set of multispectral real Landsat Enhanced Thematic Mapper
Plus (ETM+) images. These examples show that the algorithm pro-
vides a substantial improvement in limiting spatial resolution for
both simulated and real data sets without significantly altering the
multispectral content of the input low-resolution images, without
amplifying the noise, and with very few artifacts.

Index Terms—Image enhancement, image resolution, remote
sensing, super-resolution.

I. INTRODUCTION

S PATIAL resolution enhancement is usually required in the
remote sensing field, especially in satellite images taken

with the aim of recognizing objects with size approaching the
limiting spatial resolution scale. One way to improve resolution
is to use longer focal ratios, but this requires larger and more
expensive orbital platforms. Another approach is to use sensors
with smaller pixel size and increased pixel density in the
charge-coupled device (CCD) chips or similar—nowadays, the
most common sensors in this type of project. However, there are
additional technical difficulties related to high-quality manufac-
ture and a significant increase in cost. Furthermore, the reduced

Manuscript received June 19, 2006; revised October 14, 2006. This work was
supported in part by the Instituto Nacional De Tecnica Aeroespacial (INTA)
under Contract FBG302479 and by the Spanish Ministry of Education and
Science (MEC) under Grant AyA2005-08604. The work of M. T. Merino was
supported by a research fellowship (FPU) awarded by the Spanish Ministry of
Education and Science.

M. T. Merino is with the Departament d’Astronomia i Meteorologia, Univer-
sitat de Barcelona, 08028 Barcelona, Spain (e-mail: mmerino@am.ub.es).

J. Núñez is with the Departament d’Astronomia i Meteorologia, Universitat
de Barcelona, 08028 Barcelona, Spain, and also with Observatori Fabra, 08035
Barcelona, Spain (e-mail: j.nunez@ub.edu).

Digital Object Identifier 10.1109/TGRS.2007.893271

pixel size also decreases the number of photons arriving in a
fixed exposure time, this being another typical constraint in
the observational strategies of some projects. Moreover, the
increased number of pixels per chip also increases the capac-
itance and produces higher noise levels, worse efficiency, and
slower charge transference speed. As a result of these effects,
CCD technology is approaching the spatial resolution levels
currently considered optimal and, in most cases, the costs of
extending the limiting resolution further are too great to be
worthwhile. In this context, many recent studies have sought
to develop new approaches to spatial resolution enhancement
at affordable costs. Currently, the best cost/benefit ratio seems
to be achieved when using digital image treatment techniques
known as spatial resolution enhancement, resolution image
reconstruction or simply super-resolution (see [1] and [2] for
detailed reviews).

The basic premise of most super-resolution techniques is to
combine several images from the same scene considered with
low spatial resolution (LR) in order to produce one or several
images with a higher resolution (HR). Of course, it can only be
assumed that a HR can be obtained from LR images if they
are undersampled and suffer from aliasing. Every LR image
samples the scene as a different projection of the same scene
on different sampling lattices, so they have different profiles in
the aliased frequency range. Thus, none of the LR images can
be obtained from the other LR ones because each one contains a
certain amount of differential information from the same scene,
even though it may be in the aliased frequency range. Super-
Resolution techniques combine the LR images and attempt to
recover as much as possible of this differential information to
construct the HR result.

In the aforementioned reviews [1], [2], the most flexible
definitions of the term “super-resolution” include all those
methods capable of achieving a significant improvement in
spatial resolution. However, there are also other more restrictive
definitions that consider super-resolution as only those algo-
rithms that also perform at some point, in some way, and in
any order or combination of the following three steps.

Step 1) Automatic coregister of the LR images.
Step 2) Interpolation and/or recombination of the LR im-

ages onto a HR grid or image.
Step 3) Restoration of the HR or LR images to reduce the

noise, blur, and point spread function (PSF) effects.

Important advances have been made as regard Steps 1)
and 3), and innovative and promising studies have been
conducted. Some are based on recovering additional high-
frequency information by working in the frequency or different
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spaces [3]–[5], using probabilistic theories [6], or performing
the above three steps in mixed and/or iterative fashion [7],
[8]. Among these methods are the Maximum-Likelihood (ML)
super-resolution method [9], the Projection Onto Convex Sets
method (POCS) [10], [11], and the Iterative Back-Projection
Super-Resolution method [12]. For a deep study of the cited
and other super-resolution methods, including their advantages
and limitations, we refer the reader to [1] and [2].

However, despite their good results, the most powerful algo-
rithms (which include an iterative restoration step) are difficult
to be used for the typical applications of object recognition
in satellite remotely sensed images, which usually have large
dimensions as well as high distortions and observational effects.
There are important drawbacks that prevent the most sophisti-
cated algorithms from being used with these images (except for
some very specific cases), for example, the high computational
load, the critical dependence of a priori parameters that are
not easily fixed or which vary widely throughout one image
or the set of images (the stopping point of the iterations, the
PSF, etc.), and the difficult automatic registration with subpixel
accuracy in such complex (for example urban or mixed areas)
and highly distorted images. In particular, the distortion (even if
small or geometrically corrected) affects the space invariability
of the PSF. If the PSF is space-variant, it is not possible to
use the Fast Fourier Transform for the computations, making
the use of the most modern restoration algorithms as the
Richardson–Lucy–EM [13]–[15] simply impossible. In most
cases with this type of image, it is preferable to use a simpler
super-resolution algorithm performing only Step 2) with a low
computational load, even though that means ignoring noise and
blur and performing the coregister by other manual, traditional
techniques. The program we present in this paper focuses on
this simple but common case.

Moreover, among the remaining algorithms suitable for com-
mon object recognition of objects with size approaching the
limiting spatial resolution scale from satellite remote sensing
projects, most methods still perform Step 2) with traditional
uniform nearest neighbor, linear, or bicubic interpolations.
These interpolations mix up the values of neighboring pixels
and thus they mix up the differential information contained in
the aliased region of those pixels in a uniform and suboptimal
way across the whole image, thus losing an important part of the
possible final resolution improvement provided by the whole
super-resolution method.

Given the above, it is necessary to develop a way of im-
plementing a super-resolution algorithm (or spatial resolution
enhancement in some restrictive definitions) that can be used
in projects aimed at object recognition on the limiting spatial
resolution scale from satellite remotely sensed images, where
spatial resolution enhancement can be critical.

In this paper, we present a method known as Super-
Resolution Variable-Pixel Linear Reconstruction (SRVPLR),
which recombines a set of LR images in a HR image by per-
forming Step 2) in a nonuniform optimal way and also fulfills
the additional requirements of being computationally fast and
versatile with the desired type of images. The algorithm core
is based on the Variable-Pixel Linear Reconstruction (VPLR)
algorithm developed by Fruchter and Hook [16] (known as

drizzle), a well-known method in astronomy but that needed
to be implemented with some differences in order to check its
suitability and then to demonstrate its good results for images
as different as the ones for Earth remote sensing purposes. As
stated above, that this algorithm was useful for remote sensing
community was far from clear and needed a deep study and
development. We have implemented the new developed stand-
alone program SRVPLR and in this paper we show that devel-
opment and some of the good results it provides to demonstrate
its usefulness. Two different SRVPLR applications onto sets
of simulated and real LR images show how this optimization
of Step 2) produces significantly better results than the widely
used traditional uniform interpolations.

The rest of this paper is organized as follows. Section II
describes the SRVPLR algorithm, while the SRVPLR applica-
tions onto a set of real Landsat Enhanced Thematic Mapper
Plus (ETM+) images and a set of simulated LR images created
from an original Quickbird image are described in Section III.
Experimental results from these applications are described and
discussed in Section IV. Finally, Section V concludes this
paper, and the Appendix reports the parameters used in the
quantitative evaluation.

II. SUPER-RESOLUTION VARIABLE-PIXEL LINEAR

RECONSTRUCTION (SRVPLR)

SRVPLR core is based on the algorithm VPLR. Fruchter and
Hook [16] developed an implementation of this later algorithm
(known as drizzle) for the combination of astronomical dithered
undersampled images. Drizzle, designed to work with the pack-
age Space Telescope Science Data Analysis System (STSDAS)
within Image Reduction and Analysis Facility (IRAF) [17],
was developed for use with the Hubble Space Telescope (HST)
and other astronomical instruments with dithering observation
mode [18]. It should be noted that previous known drizzle
implementations are designed to work only with astronomical
images and we were unable to find any implementation of
the VPLR algorithm suitable for use with satellite remotely
sensed images like the sets used in Section III [19]. Typical
astronomical images have rather different properties and needs
from satellite remotely sensed images of the Earth’s surface.
Astronomical images consist mainly in point sources (stars,
asteroids, etc.) and diffuse extended areas (nebulae, galaxies,
etc.). Some of their major differences to consider are: the
absence of sharp edges, shadows, etc.; the available number of
images from the same scene and the multitemporal differences
between them; the decisive lower signal-to-noise ratio (SNR);
and types and significance of predominant noise sources and
distortions. Therefore, some variations and additional functions
had to be added to the core VPLR algorithm to develop an
SRVPLR implementation useful not only for typical astronom-
ical images but also for satellite remotely sensed images. In
particular, some of these new added functions are as follows:

1) improvements in numerical processing for working with
high geometrical corrections within the precision re-
quired when dealing with images with high dimensions
and/or different original precisions;
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Fig. 1. Example of the elements involved in the projection of one low-
resolution image (LR) onto the high-resolution grid (HR) during the variable-
pixel linear reconstruction algorithm.

2) prior histogram matching on LR images;
3) proper consideration of special pixel values used in the

original images as marks for special status that may be
important to transmit directly or to keep in the result;

4) improvements to facilitate the automation of the
processes with a high number of LR images with different
properties;

5) masking and intermediate result utilities to select or eval-
uate more easily the area of interest in the results.

A more detailed outline of the new added functions can be
found near the end of this section.

VPLR is a linear reconstruction algorithm designed to re-
cover much of the information lost in undersampling the
scene. Other commonly used linear reconstruction techniques
are shift-and-add and interlacing. However, shift-and-add con-
volves the image again with the original pixel, thus adding
to the blurring of the image and the correlation of the noise.
Moreover, true interlacing is often not feasible due to poor
placement of the sampling grid or the effects of geometric
distortion. However, VPLR overlaps the pixels of every LR
image over a resulting HR image enabling each LR pixel to be
condensed prior to overlapping in order to avoid convolving the
HR image with the PSF of the original LR pixel. The relative
side size of the condensed pixel with respect to the LR pixel
side size is given by the parameter p (pixfrac). The algorithm is
closer to shift-and-add when p approaches 1 and to interlacing
when p approaches 0. Moreover, a weight mask statistically
optimizes this overlapping. Every condensed pixel (hereafter
known as drop) is corrected by rotation, translation and bicubic
geometric transformation, and finally added to the output initial
HR image with a weighting proportional to the overlapping area
between the drop and every HR pixel, considering the weight
mask values. This algorithm not only preserves photometry but
also removes the effects of geometric distortions in both image
shape and photometry and minimizes shot noise effects [20].
Fig. 1 shows a graphical description of the objects involved in
these projections.

Analytically, if (xi, yi) is a LR pixel with intensity dxiyi

and weight wxiyi, (x0, y0) is a HR pixel with intensity Ix0y0

and weight Wx0y0, and the overlapping area between the drop
(xi, yi) and the pixel (x0, y0) is axiyix0y0 (≤ 1), then the
resulting values for the pixel I ′x0y0 and its weight W ′

x0y0 are
computed with the expressions

W ′
xoyo

= axiyixoyo
· wxiyi

+ Wxoyo

I ′xoyo
=

dxiyi
· axiyixoyo

· wxiyi
· s2 + Ixoyo

Wxoyo

W ′
xoyo

(1)

where the scale factor between HR and LR images s is intro-
duced to conserve the superficial intensity. Once the whole LR
image has been processed, each HR pixel value and weight is
given by the expressions

Wxoyo
=

∑

xiyi

axiyixoyo
· wxiyi

Ixoyo
=

∑

xiyi

dxiyi·axiyixoyo ·wxiyi
·s2

Wxoyo

. (2)

Note that in these summands most axiyix0y0 are zero because an
input LR pixel usually only affects few output HR pixels. The
recombination algorithm is applied pixel by pixel throughout
all the LR images and HR pixels to obtain the HR image that
contains information from all those LR images already recom-
bined and its corresponding weight map W . Note that the pixel
side size of the HR image is as small as required depending
on the elected s value, although this does not mean that the HR
resolution is as precise as that corresponding to this size (rather,
it is an intermediate value). If the drop size (given by p) is
sufficiently small, not all output HR pixels will have data added
to them from each input image. Thus, s and p values should
be chosen in order to use a drop size small enough to avoid
degrading the image, but large enough to ensure that after all
the LR images are overlapped the coverage is uniform enough.

In order to work with real data, any useful implementation
of the VPLR algorithm must be able to work with bicubic
geometric transformation with given parameters that obtain the
coregister of the LR images at a subpixel level of precision.
Moreover, the weighting system (through the weight masks) has
to consider other effects such as the following:

1) different exposure times of every LR input image;
2) given initial masks where the pixels are weighted depend-

ing on their reliability;
3) different system reference origins of LR images pixels.

SRVPLR includes all those utilities already included in
previous drizzle implementations. In addition, it also contains
others that are specifically necessary for working with satellite
remotely sensed images of the Earth’s surface:

1) improvements in numerical processing for working with
high geometrical corrections at the precision required;

2) six different ways of setting all the program parameters
and the properties of each image in order to facilitate the
automation of the processes with a high number of LR
images with different properties;
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3) several utilities to obtain intermediate results, logs, and
evaluation data if desired: histogram-matched LR images,
with histograms prior and after the histogram matching,
the original LR images corrected for translation, rotation,
and geometrical distortions, the intermediate results of
SRVPLR after every new LR recombination, etc.;

4) prior histogram matching on LR images when required;
5) proper consideration of special pixel values used in the

original LR images as marks for special status that may be
important to transmit or to keep throughout the process;

6) utilities for masking in the result the scene zones not
affected by any recombination;

7) utilities for masking in the result the scene zones not
shared by all the LR images, thus obtaining only the to-
tally recombined area when considering every LR image;

8) optimization to be able to work with images with high
dimensions and/or different precisions;

9) optional configuration of the limiting parameters by the
user in order to adapt the execution to the available
images and computer properties.

Finally, it should be stated that previous drizzle implementa-
tions, which are designed to work with astronomical images,
are integrated into some interfaces, software platforms and
libraries (IRAF, IDL, etc.) that are well known and widely
used by the astrophysical community. However, in many remote
sensing projects it is especially necessary to use software that
is as simple, independent and easily exportable as possible. In
our case, we decided to develop SRVPLR as an autonomous
program written in ANSI C using only Numerical Recipes
libraries [21] to meet these requirements.

III. EXAMPLES OF APPLICATIONS

SRVPLR was applied to different sets of real and simulated
LR images to evaluate its performance and results [22]. We
present here two of these applications, which are especially ap-
propriate because of their representation and special difficulty.

1) Simulated LR images created from red, green, blue
(RGB) bands of an original Quickbird image from
Madrid (Spain).

2) Real LR RGB Landsat ETM+ images from the city of
Barcelona and its surroundings (Spain) selected among
the available observations over a two-year period.

We used both Quickbird simulated data and real Landsat
images in order to show on one hand the gain that can be
obtained in resolution with SRVPLR using almost perfect data
(simulated Quickbird data) and, on the other hand, to show
that the algorithm is able to obtain also very good results with
real images acquired by a different remote sensing system with
various operating modes. Of course, the real data experiment
could be performed using a set of high-resolution Quickbird
images. Nevertheless, since to obtain a set of independent im-
ages of the same region from Quickbird or IKONOS satellites
is difficult and very expensive, we preferred to use the more
widely available Landsat data.

The two sets of LR images have very different properties,
require a different coregister process, and the SRVPLR options

and utilities used were different. Both of them are especially
difficult to treat with other more sophisticated super-resolution
algorithms due to the following characteristics:

1) huge size and a rather large number of images per set (9)
to be processed;

2) important difficulties in determining a precise enough
PSF across the image;

3) very different landscapes across the images (urban areas,
parks, crops, etc.) with very different properties;

4) high geometric corrections needed to achieve subpixel
precision in their coregister;

5) special need to work properly with special pixel values
used in the original LR images as marks for special
status;

6) temporal variability of the scene between the real LR
images (including changes in the objects included, dif-
ferent illumination and atmospheric conditions), it being
imperative to use some additional techniques such as the
histogram matching.

Moreover, both Quickbird and Landsat ETM+ images are
currently among the most sought-after and widely used type of
satellite remotely sensed images in object recognition projects,
and this makes the choice even more interesting.

In the following subsections, we describe in detail the
SRVPLR applications made on each of the two sets of LR
images. Fig. 2 includes outlines of the two processes described
in Sections III and IV.

A. Quickbird Application

For this application, we had an original multispectral Quick-
bird image of an area of Madrid. We generated nine simulations
from a 2000 pixel × 2000 pixel subarray of the RGB bands
with 2.4-m ground sampling distance (GSD, approximately
the pixel side size over terrain). The LR images were nine
1000 pixel × 1000 pixel RGB 4.8-m GSD simulations rotated
20◦ · n (n = 0, . . . , 8). They were created using the interme-
diate and additional results tools incorporated in SRVPLR.
During the process, the original image was rotated and pro-
jected onto a 0.6-m GSD grid, and the resulting image was
degraded with an integration of counts to simulate the 4.8-m
GSD image.

The SRVPLR application presented here was performed with
the 1000 pixel × 1000 pixel simulated LR with a scale factor
s = 0.5. Thus, it generated a 2000 pixel × 2000 pixel HR
image with a pixel side size half the pixel side size of the LR
images. Therefore, the obtained HR image is the same size
as the original Quickbird image from which we obtained the
simulated LR. Fig. 2 (left) shows an outline of this application.

We tried several executions with different values of the
pixfrac p. In this particular case with such important relative
rotations, when the pixfrac value is less than the HR pixel
diagonal there may be output pixels in HR that are not affected
by some of the LR among other pixels affected by all of them.
This situation is not desirable because the VPLR algorithm
is based on the multiple overlapping of several LR images
to extract part of the differential information contained in the
aliasing region. Thus, in those cases where big rotations or
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Fig. 2. Outline of the LR images sets used in each SRVPLR application. (Left) Simulated RGB Quickbird images (Section III-A). (Right) Real RGB Landsat
ETM+ images (Section III-B). Further explanations in the text.

geometric distortions exist, we recommend the use of pixfrac
values greater than the minimum, as follows:

pmin =
√

2 · s2 (3)

The phenomena described above can be easily detected
through the sensible use of some additional tools incorporated
in SRVPLR: for extracting the intermediate results, for working
with special pixel values used as marks for special status
regions, and for detecting the pixels in the output image not
affected by any LR projection. In theory, the minimum pixfrac
value ensures that the PSF of the pixel condensation (drop)
produces as little image degradation as possible. However, we
recommend in practice allowing some degree of overlap with
a pixfrac value slightly higher than pmin in order to increase
the overlapping and thus optimize the recombination. This is
especially relevant when the number of LR images available is
low or when the geometric correction imprecision can lead to a
nonnegligible degree of deformation in the overlapping area of
each output pixel with each LR image drops. As p approaches
pmin the overlapping decreases and produces less recombina-
tion; however, if the geometric corrections are precise there
is a better localization of the recombination of the differential
information from each LR. Otherwise, as p approaches 1 the
overlapping increases but the convolution with the PSF drop
has a greater effect on the output HR and the localization of
the recombination is worse. In the particular Quickbird case,

images are simulations extracted from an original one and
geometric corrections are well known. Thus, there are no big
differences in a wide range of p. In Section IV, we report
the results corresponding to an application of SRVPLR with
p = 0.71, very near to pmin.

In order to compute properly certain quantitative results
shown in Section IV, we used an additional tool of SRVPLR to
select in the output HR image only those pixels that have been
overlapped by all the corrected LR image projections, the rest
being masked out. In addition, we used the SRVPLR tools to
deal with special pixel values used as marks for special status,
to mark the pixels not affected by any LR image, to mark the
pixels not affected by at least one of the LR images and to mark
in the resulting HR weight image the areas not affected by all
the LR images. Nevertheless, it is possible to perform different
executions without some or any of these tools in order to see in
the weight image the final overlapping and effects of the whole
output in every region of the final HR.

B. Landsat ETM+ Application

For this application, we had a set of nine LR Landsat ETM+
multispectral real images with 30-m GSD from Barcelona
and the surrounding area taken over a two-year period. We
processed 1000 pixel × 1300 pixel subarrays of the RGB
bands with SRVPLR. We also had the nine corresponding 15-m
GSD panchromatic (PAN) images. Their wavelength range is
described in Table I.
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TABLE I
LANDSAT ETM+ BANDS USED

The choice of N × M dimensions with N different than
M is noteworthy because some available super-resolution
programs only accept images with N = M . Moreover, most
of the programs that accept N different from M actu-
ally base the computations on L × L LR images with L =
maximum (N,M); these contain the original LR surrounded
by added pixels with a constant value. When these programs
are unable to work properly with masks or with selected pixel
values for marking special status, their results are contaminated
by the effect of these pixel values without physical meaning. In
contrast, all these problems are already solved with SRVPLR
because it can work with N different from M and is designed
to work properly with those selected pixel values for marking
special status in the LR images and with an initial weight mask
for each LR.

Coregister with subpixel precision is one of the main prob-
lems with real data. As SRVPLR only performs the recombi-
nation, it needs the parameters for the geometric correction of
each LR and their reference system translations and rotations
with subpixel precision for the right recombination to produce
the HR. We used control points to fit by a traditional least square
fitting method the following polynomials:

x′ = a0 + a1 · x + a2 · y + a3 · x · y

y′ = b0 + b1 · x + b2 · y + b3 · x · y (4)

where (x, y) and (x′, y′) are the reference systems to coregister
and ai and bi are the parameters to be fitted.

The best fits obtained for each LR had root mean square error
(RMSE) between 0.5 and 0.6 in pixel units. These are typical
values when working with this type of satellite remotely sensed
images of the Earth. However, they are larger than desirable for
a super-resolution application. Nevertheless, we accepted them
as valid enough for the following reasons.

1) In this type of image and scene, the use of polynomials
with height coordinate Z parameters could obtain better
fits. However, SRVPLR is not able to perform 3-D geo-
metric corrections because this extra feature has yet to be
achieved at a reasonable additional computational cost.

2) These RMSE values are larger than advisable but small
enough to obtain a significant spatial resolution enhance-
ment with SRVPLR. This gives them the additional in-
terest of showing the effects of a nonperfect real case in
contrast to the previous application on simulated Quick-
bird images.

3) Super-Resolution algorithms applied to real orbital im-
ages like Landsat need to work with a large amount of
images, so they usually have to perform the coregis-
ter with automatic coregistration algorithms. These pro-
grams with this type of image barely achieve better
RMSE values than the ones we obtained with control
points and the polynomial fit explained above.

In this application, the LR images are independent real
images of 30-m GSD from different days and conditions.
Therefore, there is no ideal reference image as in the Quickbird
application with simulated LR images. Nevertheless, Landsat
ETM+ also has a 15-m GSD panchromatic band (PAN). Thus,
we chose the scale factor s = 0.5 to produce a 15-m GSD
HR result, the same GSD as the PAN Landsat ETM+ images.
This enabled us to use one of them as the reference image
to estimate the quantitative evaluation of this application in
Section IV.

In terms of choosing an optimal pixfrac value, it should
be remembered that in this case the images are real, with
important geometric corrections and a relatively large RMSE.
Therefore, when we used p values near to pmin in (3), we
could see the geometric grid-shaped pattern effect. This effect
appears because the different overlapping geometry produces
some pixels with more overlap than others, following a striped
pattern. This pattern is more evident in homogeneous regions
of the image (the sea, parks, etc.) and is more easily detected
in the weight output image. It increases with geometric cor-
rection errors and decreases when the number of LR images
increases. When p approaches 1, the drops are less concentrated
and the overlapping increases producing less stripping effect.
However, with these high p values the resolution enhance-
ment is also decreased. After several trials, we decided to
choose p = 0.85 as the best compromise between minimizing
the stripping pattern effect and a reasonable spatial resolution
enhancement.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Fig. 3 presents several corresponding subarrays of LR, HR
images that show the improvements achieved by SRVLR. Each
of the subarrays shows regions with some special interest
because of their difficulties, impressive results, special effects
or artifacts. Those selected subarrays are highly zoomed to
allow the reader to appreciate more easily how the improvement
in resolution in SRVPLR is crucial to recognize the resolved
objects with sizes near the limiting spatial resolution scale of
the LR images.

Moreover, we were also interested in an objective and quanti-
tative evaluation of the results. In both applications selected for
this paper, there is some kind of reference image to calculate
some of the usual parameters (formulas in the Appendix) and
evaluate super-resolution improvements. The resulting values
(computed for each whole HR image RGB band) produced by
SRVPLR are shown in Tables II and III.

Finally, we also computed (see tables) the same parameters
with the three most traditional uniform interpolations (nearest
neighbor, bilinear, and bicubic), these being done directly from
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Fig. 3. Examples of graphical results for the Quickbird [(a)–(f)] and Landsat applications [(g)–(l)]. They are selected subarrays from one of the LR images used
[(a), (d), (g), (j)], from the results from using SRVPLR [(b), (e), (h), (k)] and from the reference images [(c), (f), (i), (l)]. Further explanations in the text.
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TABLE II

TABLE III

one of the LR images. Those parameters are also computed
for each interpolated image band as a whole. The results for
bilinear and bicubic interpolations are shown together because
they produce the same values within computing precision.
SRVPLR produces a HR image that directly simulates the
values that a real HR sensor could detect. In contrast, the
traditional interpolations obtain every HR pixel value from an
approximation of the nearest LR pixels of one image without
considering the change of the pixel, and they then have to
be multiplied by a proportional constant factor s2 to simulate

the actual intensity values that a real HR sensor could have
collected.

It should also be pointed out that there is a positive bias in
the calculation of these parameters in favor of the interpolation.
This is due to the fact that these parameters are calculated using
the same LR image from which we made the interpolation
as the reference image, while the HR image resulting from
SRVPLR is obtained by the recombination of nine independent
LR images. We did not try fairer (but more complexes) methods
of comparative evaluation because even with this bias favoring

Authorized licensed use limited to: Universitat de Barcelona. Downloaded on February 16, 2009 at 06:23 from IEEE Xplore.  Restrictions apply.



1454 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 5, MAY 2007

Fig. 4. Subarrays of the R bands from the following images. (a) The simulated LR image with 0◦ rotation. (b) Nearest neighbor interpolation of (a). (c) Bilinear
interpolation of (a). (d) Bicubic interpolation of (a). (e) SRVPLR result from all nine LR images. (f) Reference original Quickbird image.

interpolation, our results show that SRVPLR obtains better
results.

A. Simulated LR Set From One Quickbird Image

Fig. 3 shows some results of SRVPLR application to the
simulated LR images created from a Quickbird RGB image.
Each of the two selected regions shows the respective subarrays
of the following images:

1) LR simulated image rotated 0◦ (a), (d);
2) SRVPLR result using the process described in

Section III-A (b), (e);
3) reference image (original Quickbird image) (c), (f).

Of course, SRVPLR is unable to obtain resolution as good as
in the reference image. However, the SRVPLR result must be
compared with one of the LR images and the reference image
as this enables us to evaluate the improvements and the artifacts.

The first region (a)–(c) shows a building with characteristic
geometric edges, woods, a road with cars, and some smaller
houses. First, the edges of the building show a high contrast
and follow straight lines in an inclined direction, thus indicating
that the improvement achieved with SRVPLR (b) is clearly
significant and that there are no important artifacts resulting
from the reference system axis directions. Second, the woods
show how SRVPLR is also capable of making improvements
in more homogeneous areas without high contrast. Finally,
the houses and the road with cars have small elements with
sizes near the limit of the resolution scale, which are the most
difficult to recover from the LR image. Even so, the results are
promising.

The second region (d)–(f) shows a dense industrial complex
with different structures and buildings in several directions.
There are no artifacts due to the typical multitemporal effects
in the shadows, moving objects, etc., because in this case all
the LR simulated images were created from the same original
image.

In this application, we have chosen an s value to obtain the
HR image with the same GSD as the original Quickbird RGB
bands from which we obtained the simulated LR images. Thus,
we can also use the original Quickbird bands as the reference
images to evaluate quantitatively the improvements achieved
by SRVPLR in obtaining the HR from the LR images. The

results of the parameters described in the Appendix are shown
in Table II.

In this particular case, the interpolation was performed from
the simulated LR image most similar to the original image (the
LR rotated 0◦). Fig. 4 shows a selected region with the R band
subarrays from the following images:

(a) LR simulated image rotated 0◦;
(b) nearest neighbor interpolation of (a);
(c) bilinear interpolation of (a);
(d) bicubic interpolation of (a);
(e) SRVPLR result from processing the nine LR images;
(f) reference: original Quickbird image.

Comparison of Fig. 4 and Table II shows that the interpo-
lation methods which best fit the histogram of the reference
image and alter less the image surroundings are those with the
worse evaluation parameters values (and vice versa). In this
R band example, the quantitative results in Table II for the
nearest neighbor interpolation image are better (lower RMSE
and normalized RMSE (NRMSE), and bigger ρ and SNR) than
for the bilinear and bicubic interpolation images. In contrast, in
Fig. 4 subarrays the reader can easily appreciate how the near-
est neighbor interpolation subarray (b) provides worse visual
results than the bilinear subarray (c) or the bicubic subarray (d).
The nearest neighbor interpolation method cannot recover prop-
erly the correct shape of the building on the left and clearly
deforms the other smaller objects (cars, etc.) on its left side.
However, the bilinear and bicubic interpolation methods re-
cover better those shapes and objects, even though they are
clearly visually worse (have more artifacts and poorer shapes)
than the SRVPLR result shown in (e).

Those differences between the visual and the quantitative
best interpolation method results are not contradictory. They
happen because bilinear and bicubic interpolation methods
achieve better qualitative (visual) fit to the interpolated image
(the reference image) by mixing in a nonuniform way the
information of neighbor pixels, whereas the nearest neighbor
interpolation achieves a better quantitative fit to the interpolated
image (the same reference image) because it just chooses the
nearest pixel value.

In contrast to the interpolations of the reference image meth-
ods, the HR image obtained with SRVPLR was obtained by
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the recombination of nine different LR images. These different
conditions in the comparison with the reference image produce
some evaluation parameter values that are slightly better for
some nearest neighbor interpolations in certain bands, but at
the same time the visual results are clearly better for SRVPLR,
as shown in Fig. 4. In any event, and despite the disadvantages
aforementioned, SRVPLR obtains better evaluation parameter
results compared with the bilinear and bicubic interpolations:
RMSE and NRMSE values are lower; SNR (SNRdB) values
are higher; and comparative correlation ρ values are nearer
to 1. All these parameters suggest that the SRVPLR result is
nearer to the reference image than is the bilinear and bicubic
interpolations.

To sum up, SRVPLR recombines the differential information
from the nine different LR images to obtain a HR image with
more realistic visual results and better quantitative evaluation
parameters than with traditional interpolations (excluding the
nearest neighbor interpolation because of the effects previously
mentioned).

B. Real LR Set of Landsat ETM+ Images

Fig. 3 shows some results of SRVPLR application to the nine
real Landsat RGB images. Each of the two selected regions
shows the respective subarrays of the following images:

1) one LR real Landsat ETM+ RGB image (g), (j);
2) SRVPLR result using the process described in

Section III-B (h), (k);
3) reference image (PAN image corresponding to the LR

selected above) (i), (l).

In this case, it should be noted that SRVPLR recombines nine
different real images coregistered with RMSE values between
0.5 and 0.6 pixels and with very important multitemporal
effects. Even so, it can be seen that SRVPLR achieves important
improvements.

The first region (g)–(i) shows part of the sports harbor with
the quays and other structures at the limit of spatial resolution
in the LR image. SRVPLR manages to resolve many of these
structures without introducing any false ones due to artifacts.
Moreover, the sea is also properly maintained, despite being an
almost homogeneous cover. The unavoidable and most com-
mon effect in the SRVPLR result is that the edges of some
structures are a bit diffuse and slightly too curved due to the
poor geometric correction resulting from the RMSE of the
coregister of the LR images.

The second region (j)–(l) shows some structures at the en-
trance to the harbor. Here, the LR image is only one among the
nine (taken on different days over a two-year period) that SRV-
PLR recombines. In (j) there is a boat coming into the harbor,
another one inside, and all but one of the sea corridors are open.
However, the boats are not present in any of the other eight LR
images and the corridors are closed in some of them. This is an
excellent example of the multitemporal effect, which is why in
SRVPLR these elements (boat, corridors) show ghosting aspect.
Their intensity is proportional to the percentage of images
where they appear, so the boats are less intense than the new
closed corridors. Moreover, these elements show the shaded

pattern described in Section III because the overlapping is not
homogeneous enough. This artifact is more evident in these
places because of the important contrast between the sea and the
boat and corridor colors, and also because the elements appear
in a few images. However, it is actually present throughout
the image to a greater or lesser extent. Both artifacts (multi-
temporal effects and nonhomogeneous overlapping) could be
reduced by applying SRVPLR to a high number of images,
and if the geometric corrections were less intense and more
accurate.

As already explained in Section III-B, in order to be able
to compute the parameters established in the Appendix, our
reference image in this application is one of the panchro-
matic images from Landsat ETM+ (hereafter called PAN). We
processed our 30-m GSD LR RGB real images with s = 0.5
in order to produce an HR image with the same GSD as the
PAN. This approach using PAN as the reference image is only
approximately valid because of the following.

1) The images from Landsat ETM+ are in the LGPS distrib-
ution images system. This system works with the pixel
centers translated 0.5 pixels in x and y from the pixel
centers of the RGB HR bands resulting from SRVPLR
and also from the interpolated bands from one of the LR.

2) The PAN image has a different frequency range and
calibration from the RGB bands. Thus, the radiometry of
the same scene can be very different and, moreover, this
difference changes with the different kind of objects in
the scene.

3) The reference is only one PAN image from one of the
nine days and conditions for which the nine RGB LR
images are available. Thus, there are multitemporal ef-
fects between the different LR images (changes in the
geometry, the illumination and the objects in the scene).
The PAN image was only a completely valid reference
image (ignoring the other problems above) for the one
RGB LR image from the same day.

Nevertheless, we decided to use PAN as the reference image,
and sought to minimize its drawbacks while preserving as much
as possible the object localization and using simple transform-
ing methods that are as harmless as possible. We have no simple
solution to drawback 3), but to overcome drawbacks 1) and 2)
we used additional tools included in SRVPLR to perform the
following transformations.

1) The original selected PAN image was reprojected onto
an empty grid with the same side size but translated
0.5 pixels in x and y to overcome drawback 1).

2) Each R, G, and B band was histogram matched to the
projected PAN reference image to overcome drawback 2).

Table III shows the values computed for the parameters
mentioned in the Appendix.

It should be noted that the interpolations were made from
the RGB LR image corresponding to the selected PAN refer-
ence image. Thus, the interpolated images do not suffer from
multitemporal effects [drawback 1)] when compared with the
reference image. Furthermore, they have no additional source
of errors corresponding to the geometric correction, which was
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described in Section III-B as being one of the main sources of
errors in the HR image resulting from SRVPLR.

The results in Table III are very successful despite the im-
portant advantages that the interpolated images have compared
with the HR image produced by SRVPLR. On the whole,
SRVPLR produces clearly better results than interpolations
in bands G and R. The worse results in band B are of not
concern because we cannot expect a good fit of them since
the wavelength range of the reference PAN image excludes the
wavelength range of the HR B band (see Table I). Furthermore,
the drawbacks present in the HR images produced by SRVPLR
but not presented in the interpolated images (mentioned in the
previous paragraph) are decisive in a large portion of the image
where the predominant types of cover change significantly their
radiance in the band B wavelength range.

To sum up, SRVPLR improves the spatial resolution limit
and is a better solution than traditional interpolations, its few
artifacts being mainly due to the multitemporality of the real
images (effects diminishing when increasing the number of LR
images processed), despite the relatively high RMSE of the
coregister.

V. CONCLUSION

In this paper we have presented the super-resolution algo-
rithm SRVPLR and two examples of applications aimed at
recognition of objects with sizes approaching the limiting spa-
tial resolution scale. Its core is based on the algorithm VPLR.
Fruchter and Hook [20] developed an implementation of this
later algorithm (known as drizzle) for the combination of astro-
nomical dithered undersampled images, but it was not suitable
for properly working with remote sensing data sets. Besides,
astronomical and remote sensing images present so different
properties that its usefulness with satellite remotely sensed data,
even with additional features, needed to be demonstrated. We
have developed SRVPLR as an evolution of the astronomical
drizzle with new features to make it useful for both remote
sensing and astronomical data sets. Moreover, we have tested
and demonstrated with the applications shown in this paper
that the algorithm provides very good super-resolution re-
sults with low computational cost for satellite remotely sensed
images.

The first application was performed with a set of nine sim-
ulated LR RGB images extracted from one original Quickbird
image, and the other application with a set of nine real RGB
Landsat ETM+ images. Each case is very different from the
other in terms of the application, properties of the images and
artifacts. In both cases, it has been shown how SRVPLR obtains
better results than traditional uniform interpolations over any of
the low-resolution images (even using the low-resolution image
best suited to perform the interpolation), and how significant
these improvements can be for object recognition purposes with
sizes near the limiting spatial resolution scale.

SRVPLR uses a nonuniform interpolation algorithm with low
computational load, thus enabling real-time applications. We
acknowledge that, in this approach, degradation models are
limited and only theoretically applicable when the blur and
noise are the same in all the LR images. In any event, and

as argued in the Introduction, this drawback is acceptable in
some projects in the particular field of satellite remotely sensed
images. Therefore, SRVPLR may be a very useful tool for many
current projects.

Our aim now is to develop new versions of SRVPLR that
are capable of supporting additional advanced tools such as the
following:

1) automatic coregister of images with subpixel accuracy
capable of working also with 3-D corrections;

2) correction of different illumination and shadows;
3) work with multispectral images in different spaces (HSI,

etc.) and color band combinations;
4) new tools to evaluate resolution enhancement.
Finally, we are interested in developing a new full super-

resolution algorithm that is also capable of dealing with noise
and blur deconvolution, performing the reprojection to the HR
grid with SRVPLR.

APPENDIX

The measure of success in restoration algorithms is usually
error measures between the processed image and the reference
image. The parameters computed in this paper as quantitative
evaluators are the RMSE, the NRMSE, the comparative corre-
lation (ρ), and the SNR in decibel units (SNRdB). Each one is
computed for each band separately.

When In
ij is the intensity value of the pixel (i, j) of the band n

with N × M pixels and n = REF is the identifier for the chosen
reference image, they are computed as
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