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Super-resolution photoacoustic 
and ultrasound imaging with sparse 
arrays
Sergey Vilov1, Bastien Arnal1, Eliel Hojman2, Yonina C. Eldar3, Ori Katz2 & Emmanuel Bossy1*

It has previously been demonstrated that model-based reconstruction methods relying on a priori 

knowledge of the imaging point spread function (PSF) coupled to sparsity priors on the object to 

image can provide super-resolution in photoacoustic (PA) or in ultrasound (US) imaging. Here, we 

experimentally show that such reconstruction also leads to super-resolution in both PA and US imaging 

with arrays having much less elements than used conventionally (sparse arrays). As a proof of concept, 

we obtained super-resolution PA and US cross-sectional images of microfluidic channels with only 8 
elements of a 128-elements linear array using a reconstruction approach based on a linear propagation 
forward model and assuming sparsity of the imaged structure. Although the microchannels appear 

indistinguishable in the conventional delay-and-sum images obtained with all the 128 transducer 
elements, the applied sparsity-constrained model-based reconstruction provides super-resolution 

with down to only 8 elements. We also report simulation results showing that the minimal number of 
transducer elements required to obtain a correct reconstruction is fundamentally limited by the signal-

to-noise ratio. The proposed method can be straigthforwardly applied to any transducer geometry, 

including 2D sparse arrays for 3D super-resolution PA and US imaging.

Ultrasound1 (US) and photoacoustic2 (PA) imaging are now widely applied biomedical imaging modalities. �ey 
both usually use multielement transducer arrays as ultrasonic detectors for acquiring acoustic signals. Developed 
for two-dimensional (2D) or cross-sectional imaging, linear transducer arrays are widely spread in research and 
clinical applications. For three-dimensional (3D) single shot imaging, 2D array matrices should be used instead of 
linear arrays. However, the availability of 3D imaging equipment is �rst limited by the sophisticated fabrication pro-
cess involved: probes for 3D imaging may have several thousands of elements to connect which makes the assembly 
of such probes technically di�cult3. Second, to control simultaneously as many elements as possible, sophisticated 
ultrasound electronics with a very large number of channels are needed. Decades ago, sparse arrays were pro-
posed4,5 to reduce substantially the number of transducer elements required for 3D US imaging. �e corresponding 
reduction scheme suggests using a selection of elements of a dense periodic array without changing the total trans-
ducer aperture. Such a selection can either be a random subset of elements4 or a de�ned pattern5. Experimental 
investigations of imaging performances of sparse arrays in US imaging showed that sparse arrays can provide a 
di�raction-limited resolution similar6,7 to that of all-element arrays. Special reconstruction techniques have been 
recently proposed for sparse array US imaging. In particular, the convolutional beamforming algorithm was 
reported8 to provide better (although still di�raction-limited) resolution than standard delay-and-sum beamform-
ing. It is worth noting that in radar technologies it has also been shown that advanced compressed sensing methods9 
permit preserving the di�raction -limited resolution when using radars with a reduced number of elements10,11.

Sparse arrays have also been widely applied in 3D photoacoustic tomography12–18. In most of these stud-
ies sparse arrays were used to obtain diffraction-limited images with model-based reconstruction13–18. The 
model-based reconstruction approach considers a forward linear model expressed as S = AT, where S are the 
acquired signals, T is the object to reconstruct, and the propagation matrix A is a library containing the point 
spread function (PSF) at all points of the discretized imaging zone. �e reconstruction consists in �nding the 
object that minimizes a cost function de�ned as the sum of a �delity term (taking into account the measurement 
data and the model) and a regularization term (taking into account measurement noise and prior knowledge on 
the object).
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As the main novelty of this work, we investigate the possibility of using sparse ultrasound arrays in the context 
of super-resolution imaging with the model-based approach. �e classical resolution in both PA and US imaging 
of biological tissues at depth is limited by acoustic di�raction. Speci�cally, it is the absorption of ultrasound in 
tissue that limits the highest ultrasound frequency detectable at a given depth, and therefore the resolution via the 
di�raction phenomenon. In particular, the depth-to-resolution ratio turns out to be of the order of 100 for both 
US and PA imaging of biological tissue. As an example, for a 10 MHz US probe, that can be ordinarily used for 
US or PA imaging at a few centimeters depth in tissues, di�raction limits the resolution to 100-200 µm in typical 
imaging conditions19.

Imaging beyond the di�raction limit has �rst been investigated in optical microscopy, resulting in the advent 
of Nobel-prize winning pioneering methods such as photo-activated localization microscopy (PALM)20 and 
stimulated emission depletion (STED) microscopy21. Following the aforementioned advances in optics, several 
super-resolution techniques have been proposed more recently for both US and PA imaging. Super-resolution 
methods include localization-based imaging, �uctuation-based reconstruction and model-based reconstruction. 
As for optical imaging, the localization approach in US22–25 and PA26,27 imaging relies on the detection of indi-
vidual scatterers or absorbers. �e idea is that the coordinates of a point-like source can be determined with a 
precision much better than the size of the imaging PSF provided that this PSF can be separated from those of the 
other sources in some parameters space. �is separation condition imposes a low concentration of sources, and 
therefore the use of contrast agents for visualization of biological structures. Fluctuation-based PA28,29 and US30 
techniques, based on the principles of super-resolution optical �uctuation imaging (SOFI), exploit uncorrelated 
�uctuations from di�erent sources. While �uctuation-based approaches eliminate the need for isolating indi-
vidual sources, they remain limited in terms of spatial resolution improvement and temporal resolution. It was 
also shown that model-based reconstruction with sparsity constraints on the sample, an approach originating 
from the �eld of compressed sensing9, could yield super-resolved US31,32 and PA33 images. A major advantage 
of model-based reconstruction over the previously mentioned localization-based and �uctuation-based tech-
niques is that by requiring (in principle) only a single-shot acquisition it permits a high temporal resolution. 
Some very recent works34–36 have proposed to mix �uctuation-based and model-based techniques to achieve 
super-resolution in US36 and PA imaging35. In PA imaging, it was also demonstrated34 that super-resolution can 
be obtained via the joint support recovery through the model-based approach. In particular, the vector S is com-
posed of data measured for several PA acquisitions, with each acquisition corresponding to a random speckle 
illumination of the same absorbing structure forming the joint support.

In US imaging, the use of 2D sparse arrays for super-resolution imaging has recently been demonstrated 
by use of a localisation approach and microbbubles25. Here, we investigate the possibility to perform both US 
and PA super-resolution imaging of sparse samples with a label-free model-based reconstruction approach using 
a sparse array. More speci�cally, we apply sparsity-constrained model-based reconstruction to perform 2D 
super-resolution imaging of sparse test samples with only 8 (out of 128) elements of a linear transducer array. 
We show that this reconstruction approach can be used for both PA and plane-wave US imaging with the same 
experimental setup. To build the matrix A that describes the forward model, we propose a novel method that 
involves only one PSF acquisition, as opposed to the measurement of the full set of PSFs in the imaging zone. 
We also report simulation results showing how the reconstruction quality is related to the number of transducer 
elements and the signal-to-noise ratio (SNR).

Results
To demonstrate that sparsity-constrained model-based reconstruction can provide super-resolution in 
sparse-array PA or US imaging, we carried out two proof-of-concept experiments (one for US and one for 
PA imaging). �e goal of each experiment was to recover a super-resolved cross-sectional image of a sparse 
�ve-channel micro�uidic sample by processing data received by di�erent subsets of elements of a linear ultra-
sound probe. �e imaging con�guration for both experiments is shown in Fig. 1 and a picture of the setup is 
available in Supplementary Materials. Importantly, in both PA and US experiments, we used the same imaging 
equipment, the same acquisition geometry, samples of identical structure, and the same reconstruction method. 
Only the nature of the contrast and the way the ultrasound wave is generated were di�erent in these experiments. 
In the PA experiment, the micro�uidic channels were �lled with absorbing liquid and illuminated by pulsed light. 
In the US experiment, the micro�uidic channels were �lled with air and a plane ultrasound wave was emitted by 
the transducer array. In both experiments, the measurement data consisted of the ultrasound signals detected by 
the array for a single shot excitation (light pulse or plane wave). Prior to imaging the �ve-channel samples, the 
PSF required to build the forward model was measured for each type of sample (absorber-�lled or air-�lled) in 
the corresponding imaging mode (PA or US).

�e image reconstruction consisted in �nding the object that minimizes a cost function. �is cost function 
was based on the forward model (derived from the PSF calibration) and a l1-norm regularization term used to 
suppress the measurement noise and select a sparse object. �is model-based reconstruction was then compared 
to the conventional delay-and-sum approach taken as a typical di�raction-limited reconstruction approach. 
Further details on the experimental and reconstruction methods can be found in the Methods section.

We �rst demonstrated for both PA and US imaging that sparsity-based reconstruction led to super-resolution 
images of sparse samples when using all the 128 available elements of the probe. �e conventional delay-and-sum 
images are shown in Fig.  2b,g. It can be noticed that the conventional reconstruction is affected by 
di�raction-limited resolution: two neighboring channels can not be separated, resulting in a bar-like pattern in 
place of the �ve individual channels. �e center-to-center distance between neighbouring channels (Lcc = 125 
µm) is indeed below the di�raction limit de�ned by the lateral full width of half maximum (FWHM) of the 
PSF (measured to be 155 µm). Meanwhile, the �ve individual channels are clearly resolved in both PA and US 
sparsity-constrained model-based reconstruction images (Fig. 2c–e,h–j).
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�en, as a major result of this work, we demonstrated that it is also possible to obtain similar super-resolved 
images using a sparse array in the place of the initial 128-element dense array. To emulate sparse-array imaging, 
we applied the same reconstruction approach to data acquired by only a fraction of the probe’s elements. To 
maintain the same conventional di�raction limit, the resulting probe aperture was kept constant by including the 

Figure 1. Experimental setup. Samples carrying 5 parallel microchannels are placed perpendicularly to the 
imaging plane. Each channel is 40 µm wide and 50 µm deep, the center-to-center interchannel distance being Lcc = 
125 µm. In the PA experiment, the sample is illuminated by a laser pulse and the resulting PA signals are detected 
by a linear US probe. In the US experiment, a plane wave is emitted in the sample direction and the backscattered 
signals are collected. �e purple arrows indicate the propagation direction of the ultrasound plane wave.

Figure 2. Experimental images reconstructed in the PA (b–e) and US (g–j) experiments alongside with the 
corresponding PSFs (a,f). All the 128 elements of the probe were used. (b,g) Conventional beamforming cross-
sectional images of the sample. �e microchannels are indistinguishable as the center-to-center distance Lcc 
= 125 µm is smaller than the lateral FWHM of the PSF (155 µm). (c,h) Images obtained with model-based 
reconstruction. �e reconstruction recovers �ve distinct regions corresponding to the micro�uidic channels. 
(d,i) Reconstruction images (c,h) a�er smoothing out by a 2D spatial Gaussian �lter (σ = 12.5 µm) and 
interpolating on a 3.125 µm grid. (e,j) Yellow line: normalized amplitude pro�le on the PSF envelope images 
(a,f); red line: normalized amplitude pro�le on the envelope images (b,g); blue line: normalized amplitude 
pro�le on the �ltered reconstruction images (d,i).
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�rst and the last elements of the probe. �e other elements were regularly distributed along the probe. �e objects 
reconstructed with 16, 8 and 4 elements are compared to the full-probe (128 elements) reconstruction in Fig. 3. 

�e images in Fig. 3 show that in both PA and US experiments the �ve channels can be imaged using down 
to only 8 array elements. With less than Nmin = 8 elements, we were not able to reconstruct the imaged structure 
properly. Random distributions of the transducer elements were also considered, but no signi�cant di�erences in 
the results were found as compared to the linear distribution case (See Supplementary Figs. 2 and 3).

In order to shed some light on the parameters that condition the minimal number Nmin of transducer elements 
needed to yield a faithfull reconstruction, we carried out a series of numerical simulations. In these simulations, 
as a measure of the reconstruction quality, we studied the correlation C between the reconstructed object and a 
modelled ideal object, as a function of the number of transducer elements and the signal-to-noise ratio (SNR). In 
this work, we de�ne the SNR as the ratio between the peak amplitude of the radio frequency (RF) signal and the 
standard deviation of the measurement noise computed over a signal-free region of the RF data. �e simulation 
results are illustrated in Fig. 4. As could be intuitively expected, these results show that for any �xed number N of 
transducer elements involved in the reconstruction, the reconstruction image quality increases with the SNR. 
Moreover, the SNR that assures a given reconstruction quality approximately scales as the square root of the num-
ber of elements, apart from N = 2. �is is illustrated for C = 0.8 in Fig. 4 with the dashed line following SNR∝ N . 
For N = 2, our simulations still predict the possibility to reconstruct the imaged object, but with a much stronger 
requirement on the SNR.

Figure 3. Images obtained with model-based reconstruction in PA and US experiments using N = 4, 8, 16 and 
128 transducer elements regularly distributed along the probe aperture. A 2D spatial Gaussian �lter (σ = 12.5 
µm) and interpolation on a 3.125 µm grid were applied a�er the reconstruction.

Figure 4. Simulation results. (a) - Correlation C as a function of the SNR and the number of transducer 
elements N, dotted lines: SNRPA = 150 in the PA experiment, SNRUS = 83 in the US experiment, dashed line: 
�tting function SNR∝ N  for C = 0.8, (b–d) - typical simulation images: (b) - N = 64, SNR = 16, C = 0.85, (c) 
- N = 16, SNR = 10, C = 0.57, (d) - N = 128, SNR = 0.8, C = 0.23.
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Discussion
Previous studies reported super-resolution images obtained via model-based reconstruction with sparsity priors 
on the imaged object, in the �eld of US imaging31,32 and more recently in PA imaging33. In this work, we �rst 
illustrated the generality of the sparsity-constrained model-based approach by applying this method to obtain 
both experimental PA and US images of sparse test objects, with the same imaging equipment being used in the 
PA and US experiments. As a key result of the present work, we demonstrated that imaging sparse objects beyond 
the acoustic di�raction limit remains possible even when a very small number of transducer elements are used for 
the reconstruction, much below the number required by Nyquist spatial sampling. �is suggests that in imaging 
with conventional number of transducer elements, a signi�cant part of the measurement information might be 
redundant. By means of numerical simulations, we showed that if the SNR is very high then by reconstructing 
images with a perfectly known forward model it is possible to obtain the correct object reconstruction with only 
two transducer elements. According to the simulation results, more than two elements are necessary to provide 
the correct reconstruction in the case of typical experimental values of the SNR: for a given SNR on each trans-
ducer element, using more elements may be considered equivalent to reducing the in�uence of the measurement 
noise. In practice, additional uncertainties of the forward model might further limit the reconstruction quality: in 
our experiments the minimal number of elements N = 8 required for the reconstruction with correlation C = 0.8 
was above the number of elements N = 3 predicted by the simulations for the same SNR and the same correlation.

In addition, a certain di�erence in image reconstruction quality between PA images (le� columns in Figs. 2 
and 3) and US images (right columns in Figs. 2 and 3) can be noticed. In particular, the SNR in the US reconstruc-
tion images is lower than in the PA images. In addition, the average interchannel distance in the US images (112 
µm) slightly deviates from the true value (125 µm), whereas in the PA images the interchannel distance is restored 
correctly. �is di�erence between the PA and US reconstruction images may result from several reasons. First, the 
SNR in the US experiment was lower than in the PA experiment. Second, the uncertainties of the forward model 
might have played a greater role in the US experiment.

As a novelty of our work, we derived the forward model by measuring only one PSF, rather than all PSFs in the 
�eld of view, which was done, for instance, in33. �is approach assumes that PSFs di�er from each other only by 
time delays that are calculated based on wave propagation in water. However, in our experiments this condition 
was not fully satis�ed at least due to the presence of a PDMS layer between the sources and the receivers. As the 
US experiment involves a double crossing of this PDMS layer, it is likely that in the US experiment the forward 
model is less accurate than in the PA experiment, leading to a less faithful reconstruction image.

In conclusion, we demonstrated experimentally the possibility of performing both PA and US super-resolution 
imaging of sparse samples with a sparse array (with down to 8 transducer elements) by applying a model-based 
reconstruction approach. Although the results demonstrated here were obtained in 2D imaging with a 1D lin-
ear array, a major advantage of the proposed approach is that it can be applied to any transducer geometry, and 
therefore in 3D imaging. Provided that the relative positions of the transducer elements are known, the proposed 
method of constructing the forward model from a single PSF measurement remains valid. It was shown by recon-
structing simulated data that the SNR yields a fundamental limit on the number of transducer elements needed 
to provide a faithful reconstruction. �e relative in�uence of the SNR and the uncertainties of the forward model 
on the reconstruction quality as well as the ultimate resolution limit are to be further investigated in order to 
fully understand and probably predict the number of transducer elements required for super-resolution imaging. 
While we demonstrated that it is possible to obtain super-resolution images of sparse test samples with sparse 
array, the presented method should be further investigated with more realistic experimental data before �rm 
conclusions can be drawn on its performance in the context of biomedical PA and US imaging.

Samples. �e micro�uidic samples were prepared with a standard so�-lithography manufacturing technol-
ogy37 using polydimethylsiloxane (PDMS). Each sample consisted of �ve hollow channels sandwiched between 
two layers of PDMS. �e thickness of the upper layer (the layer placed closer to the US probe in the experi-
ments) was around 180 µm. �is thickness was chosen as small as possible since the in�uence of the PDMS 
on wave propagation was neglected in the model. Each channel was 40 µm wide (x-direction) and 50 µm deep 
(z-direction). �e centre-to-centre distance between neighbouring channels was Lcc = 125 µm. �is distance was 
deliberately chosen smaller than the estimated lateral full width of half maximum (FWHM) of the PSF (155 µm). 
To acquire the PSF and build the forward model, additional samples containing only one micro�uidic channel 
were prepared, the channel being 10 µm wide and 50 µm deep. For PA imaging, the channels were �lled with an 
absorbing dye solution (Patent Blue V, absorption peak at 640nm38) to provide photoacoustic contrast, while for 
US imaging the channels were �lled with air to provide acoustic contrast.

Experimental protocol. �e imaging con�guration used in experiments is illustrated in Fig. 1. �e �ve 
micro�uidic channels were aligned to cross the xz imaging plane perpendicularly, and positioned at the distance 
zf = 15 mm from the linear ultrasound probe, the distance zf corresponding to the elevational focus of the probe. 
As the ultrasound probe, we used a capacitive micromachined ultrasonic transducer (CMUT) array (L22-8v, 
Verasonics, USA: N = 256 elements with 128 consecutive elements used in our experiments, pitch ≈ 100 µm, 
center frequency fc ≈ 15 MHz). �e probe and sample were immersed in a water tank. In the PA experiment, sig-
nals were generated by illuminating the sample with a 5 ns laser pulse (λ = 532 nm, �uence ≈ 3 mJ/cm2) generated 
by a frequency-doubled Nd:YAG laser (Spitlight DPSS 250, Innolas Laser GmbH, Krailling, Germany). In the US 
experiment, a plane ultrasound wave (15 MHz center frequency short pulse) was emitted by the probe, and ultra-
sound waves backscattered from the sample were recorded. To control emission and reception of ultrasound waves, 
the probe was connected to multichannel acquisition electronics (High Frequency Vantage 256, Verasonics, USA).

�e Vantage system had two 128-channel connectors for US transducers, each connector providing interface 
for synchronous control of 128 transducer elements. As the transducer used in this work had 256 elements wired 
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to a single probe connector, only 128 of its elements could be accessed simultaneously with our system. Although 
the whole transducer aperture could in principle be accessed using the internal Vantage multiplexer, this would 
require two distinct acquisitions. To demonstrate the possibility of single-shot super-resolution as a strong point 
of the proposed reconstruction approach, we did not use the Vantage system’s multiplexer and restricted our 
acquisitions to 128 transducer elements.

To reconstruct objects in both PA and US experiments, the PSF was measured by applying the acquisition 
protocol described above for samples containing a single micro�uidic channel. �e single channel was placed in 
the center of the �eld of view of the ultrasound probe. �e conventional lateral resolution de�ned as the lateral 
full width at half maximum (FWHM) of the PSF was measured a�er standard delay-and-sum reconstruction to 
approximately 155 µm in both PA and US experiments.

Forward model. Under the assumption of a linear dependence between the quantity to image and the meas-
ured radio frequency (RF) signals, the voltage signals measured by the acquisition electronics can be expressed 
for both PA and US imaging as 

=s t Tr r( , ) [ ( )], (1)i k 0
where s(ti, rk) is the signal at time tk measured by the transducer element located at rk, T0(r) is the quantity to 
image, and  is a linear operator that takes into account both the ultrasound generation/propagation, and the 
transducer response. In PA imaging, T0(r) is proportional to the absorption coe�cient µa(r), under the assump-
tion of homogeneous light illumination and a homogeneous Gruneisen paramater. In US imaging, T0(r) is related 
to the distribution of the backscattering coe�cient, provided that the single scattering regime is valid.

By discretizing the object to reconstruct on a grid, this forward problem may then be written in a matrix form as 

= AS T , (2)0

where Sm×1 is a vector with all the RF data (m = number of time samples × number of transducer elements), T n
0

1×  
is the discretized version of the quantity to reconstruct (n = number of grid points in the reconstruction zone), 
and Am×n is a matrix representing the linear operator. Each of the n columns of A represents the RF response for 
one of the points n1..  of the reconstruction zone, i.e. each column of A is the vector data corresponding to the 
signals from a single point source in the imaging zone. �e matrix A therefore contains the responses to each 
point source and can be considered as a matrix of all the system point spread functions (PSF) in the data space.

�e matrix A can be modelled theoretically or measured experimentally. In some previous works, A was 
measured for each point of the reconstruction zone14,15,33,35. In our work, the matrix A is obtained experimentally 
but we perform a measurement for only one point source. As a point source, we use a single isolated micro�u-
idic channel. All the columns of A are then derived from this measurement data by assuming that the signals 
from two distinct point sources di�er from each other by their arrival time, but remain otherwise identical in 
shape. In other words, it is assumed that the impulse response of each transducer element is the same for all 
point sources in the reconstruction zone, apart from a propagation delay. In our experiments, we also neglect the 
presence of the upper PDMS layer and therefore only consider wave propagation in water, i.e. in a homogeneous 
isotropic medium with a constant speed of sound c = 1500 m∕s.

Under the assumptions stated above, when a single PSF is acquired for a source placed at {xj, zj}, any column 
i of the matrix A can be derived from the acquired RF data by shi�ing the signals for each transducer element k 
with the following time delay: 

t
z z

c c
x x z z x x z z

1
( ) ( ) ( ) ( ) ,

(3)i j k US
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k i k i k j k j, ,
2 2 2 2δ∆ =
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where {xk, zk} are the coordinates of element k of the transducer array, {xi, zi} are the coordinates of point i of the 
reconstruction grid. In US imaging, δUS = 1 to account for the travel time of the emitted plane wave (δUS = 0 in 
PA imaging).

Image reconstruction. To solve the inverse problem, i.e. to �nd an estimate T of the solution T0 to the for-
ward model described above, the sparsity-constrained minimization approach similar to those already reported 

in previous works31,33,35 was used. �is approach consists in �nding T by solving the following minimization 
problem: 

α= || − || + || || . AT argmin S T T{ }
(4)T

2
2 2

1

In Eq. 4 the l2 - term A AS T S T( )p
m

p2
2

1
2|| − || = ∑ −=  corresponds to the least square �tting of the probed quantity 

T to the acquired data S. �e regularization l1 - term T Tq
n

q
2

1
2

1α α|| || = ∑ | |=  is used to minimize the in�uence of 
the noise in S while selecting a sparse solution to underdetermined system 2. Regarding typical sizes involved in 
the reconstruction, for reconstruction with 128 transducer elements the length of the vector Tn×1 was n = 793 
(number of reconstruction points in the �eld of view), the length of the vector Sm×1 was m = 4608 (the number of 
transducer elements multiplied by the number of time samples for each element), the rank of the matrix A was 
rank(A) = 346, this rank being computed using the standard MATLAB function with the default value of the 
tolerance parameter. �e rank of the matrix A being inferior to the number of unknowns n, system (2) was unde-
termined. The minimization operation described by Eq.  4 was performed using a fast iterative 
shrinkage-thresholding algorithm (FISTA)39–41. �e object to image was reconstructed over a cartesian grid with 
a Lcc/10 = 12.5 µm step. As in previous works31,33,35, the value of the regularization parameter α was determined 
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heuristically such that the reconstruction image was qualitatively close to the real sample. A 2D Gaussian �lter 
(kernel size σ = 12.5µm) and interpolation were applied to improve image visualization. �e �nal image de�ni-
tion corresponds to a grid step of 3.125µm. Each reconstruction image was linearly normalized at the �nal stage 
via division of each pixel value by the maximum of the intensity in the initial reconstruction image.

�e gaussian �lter was applied to the reconstructed images only to smooth them, as usually done for other 
approaches that may lead to point-like reconstructed structures (such as localization based super-resolution). �e 
size of the �lter has an in�uence on the apparent size of individual structures (the microchannels in our case). 
l1-minimization leads to point-like structure, as illustrated in Fig. 2c,h, which show that the size of the channels is 
not reconstructed correctly. However, the �lter does not in�uence the resolution (de�ned as the ability to distin-
guish individual structures), as long as the �lter size is smaller than the resolution limit of the method (here close 
to the distance between neighbouring channels). Here, the �lter kernel size σ = 12.5 µm is chosen to smooth out 
the reconstructed object without a�ecting the ability to distinguish channels, but it should be kept in mind that 
the apparent size of the channels on the �ltered image depends on this choice.

Simulations. Numerical simulations were performed to produce test data corresponding to imaging �ve 
point sources. �e stated assumptions on our forward model were strictly followed. Speci�cally, we modelled the 
signals received on each transducer element as a time-delayed version of the same signal (simulated for �ve point 
sources), based on the delay law described by Eq. 3. �e detected signals had a central frequency and bandwidth 
corresponding to those used in experiments and sampled at the same frequency as in experiments. Simulation 
data with di�erent SNR values was generated by varying the amplitude of the modelled PA signals, for a �xed 
noise value. In all simulations, Gaussian noise with a zero mean and a rms of σn = 30 was added to the detected 
signals. Such noise corresponded to the noise produced by the acquisition electronics in our experiments. �e 
simulated distribution of sources was then reconstructed following the same methods as used to reconstruct 
images from the experimental data. As a metrics of the reconstruction quality, we computed a normalized spatial 
cross-correlation between each reconstructed object T and the ideal reconstruction Ttrue.

�e ideal reconstruction Ttrue was modeled by asserting the value of 1 to the 5 cells of the reconstruction grid 
corresponding to the positions of the 5 simulated sources. �en, the �ltering and interpolation used for the recon-
struction images were also applied to Ttrue. In Fig. 4, the correlation C for each SNR was estimated by averaging 

over 100 noise realizations. For each reconstructed image T  the correlation C was computed using Eq. 5: 
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