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Abstract: High spatial-temporal resolution plays a vital role in the application of geoscience dynamic
observance and prediction. However, thanks to the constraints of technology and budget, it is
troublesome for one satellite detector to get high spatial-temporal resolution remote sensing images.
Individuals have developed spatiotemporal image fusion technology to resolve this downside, and
deep remote sensing images with spatiotemporal resolution have become a possible and efficient
answer. Due to the fixed size of the receptive field of convolutional neural networks, the features
extracted by convolution operations cannot capture long-range features, so the correlation of global
features cannot be modeled in the deep learning process. We propose a spatiotemporal fusion model
of remote sensing images to solve these problems based on a dual branch feedback mechanism and
texture transformer. The model separates the network from the coarse-fine images with similar
structures through the idea of double branches and reduces the dependence of images on time series.
It principally merges the benefits of transformer and convolution network and employs feedback
mechanism and texture transformer to extract additional spatial and temporal distinction features.
The primary function of the transformer module is to learn global temporal correlations and fuse
temporal features with spatial features. To completely extract additional elaborated features in several
stages, we have a tendency to design a feedback mechanism module. This module chiefly refines the
low-level representation through high-level info and obtains additional elaborated features when
considering the temporal and spacial characteristics. We have a tendency to receive good results by
comparison with four typical spatiotemporal fusion algorithms, proving our model’s superiority and
robustness.

Keywords: remote sensing images; spatiotemporal image fusion; feedback mechanism; texture
tran-sformer; detailed features

1. Introduction

The advancement and popularization of sensor technology have promoted the wide
application of remote sensing image-related research in human activities. For example, the
high-quality spatiotemporal remote sensing images we have obtained through satellite
remote sensing technology have great research significance in areas [1,2] such as crop
monitoring [3], forest monitoring [4], land-cover change monitoring [5], real-time urban
disaster monitoring [6], and water resource evaluation [7]. These applications require
the spatial resolution of surface details (texture and structure of ground objects) and an
intensive time series of remote sensing image data to capture changes in the ground
for accurate classification and identification. However, in practical applications, there
are still some unavoidable technical and budget restrictions, resulting in trade-offs of
time, space, and spectral resolution of remote sensing images of earth observation data,
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leading to difficulties in obtaining remote sensing images with high-temporal and high-
spatial resolutions [8,9]. In most cases, we select at least two different data sources to
generate high-quality fused images:the main features of the Landsat 8 data source are
that most spectral bands have a spatial resolution of 30 m and a temporal resolution of
16 days, long-term repeated measurements and the resulting data are coarse images with
high temporal-low spatial (HTLS) resolution [10]. The other is the MODerate Resolution
Imaging Spectroradiometer (MODISI) image, primarily characterized by covering a large
area of our planet, with a spatial resolution of 250 to 1000 m and different wavelengths,
and requires being acquired every day. The obtained data are fine images of low spatial
and high temporal (LTHS) images [11]. Due to insufficient information from a single data
source, researchers have proposed a combination of remote image sensing spatiotemporal
fusion algorithms, which merge high spatiotemporal resolution images from multiple data
sources to obtain high spatiotemporal information fusion images. We use Landsat 8 and
MODIS data sources to synthesize images simultaneously with high spatial-high temporal
resolution. In this way, it is proven that multiple information sources will obtain higher
and richer characteristic data than only one, and many outstanding research results have
been achieved, providing theoretical support for later application research.

Since Tsai proposed [12] image super-resolution reconstruction in 1984, many scholars
have researched and discussed the topic. Super-resolution reconstruction technology is
a method for obtaining high-resolution images from processing low-pixel images. Due
to the advantages of low cost, short consumption period, ample room for improvement,
comprehensive coverage, large amount of information, and good durability, this technol-
ogy has been widely used [13]. High-resolution remote sensing images have been used
in various fields, such as environmental monitoring, urban planning, and emergency res-
cue [14,15], but how to get high-resolution images at a low cost and in a short time has
always been a problem that needs to be solved in the field of remote sensing [16]. In this
study, high-quality images were obtained by combining the spatiotemporal fusion rules of
remote sensing images with super-resolution reconstruction, which laid a good foundation
for future applications.

After years of development, researchers have proposed two types of spatial-temporal
fusion models for remote sensing images: traditional models and models based on deep
learning, as described in Section 2. Although some of these models have achieved ex-
emplary application results, there are still significant theoretical differences between the
surface and the collected data. For example, how to select HTLS and low-temporal high-
spatial (LTHS) images and reference images is very meaningful because all high-frequency
information in the whole modeling process comes from these selected data. If there is a
significant difference between the reference image and the predicted image, the final fusion
result will not reach an acceptable result. Second, the actual data are often contaminated
by penumbra and noise, which is theoretically inconsistent with the processed usable
datasets. In order to solve these problems, we must further enhance the quality of the
prediction image.

This research proposes a feedback and texture transformer-based spatiotemporal
fusion model for remote sensing images, which is obtained by redesigning the network
based on the Enhanced Deep Convolutional Spatiotemporal Fusion Network (EDCSTFN)
model. Our model contains a total of five characteristics: (1) The model needs at least two
pairs of MODIS–Landsat images to get high-quality predicted images, and the predicted
image information entirely relies on a continuous time series. (2) The transformer was
initially applied in natural language processing [17]. With the development of research,
it gradually abandoned convolution and recursion modules and is wholly based on the
self-attention mechanism, which has strong parallelism. Our model employs a dual-branch
feedback mechanism and a texture converter and considers images’ dependence on time
series. Therefore, the network not only starts from the structural similarity of the coarse
and fine image pairs but also uses the rich texture information in the adjacent images to
predict the fine images and improve the quality of image reconstruction. (3) The same
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dual-branch texture transformer is used to make the prediction image obtain more detailed
information accurately. (4) Both branches of the model use a feedback mechanism to refine
low-level representations of high-level information. (5) The model utilizes a composite loss
function to analyze the fusion results, which include content and visual losses. The primary
purpose is to preserve the high-frequency information to make the generated image clearer.
In this study, three datasets, Aruhorqin Banner (AHB), Coleambally Ignition District (CIA),
and Lower Gwydir Basin (LGC), were selected for comparative analysis with the classical
fusion model. The results display that the model offered in this paper enhances the fusion
accuracy, prediction results, and the quality of fused images.

2. Related Works

In machine learning, convolutional neural networks (CNNs) have attracted signifi-
cant attention [18]. A CNN is a deep feedforward neural network trained and designed
using prior knowledge and mainly extracts rich feature information from multiple test
paper layers. A classic CNN is composed of five parts: one or more inputs, one or more
convolutional layers, and one or more subsampling layers (or pooling layers) [19]. Previ-
ous researchers extracted more advanced features by increasing the convolutional layers
while avoiding network overfitting caused by the increase in layers. CNNs have become
efficient frameworks for addressing the problem of image feature extraction and recogni-
tion [20]. With the progress of research, CNNs have been gradually applied to the field of
image super-resolution reconstruction and data fusion from their original use for extracting
high-level features in image classification and recognition tasks [21,22].

CNN outperforms other computer vision tasks in image super-resolution [23]. Super-
Resolution Convolutional Network (SRCNN) first used a three-layer CNN in image SR to
learn complex LR-HR mapping. Very Deep Convolutional Networks (VDSR) [24] increase
the depth of CNN to 20 layers to use more contextual information in the LR image and
adopts the method for jumping connections to overcome the difficulty of optimization
when the network is deep. In recent studies, different jump connections have been used
to achieve super-resolution image reconstruction. Super-Resolution Generative Adversar-
ial Networks (SRGAN) [25] and Enhanced Deep Residual Networks (EDSR) [26] use the
residual jump connection [27], which improves the accuracy of the reconstruction image
effect. Super-Resolution Using Dense Skip Connections Networks (SRDenseNet) [28] use
the dense skip connection [29] to obtain more characteristic information [30]. A combina-
tion of local/global residuals and dense skip connections was incorporated into its RDN.
Experiments have revealed that these models perform well in super-resolution image re-
construction. However, the following two problems still exist: The first problem is that due
to the use of skip connections or a bottom-up combination of hierarchical features in these
network architectures, they only extract low-level features, and the ability of the upper
layer to receive information is limited by the small receptive field and lack of sufficient
contextual information, which further limits the network’s reconstruction ability. The
second problem is “space-time contradiction”; that is, there is a problem that the spatial
and temporal resolutions of remote sensing images are mutually restricted.

With the continuous development of deep learning models, research based on CNN
has gradually been applied to the spatial-temporal fusion of remote sensing images, but it
is still at an early stage. By reading a lot of the literature in this research area, we concluded
that the existing spatiotemporal fusion algorithms could be divided into five categories:
(1) transformation-based, (2) reconstruction-based, (3) Bayesian-based, (4) learning-based,
and (5) pan-sharpening-based.

The transform-based methods mainly adopt mathematical transformation technol-
ogy [31], such as the wavelet transform. Because of multi-source data integration, the
original image pixel is represented in another abstract space by mapping. The data are
converted from the spatial domain to the frequency domain. This method has two charac-
teristics: the first is that it extracts clear high-frequency information from the transformed
LTHS image and fuses it with the HTLS image to obtain high-quality fused images. Second,
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it has spatial generality, and different types of features can be extracted from different
spatial images using fusion rules [32].

Methods based on reconfiguration are divided into two categories: weight function-
based and unmixing-based. The weight function method mainly evaluates HTLS images
by setting the weight function and combining the image reflectivity. The classical methods
include the spatiotemporal adaptive reflectivity fusion model (STARFM), the spatiotempo-
ral adaptive algorithm for mapping reflectance change (STARCH) [33], and the enhanced
STARFM (ESTARFM) [34]. The unmixing method mainly uses spectral unmixing theory
and an unmixing algorithm to build the fusion model. It mainly uses HTLS images to re-
construct the corresponding LTHS images. Existing methods include the spatiotemporal re-
flectivity unmixing model (STRUM) [35], flexible spatiotemporal data fusion (FSDAF) [36],
unmixing-based data fusion (UBDF) [37], the spatial attraction model (SAM) [38], and the
spatiotemporal data fusion algorithm (STDFA) [39].

The Bayesian-based method integrates the spatiotemporal spectrum into a unified
framework, allowing the input image is not limited to achieving the most realistic prediction
results. Existing methods include the unified fusion method [40] and the Bayesian fusion
method.

The learning-based method does not require the manual setting of the fusion rules. It
mainly uses existing archived data to train the supervised deep learning model. Existing
learning-based fusion methods include the sparse-representation-based spatiotemporal
reflectance fusion model (SPSTFM) [41], spatiotemporal fusion using a deep convolu-
tional pair neural network (STFDCNN) [42] deep convolutional spatiotemporal fusion
network (DCSTFN) [43], enhanced DCSTFN(EDCSTFN) [44], two-stream convolutional
neural network for spatiotemporal image fusion (STFNET) [45], and generative adversarial
network-based spatiotemporal fusion model (GAN-STFM) [46].

Based on pan-sharpening fusion, the CNN model is applied to panchromatic and
multispectral images. With the deepening of remote sensing research, many researchers
have proposed various panchromatic sharpening methods; typical methods include intense
hue saturation (IHS) [47–49], principal component analysis (PCA) [50,51], Brovey transform
(BT) [52], Laplacian pyramid decomposition [53], wavelet transform [54], and curvilinear
transformation under different resolutions [55–57].

Although the progress of sensor technology has dramatically improved the accuracy
of satellite observation, the following problems remain. First, the absence of technology
and budget makes it impossible to obtain high temporal and spatial resolution images
directly. Second, there is always a trade-off between the temporal, spatial, and spectral
resolution of the observation data we obtain, so it is challenging to continuously get
LTHS and HTLS data pairs for research. Therefore, this research model combines the
concepts of ConvNet and transformer and uses VGGNet and transformer as the backbone
networks, which are mainly reflected in two aspects: on the one hand, members of the
team are studying the super-resolution reconstruction technology based on the transformer
network and published research results; on the other hand, it borrows the state-of-the-art in
spatiotemporal fusion models and super-resolution reconstruction from other papers and
adds texture converters and feedback mechanisms to supplement the input data, extract as
much helpful information as possible, and at the same time, reduce the model parameters
for the best output image quality. We believe this fusion method can provide a reference
for future research and has a promising practical application prospect.

3. Methodology

Our proposed method consists of five significant steps: (1) describe the overall frame-
work diagram of the network model in this study, (2) construct a two-branch texture
transformer, (3) use a feedback mechanism to obtain more details, (4) use fusion rules for
fusion, and (5) use composite loss. The function performs image analysis to generate the
final image, the details of which are discussed below.
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3.1. Overall Model Architecture

Inspired by the data fusion models of EDCSTFN and DCSTFN, this paper proposes a
deep convolution fusion network that can generate high spatial-temporal resolution remote
sensing images. This research adopts a similar “encoder merge decoder” architecture with
two streams. The overall network architecture is shown in Figure 1. From the figure,
it can be seen that the model’s architecture has three parts: the first part is the branch in
the upper left corner and the branch in the lower left corner, which is called the encoder.
The branch in the upper left corner mainly extracts high-frequency information similar to
the T0 time image and T1 time image; the branch in the lower left corner mainly extracts
high-frequency information similar to the T2 time image and T1 time image. The second
part is where the two branches intersect, which is called the fusion part. It mainly uses
fusion rules to combine extracted features with the same dimension and size. The third
part is the decoder, which is mainly responsible for restoring these advanced features to
the original pixel space to get the final high-quality reconstructed image.

Figure 1. The backbone network is based on two branches. (M0 represents the coarse image (MODIS
Image) of the first pair of reference images, M1 represents the coarse image of the prediction image,
M2 represents the coarse image of the second pair of reference images, L0 represents the fine image
(Landsat Image) of the first pair of reference images, L1 represents the fine image of the prediction
image, L2 represents the fine image of the second pair of reference images, and H1 represents the
prediction image).

In this model, the two sub-network branches of the encoder have the same network
structure, and its primary purpose is to explain the type of image input. Because the
image depends on a continuous time series, the first upper left branch is mainly used to
obtain the image at T0 before T1, while the second lower left branch is used to obtain the
image at T2 after T1, and finally, a high-quality fused image is obtained through the fusion
reconstruction stage. Figure 2 shows the detailed schematic diagram of the model; SFE
represents the residual module, which is mainly used to learn the difference between the
reference date and the predicted date.
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Figure 2. Diagram of backbone network details based on two branches. (S represents soft attention,
H represents hard attention, M1 represents the coarse image of the prediction image, M1 ↑ represents
the coarse image of the up sampled prediction image, L0 represents the fine image table of the
prediction image, L0 ↓↑ represents the fine image of the up sampled and down sampled prediction
image, and H1 represents the prediction image).

3.2. Texture Transformer

Furthermore, because more texture features can be obtained from LTHS and HTLS
while reducing memory and time to achieve the best fusion effect, this study used a texture
transformer, which uses high-resolution images (thin images) as reference images (L0).
In this way, the relevant texture is transferred to the LR image [58], transmitting the corre-
sponding and accurate texture features. Texture transformers can be used overlappingly
and integrate feature information across scales so that more texture information can be
extracted from the reference image and applied to texture restoration at different stages.
Our texture transformer model consists of four parts. First, the learnable texture extractor
(LTE) is primarily used to update parameters in the end-to-end process while the joint
features of LR and the reference image are embedded, ensuring that the attention mecha-
nism has a solid foundation in the super-split reconstruction [59]. Second, the relational
embedded (RE) module is mainly used to calculate the correlation between the LR and
reference images. In essence, the features extracted from the LR and reference images can
serve as a converter to form the pattern of a long beadle and key from which the hard
attention (HA) and soft attention (SA) graphs are obtained. The third and fourth modules
are the hard and soft attention graphs, which are mainly used to convert high-resolution
features from the reference image and fuse them into the LR features extracted from the
trunk through an attention graph, as shown in Figure 3.
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Figure 3. Detail of texture transformer. (M1 represents the coarse image of the prediction image,
M1 ↑ represents the coarse image of the up sampled prediction image, L0 represents the fine image
table of the prediction image, L0 ↓↑ represents the fine image of the up sampled prediction image,
and H1 represents the prediction image).

In the texture converter, we obtain texture features such as Q (query), K (key), and
V (value) from the up sampled M1 images, sequential down sampled/up sampled L0
images and original L0 images. F is the M1 feature extracted from the backbone of DNN
and further fused with the transmitted texture feature T to generate the SR output. The
formula for the texture extraction process is shown in (1)–(3):

Q = LTE(M1 ↑) (1)

K = LTE(L0 ↓↑) (2)

V = LTE(L0) (3)

Q, K, and V in the formula represent the three essential elements of the internal concern
mechanism of the extracted texture feature transformer and will be further used to associate
the embedded module. The purpose of correlation embedding is to embed the correlation
between M1 and L0 images by estimating the similarity between Q and K. The correlation
embedding formula is (4):

Ri,j =<
qi
‖ qi ‖

,
k j

‖ k j ‖
> (4)

In the formula, the patch expansion of K is shown, and finally, the correlation between
the two patches is obtained through normalization processing.

In the hard attention module (H stands for hard attention in the text), an “attention
map” H is calculated. We can regard the value of hi as a hard index, which represents
the position in the L0 image that is most relevant to the ith position in the M1 image. HR
represents the texture feature T obtained from the L0 image. For H, we can obtain the sum
of multiple hi, where hi is calculated by correlation and Formulas (5) and (6) are obtained:

hi = arg max
j

Ri,j (5)

H =
n

∑
i=1

hi (6)
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The soft attention (S stands for soft attention in the text) mechanism’s formula is
determined using Equations (7) and (8):

si = arg max
j

Ri,j (7)

S =
n

∑
i=1

si (8)

The following formula, Formula (9), represents the output of the final image of the
texture converter:

Fout = F + Conv(Concat(F, T)) ∗Ws + Conv(Concat(F, T)) ∗Wh (9)

where F represents the M1 feature in the backbone network, T represents the fusion feature,
S represents the SA graph, H represents the HA graph, and W represents the training
weight. The texture converter can effectively convert HR-related texture features in the L0
image to M1 features, which improves the accuracy of the texture generation process.

3.3. Feedback Mechanism

In cognitive theory, feedback connections connecting cortical visual areas can transmit
response signals from higher-order areas to lower-order areas [60,61]. Feedback mecha-
nisms work top-down, passing high-level information to the previous level and refining
lower-level encoded information. To recover more detailed information from the rough
image, that is to say, to recover a better SR image from the LR image, the model uses a
feedback mechanism in both branches [62]. Most traditional deep learning-based networks
share information in a feedforward manner. However, the feedforward approach prevents
the previous layer from accessing helpful information from the lower layer, even if skipped
connections are used, and this feedback has strong early reconstruction capabilities with
very few parameters. The feedback mechanism can make each network output correct the
previous state iteratively. The feedback mechanism in this paper consists of three parts in
the iteration process: Provide LR input feature extraction blocks in each iteration—low-
resolution feedback block (LRFB) (to ensure the availability of low-level information, which
needs to be refined), a feedback block (FB), and a reconstruction block (RB) [62]. Figure 4
shows the structure of the feedback mechanism, in which the weights of each block are
shared across time.

Figure 4. Detail of the feedback. (M represents the original low-resolution image, H1, H2, H3, and H4

represent the reconstructed images at different stages).
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In the process of the M feature extraction block (i.e., feature extraction of a coarse
image), the filter is composed of the network layer in the VGG [63] network. Then, we get
the shallow feature of the input LR image as Ft

in, as shown in Formula (10):

Ft
in = fLRFB(IM) (10)

Due to the principle of the feedback mechanism, this shallow feature will then be used
as the input to FB. In this paper, F1

in is regarded as the initial hidden state F0
out. In the t-th

iteration, FB receives the hidden state F(t−1) of the previous iteration through the feedback
connection and receives the shallow feature Ft

in. The output of FB is represented by F0
out

and is shown in Formula (11).
F0

out = fFB(Ft−1
out , F1

in) (11)

In the reconstruction stage, Formulas (12) and (13) after t iterations are as follows:

It
Res = fRB(Ft

out) (12)

It
H1

= It
Res + fup(IM) (13)

where fRB represents the operation of the reconstruction block, It
Res is a residual block

produced according to M, and fup represents the operation of the up sampled kernel.
In the fusion stage, this model is mainly the fusion of the image characteristics of the

double branch, the essence of which is in this model from the input to the final stage in
the iterative convergence of fusion. That is to say, in the text, the transformer stage fuses
to characteristics, the feedback stage fuses to images, and the last are characteristic of the
fusion stage finally. Multiple fusions result in optimal image quality.

Lcompound is a composite loss function, including content loss (content loss is the basic
requirement of the image reconstruction process. Its main function is to ensure the integrity
of image content, such as texture and tone), feature loss, and visual loss. Its main purpose
is to enhance the clarity of the predicted image. The formula is shown in (14):

Lcompound = Lcontent + L f eature + Lvision + Lreconstruction (14)

The nonlinear activations used in the network are rectified linear elements. This exper-
iment uses the Landsat image pre-training model, and the feature loss can be expressed by
Equation (15):

L f eature =
1
N
(F̂Lt1 − FLt−1)

b
(15)

Visual loss is an auxiliary component designed to improve the overall image quality
from the perspective of computer vision. The visual loss of this model is obtained by the
combined action of the text transformer and feedback mechanism, which can be written
into Equation (16):

Lvision = It
H1

+
N

∏
i=1

[Hi(ti − ti−1)]
αi [Si(ti − ti−1)]

βi (16)

The reconstruction loss is mainly a loss function from low-resolution images to high-
resolution images, and the formula is as follows:

Lreconstruction =
1

CHW
‖ IHR − IH1 ‖

1
+ It

H1
(17)

4. Experiment and Evaluation
4.1. Study Areas and DataSets

We use three datasets, namely AHB, CIA, and LGC, to test the robustness of the model.
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AHB is located in Inner Mongolia, China. The dataset includes 27 pairs of cloud-free
Landsat and MODIS images from 30 May 2013 to 6 December 2018, which have lasted
for more than 5 years. The Landsat images were obtained by Landsat-8 Operational Land
Imager (OLI) sensor, and the MODIS images were obtained by MODIS Terra MOD09GA
Collection 5. The AHB dataset has significant phenological changes due to the growth of
crops and other vegetation.

CIA is located in the south of New South Wales, Australia. The dataset includes 17
pairs of cloud-free Landsat and MODIS images between October 2001 and May 2002. The
Landsat images were obtained by Landsat-7 ETM + sensor, and the MODIS images were
obtained by MODIS Terra MOD09GA Collection 5. The CIA dataset includes many changes
in phenology but fewer changes in land cover types.

LGC is located in the north of New South Wales, Australia. The dataset consists of 14
pairs of cloud-free Landsat and MODIS images between April 2004 and April 2005. The
Landsat images were obtained by Landsat-5 TM sensor. The MODIS images were obtained
by MODIS Terra MOD09GA Collection 5. The LGC dataset can be considered to have
significant changes in land cover types, and its shape will change regularly due to large
floods.

For the three datasets used in this study, there are six bands of Landsat images, of
which the size of the AHB dataset Landsat Image is 2480 × 2800, the size of CIA Landsat
Image is 1720 × 2040, and the size of LGC dataset Landsat Image is 3200 × 2720, according
to relevant research [64]. In the model verification process, we experimented with four
bands: red, green, blue, and near-infrared.

4.2. Experiments Settings

Based on previous studies, this study only uses the first four bands for prediction. A
group of training data consists of three thick and thin image pairs (low-resolution and high-
resolution image pairs), which are the image pairs at T0, T1, and T2. The reference images
at T0 and T2 are used to predict a high-resolution image at T1. During the experiment,
we used 80% of the images for pre-training, 10% for verification, and 10% for prediction.
Because using the entire input image in the training process will lead to insufficient running
memory, we used block training data (the entire training requires too much memory) and
divided the AHB data into 160 × 160, CIA data into 128 × 128, and LGC data into 128 ×
128. In terms of the training details, this model uses the Adam optimization method to
update the parameters of the model, with the initial learning rate set to 0.0001, the batch
size set to 8, and the epoch set to 40. Python was used to implement the experiments,
which were tested on an NVIDIA RTX 3090 device. The specific experimental environment
configurations are presented in Table 1.

Table 1. The experimental environment configuration of this study.

Parameter Numerical Value Parameter Numerical Value

operating system Ubuntu CUDA CUDA11.1

CPU AMD EPYC 7302 cuDNN cudnn-8.0

GPU GeForce RTX 3090 Pytorch-GPU 1.9

RAM 63G/DDR4 GPU memory 24G

4.3. Results and Discussion
4.3.1. The Evaluation Index Used in This Experiment

At present, there is no accepted standard that can uniquely evaluate the quality of
the fused images [65]. Different fusion indicators can only reflect part of the quality of the
fused image [66]. Therefore, this experiment selected six indicators for evaluation. See the
discussion below for details.
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The peak signal-to-noise ratio (PSNR) [67] is defined as:

PSNR = 10 · log10

(
MAX2

I
MSE

)
= 20 · log10

(
MAXI√

MSE

)
(18)

where MAXI represents the maximum value of the image point color. The higher the PSNR
value between the two images, the less distorted the reconstructed image will be with
respect to the high-resolution image. The mean square error (MSE) of the two images is
defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖ I(i, j)− K(i, j) ‖2 (19)

where I and K are two images of size m × n, one is a noisy approximation of the other.
The structural similarity index (SSIM) measures the overall fusion quality by calculat-

ing the mean, variance, and covariance of the fused image and the reference image. The
specific formula is shown in the following formula (see the quotation for parameter details):

ι(X, Y) =
2µxµy + c1

µ2
x + µ2

y + c1
(20)

c(X, Y) =
2δxδy + c2

δ2
x + δ2

y + c2
(21)

s(X, Y) =
δxy + c3

µxµy + c3
(22)

SSIM(X, Y) = [l(X, Y)]α[c(X, Y)]β[s(X, Y)]γ (23)

Usually, the closer the SSIM value is to 1, the higher the similarity between the two
images.

Erreur Relative Globale Adimensionnelle De Synthèse (ERGAS) [66] is defined as:

ERGAS = 100
h
l

√
∑N

i=1(RMSE2(Bi)/M2
i )

N
(24)

where h is the resolution of the high-resolution image, l is the resolution of the low-
resolution image, N is the number of bands, Bi is the MS image, and Mi is the average
of the emissivity values of the MS image. The smaller the value is, the better the spectral
quality of the fused image within the spectral range.

The spectral angle mapper (SAM) [68] is defined as:

SAM = arccos
(

(Iα Jα)

‖ Iα ‖‖ Jα ‖

)
(25)

where Iα and Jα are the pixel vectors of the fused image and the reference image, respectively,
at the distance point α. For an ideal fused image, the value of the SAM should be 0.

The spatial correlation coefficient (SCC) [69] needs to extract the high-frequency
information of the correlation coefficient (CC) [70] and high pass filter. This paper uses the
high Laplace filter, which is defined as:

F =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (26)

CC =
∑w

i=1 ∑h
j=1(Xi,j − µX)(Yi,j − µY)√

∑w
i=1 ∑h

j=1(Xi,j − µX)2(Yi,j − µY)2
(27)
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where X is the fused image, Y is the reference image, w and h are the width and height of
the image, and µ represents the average value of the image.

4.3.2. Qualitative Analysis of the Three Datasets

In this section, the AHB, CIA, and LGC datasets are used to quantitatively analyze
and evaluate the research model.

Table 2 summarizes the results of the ablation experiments in this paper. We selected
two backbone network models based on deep learning during the experiment: VGG [63]
and RESNET34 [71]. In the ablation experiment in which the backbone network is VGG, the
transformer network is combined with double branches and feedback mechanisms to verify
it. In the ablation experiment with RESNET34 as the backbone network, the transformer
network is combined with double branches and a feedback mechanism to verify it. It can
be seen from Table 2 that under the evaluation indicators, such as PSNR, SSIM, RMSE,
ERGAS, CC, SAM, and prediction time (TIME), the comprehensive evaluation of our model
is more accurate than other models. This shows that applying the idea of double branches
and feedback mechanisms to remote sensing image fusion at the same time can improve
the quality of the fused image. However, in the parameter comparison of prediction time,
our proposed model’s time is not optimal due to the reference of double branches. For this
problem, we will continue to optimize and verify in the later stage.

Table 2. Ablation experiments based on different backbone network models. (The abscissa represents
the index of comparison, and the ordinate represents different methods. In the table, “DB” represents
double branch, and “FB” represents feedback).

PSNR SAM SSIM ERGAS CC RMSE TIME

TTSR 32.2552 0.1010 0.8921 1.8994 0.6023 0.0244 308.73

TTSR+DB+FB 32.5730 0.0875 0.8949 1.8624 0.5589 0.0235 336.70

RESNET34+DB+FB 32.3738 0.0778 0.9077 1.9480 0.6092 0.0241 340.73

OURS 32.7311 0.0889 0.9091 1.5885 0.6414 0.0231 398.46

Table 3 presents the quantitative analysis results of different fusion models on the AHB
dataset. The evaluation indicators are PSNR, SSIM, RMSE, ERGAS, CC, SAM, and TIME. It
can be seen from the table that the model proposed in this paper is at the maximum level
except for the CC and TIME indicators. The CC indicator does not surpass other models
because the AHB dataset contains rich feature features, and the deep learning model does
not thoroughly learn a variety of feature features. The comprehensive evaluation results
show that the proposed method can produce better fusion results regarding radiation,
spatial structure, and spectrum.

Table 3. Quantitative evaluation of fusion results of the AHB dataset. (The abscissa represents the
index of comparison, and the ordinate represents different methods. Bold indicates the best result).

PSNR SAM SSIM ERGAS CC RMSE TIME

STARFM 25.9854 0.1843 0.7950 5.1480 0.7165 0.0506 1893.60

FSDAF 27.1617 0.1792 0.8166 4.7459 0.7762 0.0447 3406.97

DCSTFN 27.8403 0.1270 0.8426 2.1185 0.5622 0.0299 301.06

EDCSTFN 32.1307 0.1320 0.8880 2.1874 0.5869 0.0252 353.09

OURS 32.7311 0.0889 0.9091 1.5885 0.6414 0.0231 398.46

Table 4 presents the quantitative evaluation of the fusion results of the CIA dataset
based on PSNR, SSIM, RMSE, ERGAS, CC, and SAM. The table shows that, except for SAM,
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the other indicators reached the top level. This demonstrates that the proposed method can
produce better radiation, spatial structure, and spectrum fusion results.

Table 4. Quantitative evaluation of fusion results of the CIA dataset. (The abscissa represents the
index of comparison, and the ordinate represents different methods. Bold indicates the best result).

PSNR SAM SSIM ERGAS CC RMSE TIME

STARFM 32.7311 0.0745 0.8914 1.2473 0.8358 0.0233 808.56

FSDAF 32.9512 0.0721 0.8914 1.2251 0.8424 0.0227 1067.51

DCSTFN 30.8206 0.0638 0.9040 1.8215 0.7563 0.0294 25.34

EDCSTFN 33.2827 0.0678 0.9094 1.1988 0.8580 0.0217 35.40

OURS 33.5782 0.0662 0.9120 1.1682 0.8713 0.0210 40.30

Table 5 presents the quantitative evaluation of the fusion results of the LGC dataset
based on PSNR, SSIM, RMSE, ERGAS, CC, and SAM. As can be seen from the table, our
method has reached the leading level in all indicators.

Table 5. Quantitative evaluation of fusion results of LGC dataset. (The abscissa represents the index
of comparison, and the ordinate represents different methods. Bold indicates the best result).

PSNR SAM SSIM ERGAS CC RMSE TIME

STARFM 31.6338 0.0540 0.9336 1.1814 0.7873 0.0266 2410.56

FSDAF 35.5282 0.0456 0.9488 0.7387 0.8984 0.0169 4208.82

DCSTFN 34.2191 0.0435 0.9485 0.8810 0.8949 0.0195 330.10

EDCSTFN 35.5021 0.0515 0.9585 0.8180 0.9195 0.0168 340.34

OURS 37.3654 0.0361 0.9625 0.6405 0.9301 0.0135 359.39

The experiments on the three datasets show that our method has achieved acceptable
prediction results on the AHB dataset with many irregular regional phenological changes
and the CIA dataset with regular regional phenological changes. Similarly, for the LGC
dataset that mainly includes land cover type changes, our method is more vital to process
temporal and spatial information than traditional methods, and the other two methods are
based on deep learning and can achieve better prediction results.

4.3.3. Qualitative Analysis of the Three Datasets

This subsection mainly describes the qualitative analysis of this model and four
classical fusion models on the three different datasets. Especially on the AHB dataset, we
select other regions to evaluate the fusion results.

Figure 5 displays the results of some pasture areas on 29 August 2017. According to
the third column, we can see that our method can better reconstruct the image color and
contour details. According to the fourth column, the error of the depth learning method
is less than that of traditional methods. The vegetation index detects vegetation growth
status, coverage, and so on. Plants absorb red light due to photosynthesis. Therefore, the
better-growing plants absorb red light and reflect more near-infrared light. From the fifth
column, we can see that the NDVI index of our prediction results shows that the vegetation
area is closer to the raw image, which indicates that this method can restore the detailed
characteristics of vegetation very well.
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Figure 5. The results in pasture areas of the AHB dataset on 29 August 2007. (The first column shows
the original image, the second column exhibits the enlarged part of the red box in the original image,
the third column gives the prediction results, and the fourth column displays the difference between
the prediction image and the second column of the original image. The fifth column is the calculated
normalized differential vegetation index).

Figure 6 shows the results for some cities on 29 August 2017. According to the third
column, we can see that this experiment is more reasonable than other models in periods
of urban reconstruction, and we can see more urban contours. Although DCSTFN has a
practical effect on the reconstruction of the whole image, the urban details are not well
reconstructed, probably because the single branch convolution network can not extract
more urban details; in the two-branch convolution model of EDCSTFN, this situation has
been dramatically improved. The NDVI index of our experiment is close to the actual result.

Figure 7 shows some of the mountain results on 29 August 2017. According to the
third and fourth columns, this method is similar to other deep learning and traditional
methods. In the vegetation coefficient index, because the mountain area is selected as the
study area, there is less green vegetation; we can see that the NDVI index of this experiment
is close to the real level.

Figure 8 shows the overall results on 29 August 2017. In the overall results, the
subjective effect of this experiment is slightly lower than that of other methods. The
preliminary analysis shows that the network based on a transformer is slightly insufficient
for the task of high-resolution large-scale images, and it may also be related to the amount
of data needed. In addition, there are many different types of feature information in the
AHB dataset, which makes the training more difficult.

From the experimental results of Figure 9, it can be seen that the two traditional
algorithms, FSDAF and STARFM, have inevitable information loss in the image spectral
information from the overall visual effect analysis. It can be seen from NDVI that STARFM
has specific information loss in the prediction of green vegetation areas. Deep learning
methods can get better prediction results. Figure 10 shows a zoomed-in display of the irri-
gated area on the CIA dataset. It can be seen that DCSTFN and EDCSTFN are still partially
ambiguous, and the predictions obtained by our method are closer to the ground truth.
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Figure 6. The results in city areas of the AHB dataset on 29 August 2007.

Figure 7. The results in mountain areas of the AHB dataset on 29 August 2007.
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Figure 8. This figure shows the global rendering results on the AHB dataset on 29 August 2007.
(In the illustration, “Observed” means the ground truth label, and “Ours” represents the model in
this paper. The first row illustrates the actual color image of the individual model, the second row
depicts the difference between the predicted image and the original image, and the third row is the
model’s NDVI prediction of the image).

Figure 9. Global renderings showing 9 November 2001 in the CIA dataset.

Figure 11 shows the experimental results we obtained on the LGC dataset on 2 March
2005. From the overall visual effect, the performance of each algorithm is relatively stable,
but there are differences in specific boundary processing and spectral information process-
ing. Figure 12 shows an enlarged area of the LGC dataset to show details. We can see from
the enlarged display of NDVI and prediction effect that our proposed method can not only
better restore vegetation information but also realize the accurate prediction of boundary
information and better process spectral information closer to the real value.

In addition, we draw a heat-scattering map based on the obtained experimental data
on the three datasets, which mainly shows the distribution between the predicted and actual
surface reflections for the four bands. The first to fourth columns in the figure represent
four frequency bands, and each row represents a method. Due to the unique advantages of
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the transformer and feedback mechanism in this model in extracting global information,
it can be seen from Figure 13 that the method proposed in this paper has achieved good
results in four bands, especially in the last two bands, which shows that our method can
better capture the changes of regional rivers and road boundaries. As can be seen from
the comparison chart in Figure 14, the “point cloud” of our proposed method is narrow in
each band and has a high correlation, which indicates that our prediction results are closer
to the actual observations, and the proposed method is more robust in handling complex
changes. As shown in Figure 15, our proposed prediction results significantly impact the
LGC dataset, which can capture changes in land cover types and improve the quality of
fused images.

Figure 10. This figure shows the effect of zooming in on the details of the CIA dataset on 9 November 2001.

Figure 11. The global presentation results of the LGC dataset on 2 March 2005.
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Figure 12. The partially enlarged detail of results of the LGC dataset on 2 March 2005.

Figure 13. This figure shows a plot of the heat scatter results generated on the AHB dataset. (Zoom
in to see that the abscissa represents the band of the predicted image, the ordinate is the band of the
actual image, and each column represents the comparison of different models).
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Figure 14. This figure shows the resulting thermal scatter plot on the CIA dataset.

Figure 15. This figure shows the resulting thermal scatter plot on the LGC dataset.

5. Conclusions

This research optimizes and improves the prediction accuracy and image quality while
reducing the memory and time consumption of the spatiotemporal fusion model based on
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deep learning. This research mainly made the following contributions: first, the texture
transformation model is applied to spatiotemporal fusion in the backbone network of this
study to provide rich texture features in image prediction. Because the model is a deep
neural network model, the interior features can be extracted by adding the self-attention
mechanism module so that the model can extract both the overall feature and the local
feature from the internal structure information in the image patch. Second, a feedback
mechanism with high-level information refinement and low-level representation is used to
achieve higher image clarity in the image reconstruction process. Our experiments show
that on datasets with significant phenological changes and land cover change such as the
LGC dataset and AHB dataset, the proposed model is more stable than other models.

In the future, we are going to study the following points in the field of space-time
fusion of remote sensing images: (1) Reducing the model’s dependence on reference images
and fully takes into account the model’s ability to extract complex features without a
reference image. (2) The transformer has great potential in the field of remote sensing
images. Next, our research will mainly be carried out with transformer and generating
countermeasure networks.

Author Contributions: Conceptualization, H.L. and G.Y.; methodology, H.L.; software, H.L. and
G.Y.; validation, H.L., G.Y. and H.J.; formal analysis, H.L.; resources, Y.Q.; data curation, H.L. and
Y.Q.; writing—original draft preparation, H.L.; writing—review and editing, H.L., G.Y., Y.Q. and
H.J.; visualization, H.L. and G.Y.; funding acquisition, Y.Q. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61966035),
the National Science Foundation of China under Grant (U1803261), the Xinjiang Uygur Autonomous
Region Innovation Team (XJE-DU2017T002), and the Autonomous Region Graduate Innovation
Project (XJ2019G069, XJ2021G062 and XJ2020G074).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CIA Coleambally ignition area
LGC Lower gwydir basin
AHB Aruhorqin banner
HTLS High temporal but low spatial resolution
MODIS Moderate resolution imaging spectroradiometer
LTHS Low temporal but high spatial resolution
EDCSTFN Enhanced deep convolutional spatiotemporal fusion network
CNN Convolutional neural network
SRCNN Super-resolution convolutional network
VDSR Very deep convolutional networks
SRGAN Super-resolution generative adversarial network
EDSR Enhanced deep residual networks
SRDenseNet Super-resolution using dense skip connections network
STARFM Spatial and temporal adaptive reflectance fusion model
STARCH Spatiotemporal adaptive algorithm for mapping reflectance change
ESTARFM Enhanced spatial and temporal adaptive reflectance fusion model
STRUM Spatiotemporal reflectivity unmixing model
FSDAF Flexible spatiotemporal data fusion
UBDF Unmixing-based data fusion
SAM Spatial attraction model
STDFA Spatiotemporal data fusion algorithm
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SPSTFM Sparse-representation-based spatiotemporal reflectance fusion model
STFDCNN Spatiotemporal fusion using deep convolutional pair neural network
DCSTFN Deep convolutional spatiotemporal fusion network
STFNET Twostream convolutional neural network for spatiotemporal image fusion
GAN-STFM Generative adversarial network-based spatiotemporal fusion model
CS Component substitution
MRA Multiresolution analysis
IHS Intense-hue-saturation
PCA Principal component analysis
BT Brovey transform
LTE Learnable texture extractor
RE Relational embedded
HA Hard attention
SA Soft attention
FB Feedback block
RB Reconstruction block
OLI Operational land imager
PSNR Peak signal-to-noise ratio
MSE Mean squared error
SSIM Structural similarity
RMSE Root-mean-square error
SAM Spectral angular similarity
CC Correlation coefficient
ERGAS Erreur relative globale adimensionnelle de synthèse

References
1. Tong, X.; Zhao, W.; Xing, J.; Fu, W. Status and development of china high-resolution earth observation system and application. In

Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July
2016; pp. 3738–3741.

2. Li, D.; Wang, M.; Jiang, J. China’s high-resolution optical remote sensing satellites and their mapping applications. Geo-Spat. Inf.
Sci. 2021, 24, 85–94. [CrossRef]

3. Yu, B.; Shang, S. Multi-Year Mapping of Maize and Sunflower in Hetao Irrigation District of China with High Spatial and
Temporal Resolution Vegetation Index Series. Remote Sens. 2017, 9, 855. [CrossRef]

4. Walker, J.; De Beurs, K.; Wynne, R.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest
phenology. Remote Sens. Environ. 2012, 117, 381–393. doi: 10.1016/j.rse.2011.10.014. [CrossRef]

5. Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ.
2012, 122, 66–74. doi: 10.1016/j.rse.2011.08.024. [CrossRef]

6. Kyrkou, C.; Theocharides, T. EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring using
Atrous Convolutional Feature Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1687–1699. [CrossRef]

7. Nair, H.C.; Padmalal, D.; Joseph, A.; Vinod, P. Delineation of groundwater potential zones in river basins using geospatial
tools—An example from southern western Ghats, Kerala, India. J. Geovisualization Spat. Anal. 2017, 1, 5. [CrossRef]

8. Patanè, G.; Spagnuolo, M. Heterogeneous Spatial Data: Fusion, Modeling, and Analysis for GIS Applications. Synth. Lect. Vis.
Comput. Comput. Graph. Animat. Comput. Photogr. Imaging 2016, 8, 1–155.

9. Shen, H.; Meng, X.; Zhang, L. An integrated framework for the spatio–temporal–spectral fusion of remote sensing images. IEEE
Trans. Geosci. Remote Sens. 2016, 54, 7135–7148. [CrossRef]

10. Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy,
Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [CrossRef]

11. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat
surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218.

12. Tsai, R. Multiframe image restoration and registration. Adv. Comput. Vis. Image Process. 1984, 1, 317–339.
13. Zhang, K.; Tao, D.; Gao, X.; Li, X.; Xiong, Z. Learning multiple linear mappings for efficient single image super-resolution. IEEE

Trans. Image Process. 2015, 24, 846–861. [CrossRef] [PubMed]
14. Zhang, Y.; Wu, W.; Dai, Y.; Yang, X.; Yan, B.; Lu, W. Remote sensing images super-resolution based on sparse dictionaries and

residual dictionaries. In Proceedings of the 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure
Computing, Chengdu, China, 21–22 December 2013; pp. 318–323.

15. Wu, W.; Yang, X.; Liu, K.; Liu, Y.; Yan, B.; Hua, H. A new framework for remote sensing image super-resolution: Sparse
representation-based method by processing dictionaries with multi-type features. J. Syst. Archit. 2016, 64, 63–75. [CrossRef]

16. Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010,
19, 2861–2873. [CrossRef]

http://doi.org/10.1080/10095020.2020.1838957
http://dx.doi.org/10.3390/rs9080855
http://dx.doi.org/10.1016/j.rse.2011.10.014
http://dx.doi.org/10.1016/j.rse.2011.08.024
http://dx.doi.org/10.1109/JSTARS.2020.2969809
http://dx.doi.org/10.1007/s41651-017-0003-5
http://dx.doi.org/10.1109/TGRS.2016.2596290
http://dx.doi.org/10.3390/rs10040527
http://dx.doi.org/10.1109/TIP.2015.2389629
http://www.ncbi.nlm.nih.gov/pubmed/25576571
http://dx.doi.org/10.1016/j.sysarc.2015.11.005
http://dx.doi.org/10.1109/TIP.2010.2050625


Electronics 2022, 11, 2497 22 of 23

17. Singh, S.; Mahmood, A. The NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures. IEEE Access
2021, 9, 68675–68702. [CrossRef]

18. Guo, Y.; Liu, Y.; Lao, S.; Bakker, E.M.; Bai, L.; Lew, M.S. Bag of Surrogate Parts Feature for Visual Recognition. IEEE Trans.
Multimed. 2017, 20, 1525–1536. [CrossRef]

19. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
20. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
21. Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal satellite image fusion using deep convolutional neural networks.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 821–829. [CrossRef]
22. Liu, Y.; Chen, X.; Peng, H.; Wang, Z. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017,

36, 191–207. [CrossRef]
23. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.

Intell. 2015, 38, 295–307. [CrossRef]
24. Zhang, X.; Zou, J.; He, K.; Jian, S. Accelerating Very Deep Convolutional Networks for Classification and Detection. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 38, 1943-1955. [CrossRef]
25. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-Realistic

Single Image Super-Resolution Using a Generative Adversarial Network. arXiv 2016, arXiv:1609.04802.
26. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017 ; pp.
136–144.

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

28. Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4799–4807.

29. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

30. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481.

31. Acerbi-Junior, F.; Clevers, J.; Schaepman, M.E. The assessment of multi-sensor image fusion using wavelet transforms for
mapping the Brazilian Savanna. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 278–288. [CrossRef]

32. Chen, B.; Huang, B.; Xu, B. Comparison of spatiotemporal fusion models: A review. Remote Sens. 2015, 7, 1798–1835. [CrossRef]
33. Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for

high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009,
113, 1613–1627. [CrossRef]

34. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex
heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [CrossRef]

35. Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data
fusion. Remote Sens. Environ. 2015, 156, 34–44. [CrossRef]

36. Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with
different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [CrossRef]

37. Zurita-Milla, R.; Clevers, J.G.; Schaepman, M.E. Unmixing-based Landsat TM and MERIS FR data fusion. IEEE Geosci. Remote
Sens. Lett. 2008, 5, 453–457. doi: 10.1109/LGRS.2008.919685. [CrossRef]

38. Lu, L.; Huang, Y.; Di, L.; Hang, D. A new spatial attraction model for improving subpixel land cover classification. Remote Sens.
2017, 9, 360. [CrossRef]

39. Wu, M.; Niu, Z.; Wang, C.; Wu, C.; Wang, L. Use of MODIS and Landsat time series data to generate high-resolution temporal
synthetic Landsat data using a spatial and temporal reflectance fusion model. J. Appl. Remote Sens. 2012, 6, 063507.

40. Belgiu, M.; Stein, A. Spatiotemporal image fusion in remote sensing. Remote Sens. 2019, 11, 818. [CrossRef]
41. Huang, B.; Zhang, H.; Song, H.; Wang, J.; Song, C. Unified fusion of remote-sensing imagery: Generating simultaneously

high-resolution synthetic spatial–temporal–spectral earth observations. Remote Sens. Lett. 2013, 4, 561–569. [CrossRef]
42. Xue, J.; Leung, Y.; Fung, T. A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images. Remote Sens.

2017, 9, 1310. [CrossRef]
43. Tan, Z.; Yue, P.; Di, L.; Tang, J. Deriving high spatiotemporal remote sensing images using deep convolutional network. Remote

Sens. 2018, 10, 1066. [CrossRef]
44. Tan, Z.; Di, L.; Zhang, M.; Guo, L.; Gao, M. An enhanced deep convolutional model for spatiotemporal image fusion. Remote

Sens. 2019, 11, 2898. [CrossRef]
45. Liu, X.; Deng, C.; Chanussot, J.; Hong, D.; Zhao, B. Stfnet: A two-stream convolutional neural network for spatiotemporal image

fusion. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6552–6564. [CrossRef]
46. Tan, Z.; Gao, M.; Li, X.; Jiang, L. A flexible reference-insensitive spatiotemporal fusion model for remote sensing images using

conditional generative adversarial network. IEEE Trans. Geosci. Remote Sens. 2021, 60. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2021.3077350
http://dx.doi.org/10.1109/TMM.2017.2766842
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1109/JSTARS.2018.2797894
http://dx.doi.org/10.1016/j.inffus.2016.12.001
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/TPAMI.2015.2502579
http://dx.doi.org/10.1016/j.jag.2006.01.001
http://dx.doi.org/10.3390/rs70201798
http://dx.doi.org/10.1016/j.rse.2009.03.007
http://dx.doi.org/10.1016/j.rse.2010.05.032
http://dx.doi.org/10.1016/j.rse.2014.09.012
http://dx.doi.org/10.1016/j.rse.2015.11.016
http://dx.doi.org/10.1109/LGRS.2008.919685
http://dx.doi.org/10.3390/rs9040360
http://dx.doi.org/10.3390/rs11070818
http://dx.doi.org/10.1080/2150704X.2013.769283
http://dx.doi.org/10.3390/rs9121310
http://dx.doi.org/10.3390/rs10071066
http://dx.doi.org/10.3390/rs11242898
http://dx.doi.org/10.1109/TGRS.2019.2907310
http://dx.doi.org/10.1109/TGRS.2021.3050551


Electronics 2022, 11, 2497 23 of 23

47. CARPER, W.; LILLESAND, T.; KIEFER, R. The use of intensity-hue-saturation transformations for merging SPOT panchromatic
and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467.

48. Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177–186. [CrossRef]
49. González-Audícana, M.; Saleta, J.L.; Catalán, R.G.; García, R. Fusion of multispectral and panchromatic images using improved

IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1291–1299. [CrossRef]
50. Pohl, C.; Van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int.

J. Remote Sens. 1998, 19, 823–854. [CrossRef]
51. Shahdoosti, H.R.; Ghassemian, H. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter. Inf. Fusion

2016, 27, 150–160. [CrossRef]
52. Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE

Trans. Geosci. Remote Sens. 2010, 49, 295–309. doi: 10.1109/TGRS.2010.2051674. [CrossRef]
53. Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. In Readings in Computer Vision; Elsevier: Amsterdam,

The Netherlands, 1987; pp. 671–679.
54. Shensa, M.J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 1992,

40, 2464–2482. [CrossRef]
55. Choi, M.; Kim, R.Y.; Nam, M.R.; Kim, H.O. Fusion of multispectral and panchromatic satellite images using the curvelet transform.

IEEE Geosci. Remote Sens. Lett. 2005, 2, 136–140. [CrossRef]
56. Ghahremani, M.; Ghassemian, H. Remote-sensing image fusion based on curvelets and ICA. Int. J. Remote Sens. 2015,

36, 4131–4143. [CrossRef]
57. Ji, X.; Zhang, G. Image fusion method of SAR and infrared image based on Curvelet transform with adaptive weighting. Multimed.

Tools Appl. 2017, 76, 17633–17649. [CrossRef]
58. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In

Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA,
4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010.

59. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

60. Gilbert, C.D.; Sigman, M. Brain states: Top-down influences in sensory processing. Neuron 2007, 54, 677–696. [CrossRef]
61. Hupé, J.; James, A.; Payne, B.; Lomber, S.; Girard, P.; Bullier, J. Cortical feedback improves discrimination between figure and

background by V1, V2 and V3 neurons. Nature 1998, 394, 784–787. [CrossRef]
62. Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback network for image super-resolution. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3867–3876.
63. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
64. Li, J.; Li, Y.; He, L.; Chen, J.; Plaza, A. Spatio-temporal fusion for remote sensing data: An overview and new benchmark.

Sci. China Inf. Sci. 2020, 63, 140301. [CrossRef]
65. Chen, Z.; Pu, H.; Wang, B.; Jiang, G.M. Fusion of hyperspectral and multispectral images: A novel framework based on

generalization of pan-sharpening methods. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1418–1422. [CrossRef]
66. Wald, L. Quality of high resolution synthesised images: Is there a simple criterion? In Proceedings of the Third Conference

“Fusion of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images”, Sophia Antipolis, France, 28–30
January 2000; pp. 99–103.

67. Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801.
[CrossRef]

68. Yuhas, R.H.; Goetz, A.F.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the spectral angle
mapper (SAM) algorithm. In Proceedings of the Summaries 3rd Annual JPL Airborne Geoscience Workshop (AVIRIS Workshop),
Pasadena, CA, USA, 1–5 June 1992; Volume 1, pp. 147–149.

69. Zhou, J.; Civco, D.; Silander, J. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote
Sens. 1998, 19, 743–757. [CrossRef]

70. Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L.M. Comparison of pansharpening algorithms: Outcome of
the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [CrossRef]

71. Lau, S.; Wang, X.; Yang, X.; Chong, E. Automated Pavement Crack Segmentation Using Fully Convolutional U-Net with a
Pretrained ResNet-34 Encoder. IEEE Access 2020, 8, 114892–114899. [CrossRef]

http://dx.doi.org/10.1016/S1566-2535(01)00036-7
http://dx.doi.org/10.1109/TGRS.2004.825593
http://dx.doi.org/10.1080/014311698215748
http://dx.doi.org/10.1016/j.inffus.2015.06.006
http://dx.doi.org/10.1109/TGRS.2010.2051674
http://dx.doi.org/10.1109/78.157290
http://dx.doi.org/10.1109/LGRS.2005.845313
http://dx.doi.org/10.1080/01431161.2015.1071897
http://dx.doi.org/10.1007/s11042-015-2879-8
http://dx.doi.org/10.1016/j.neuron.2007.05.019
http://dx.doi.org/10.1038/29537
http://dx.doi.org/10.1007/s11432-019-2785-y
http://dx.doi.org/10.1109/LGRS.2013.2294476
http://dx.doi.org/10.1049/el:20080522
http://dx.doi.org/10.1080/014311698215973
http://dx.doi.org/10.1109/TGRS.2007.904923
http://dx.doi.org/10.1109/ACCESS.2020.3003638

	Introduction
	Related Works
	Methodology
	Overall Model Architecture
	Texture Transformer
	Feedback Mechanism

	Experiment and Evaluation
	Study Areas and DataSets
	Experiments Settings
	Results and Discussion
	The Evaluation Index Used in This Experiment
	Qualitative Analysis of the Three Datasets
	Qualitative Analysis of the Three Datasets


	Conclusions
	References

